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Proof of Theorem 2.1

Proof. The conditional expectation of ψα(x) given ωx ∈ ΩK can be obtained as follows.

E(ψα(x) | x ∈
K⋃
j=1

Aj) = P (ψ(1)
α (x) = 1, ψ(2)

α (x) = 1, . . . , ψ(K)
α (x) = 1 | x ∈

K⋃
j=1

Aj)

= P (
K⋂
k=1

{ψ(k)
α (x) = 1} | x ∈

K⋃
j=1

Aj)

⩽ min
k

P (ψ(k)
α (x) = 1 | x ∈

K⋃
j=1

Aj)

 (1)

= min
k


K∑

m=1

P (ψ(k)
α (x) = 1,x ∈ Am | x ∈

K⋃
j=1

Aj)

 .

Here, P (ψ(k)
α (x) = 1 | x ∈

K⋃
j=1

Aj) =
K∑

m=1
P (ψ

(k)
α (x) = 1,x ∈ Am | x ∈

K⋃
j=1

Aj) because

Ak are disjoint sets. Next, let pm = P (x ∈ Am | x ∈
K⋃
j=1

Aj) be the proportion of Am among

[A1, . . . , AK ] thus
K∑

m=1
pm = 1. Then, we have the following decomposition.

P (ψ(k)
α (x) = 1,x ∈ Am | x ∈

K⋃
j=1

Aj) = P (ψ(k)
α (x) = 1 | x ∈ Am,x ∈

K⋃
j=1

Aj)P (x ∈ Am | x ∈
K⋃
j=1

Aj)

= P (ψ(k)
α (x) = 1 | x ∈ Am)P (x ∈ Am | x ∈

K⋃
j=1

Aj)

= P (ψ(k)
α (x) = 1 | x ∈ Am)pm. (2)

Finally, the type 1 error E(ψα(x) | ωx ∈ ΩK) has upper bound as follows.

∗Corresponding author. Email: jwlee@hsph.harvard.edu or ofer.harel@uconn.edu.

mailto:jwlee@hsph.harvard.edu
mailto:ofer.harel@uconn.edu


2 Lee, J.W. and Harel, O.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

E(ψα(x) | x ∈
K⋃
j=1

Aj) ⩽ min
k


K∑

m=1

P (ψ(k)
α (x) = 1,x ∈ Am | x ∈

K⋃
j=1

Aj)


⩽ min

k

{
K∑

m=1

P (ψ(k)
α (x) = 1 | x ∈ Am)pm

}
. (3)

Here, P (ψ(m)
α (x) = 1 | x ∈ Am) = α by definition, and P (ψ

(k)
α (x) = 1 | x ∈ Am, k ̸= m) is

a probability of correct decision and thus is clearly bounded above by 1. Now, Eq. (3) can be
simplified as follows.

E(ψα(x) | ωx ∈ ΩK) ⩽ min
k

{
K∑

m=1

P (ψ(k)
α (x) = 1 | x ∈ Am)pm

}

⩽ min
k

{
K∑

m=1

αpm,

K∑
m=1

pm, . . . ,

K∑
m=1

pm

}
= α. (4)

As shown in Eq. (4), a size of the test ψα(x) is less than α.

Proof of Theorem 2.2

Proof. The power of the test ψα(x) is the probability of rejecting the null hypothesis H0 : ωx ∈
ΩK under H1 : ωx /∈ ΩK . To achieve ψα(x) = 1, all K sub-tests ψ(k)

α (x), k = 1, . . . ,K should
have value 1. Consequently, the power of the test ψα(x) can be written as follows.

P (ψα(x) = 1 | x /∈
K⋃
j=1

Aj) = P (ψ(1)
α (x) = 1, . . . , ψ(K)

α (x) = 1 | x /∈
K⋃
j=1

Aj)

⩽ min
k

P (ψ(k)
α (x) = 1 | x /∈

K⋃
j=1

Aj)

 . (5)

As shown in Eq. (5), the power of the test is bounded above the smallest conditional prob-
ability of rejecting H0 : ωx = k given that ωx /∈ ΩK .

Proof of Theorem 2.2

Proof. Let A be the event of correct classification of a testing observation, and Ac denotes an
event of misclassification. Also, and D be the event of the unseen-cluster problem. Also, let P0(A)
and P1(A) be the probability of correct classification by M0 and M1, respectively. Then, we can
write ζ(δ)0 as a function of [δ, β0] as follows.

ζ
(δ)
0 = P0(A) = P0(A ∩D) + P0(A ∩Dc) (6)

= P0(A | D)P0(D) + P0(A | Dc)P0(D
c)

= 0× δ + β0(1− δ) = β0(1− δ).
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Here, P0(A | D) = 0 because a conventional method can never correctly classify a testing
subject if it is sampled from unseen-cluster. Also, we have P0(D

c) = P1(D
c) = 1 − δ. Now, let

B be the event of diagnosis of the unseen-cluster. Similarly, ζ(δ)1 can be written as follows.

ζ
(δ)
1 = P1(A) = P1(A ∩D) + P1(A ∩Dc) = P1(A | D)P (D) + P1(A | Dc)P (Dc)

= {P1(A ∩B | D) + P1(A ∩Bc | D)}P1(D)

+ {P1(A ∩B | D) + P1(A ∩Bc | Dc)}P1(D
c)

= P1(A ∩B | D)P1(D) + P1(A ∩Bc | Dc)P1(D
c)

= P1(A | B,D)P1(B | D)P1(D) + P1(A | Bc, Dc)P1(B
c | Dc)P1(D

c)

= δβ1 + (1− δ)(1− α)β0. (7)

In Eq. (7), we have P1(A ∩ Bc | D) = P1(A ∩ B | Dc) = 0 and P1(A | B,D) = 1. This is
because a correct classification is impossible if a unseen-cluster is not detected (i.e., P1(A | D) =
0). Similarly, an event B | Dc denotes a false discovery event for a unseen-cluster where a correct
classification is impossible, thus P1(B | Dc) = 0. In addition, we have P1(A | B,D) = 1 because
two-stage classification successfully classifies a testing observation as long as the test correctly
identifies it as unclassified. Similarly, we have P1(A∩Bc | D) = P1(A∩B | Dc) = 0 because the
false discovery or failure of diagnosis of unseen-cluster problem makes the probability of correct
classification to be 0. Subtracting Eq. (6) from Eq. (7), the theorem is proved.

Numerical studies when K is unspecified

Numerical studies in Section 3.4 and the following results are based on simulation studies where
the true number of clusters in training data is correctly specified, which can be misspecified
in practice. In this section, we investigate the performances of the proposed methods without
using the true value of K. Namely, when establishing the diagnostic test ψα(x), we do not
employ the true training cluster number K = 4. Instead, we estimate the Gaussian mixture
model with different numbers of clusters ranging from 2 to 9 and use the model with the lowest
BIC for establishing ψα(x). We expect that such a process will show comparable performances
with results using true K values when the cluster separation is strong, and thus, BIC correctly
identifies the true value ofK. On the other hand, when underlying training cluster separations are
weak, BIC often underestimates K, and thus, the performances of the following diagnostic test
and two-stage classification may decrease. For the rest of the subsection, we investigate type 1
error rates and power of the diagnostic tests, and prediction accuracies of two-stage classification
without using K.

Table 1 illustrates the average type 1 error of the diagnostic test when the training cluster
number is unspecified and estimated via BIC. Similar to the scenarios with true K, the proposed
method controls the type 1 error rates under all scenarios, while other competing diagnostic tests
overuse the type 1 error rates.

Table 2 illustrates the average power of the diagnostic test when the training cluster number
is unspecified. As expected, all diagnostic tests illustrate similar performances when the training
clusters are strongly separated (that is, when µ = 4 and [µ, σ] = [3.0, 0.5]. When the training
cluster separations are weak, such as µ = 2.0, the average power of all diagnostic tests decreases
compared to the scenarios with true K used (See Table 2 in the main paper). If embedded in
two-stage classification, this may yield a noticeable decrease in prediction accuracies.
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Table 1: Average Type 1 errors of diagnostic tests when K is unspecified and estimated via BIC.

Parameters Proposed Mahalanobis Manhattan Euclidean Squeezer 5-NN Bootstrap

µ = 4.0
σ = 0.5 0.053 0.064 0.053 0.053 0.062 0.060 0.063
σ = 1.0 0.045 0.063 0.052 0.053 0.061 0.059 0.063
σ = 1.2 0.043 0.061 0.053 0.053 0.059 0.059 0.060

µ = 3.0
σ = 0.5 0.046 0.064 0.053 0.053 0.062 0.059 0.063
σ = 1.0 0.042 0.058 0.052 0.053 0.057 0.059 0.058
σ = 1.2 0.043 0.059 0.053 0.053 0.057 0.059 0.058

µ = 2.0
σ = 0.5 0.047 0.058 0.052 0.053 0.057 0.058 0.058
σ = 1.0 0.046 0.059 0.052 0.053 0.057 0.058 0.058
σ = 1.2 0.047 0.058 0.052 0.053 0.057 0.058 0.058

Table 2: Average power of diagnostic tests when K is unspecified and estimated via BIC.

Parameters Proposed Mahalanobis Manhattan Euclidean Squeezer 5-NN Bootstrap

µ = 4.0
σ = 0.5 0.962 0.967 0.869 0.940 0.966 0.955 0.966
σ = 1.0 0.669 0.705 0.438 0.566 0.696 0.638 0.704
σ = 1.2 0.566 0.607 0.321 0.416 0.548 0.542 0.605

µ = 3.0
σ = 0.5 0.735 0.766 0.514 0.649 0.766 0.705 0.764
σ = 1.0 0.379 0.414 0.182 0.219 0.278 0.371 0.412
σ = 1.2 0.314 0.347 0.157 0.185 0.226 0.313 0.345

µ = 2.0
σ = 0.5 0.336 0.369 0.165 0.194 0.240 0.332 0.367
σ = 1.0 0.178 0.201 0.107 0.117 0.146 0.189 0.200
σ = 1.2 0.156 0.176 0.098 0.106 0.136 0.167 0.175

Finally, Table 3 illustrates the average prediction accuracies of the two-stage classification
when the proportion of unseen-cluster is 10% in the testing data, and the number of training
clusters in the embedded diagnostic test is unspecified and estimated via BIC. Similar to the
power in Table 2, prediction accuracies of two-stage classification methods are lower than in the
scenario with trueK when the training cluster separation is weak, as shown in Table 5 in the main
paper. This is because the power of the diagnostic tests decreases when K is underestimated,
triggering prediction accuracies to decrease accordingly.

We conclude that the loss of power and prediction accuracies due to underestimating K due
to overlapping clusters is not an inherent disadvantage of our proposed method. Unfortunately,
dealing with overlapping clusters is fundamentally challenging in the finite mixture model and,
thus, a natural limitation of the multiclass-based novelty detection framework. In this sense, we
emphasize the importance of correctly estimating the number of clusters in the training data.
We refer to Xu et al. (2016) as a recent review on determining the number of clusters. The
infinite-mixture model can be another interesting approach. Still, it is not a decision-free method
because the hyperparameters of the Dirichlet-Process prior distribution on K should be carefully
specified (Li et al., 2019).
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Table 3: Average prediction accuracies of two-stage classifications at 10% unseen-clusters when
K is unspecified and estimated via BIC.

Parameters Proposed Mahalanobis Manhattan Euclidean Squeezer 5-NN Bootstrap

µ = 4.0
σ = 0.5 0.948 0.944 0.937 0.944 0.944 0.942 0.944
σ = 1.0 0.850 0.848 0.822 0.835 0.848 0.840 0.848
σ = 1.2 0.683 0.686 0.658 0.663 0.677 0.680 0.686

µ = 3.0
σ = 0.5 0.877 0.874 0.850 0.864 0.874 0.866 0.874
σ = 1.0 0.662 0.664 0.642 0.646 0.655 0.656 0.664
σ = 1.2 0.633 0.635 0.616 0.620 0.627 0.628 0.635

µ = 2.0
σ = 0.5 0.641 0.644 0.623 0.627 0.635 0.636 0.643
σ = 1.0 0.552 0.555 0.543 0.545 0.552 0.550 0.555
σ = 1.2 0.532 0.535 0.524 0.526 0.532 0.531 0.534
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