
Journal of Data Science 23 (1), 90–108 DOI: 10.6339/24-JDS1138
January 2025 Computing in Data Science

Unified Robust Boosting

Zhu Wang
1,∗

1Memphis, TN, Department of Preventive Medicine, The University of Tennessee Health Science
Center, United States

Abstract

Boosting is a popular algorithm in supervised machine learning with wide applications in regres-
sion and classification problems. It combines weak learners, such as regression trees, to obtain
accurate predictions. However, in the presence of outliers, traditional boosting may yield infe-
rior results since the algorithm optimizes a convex loss function. Recent literature has proposed
boosting algorithms that optimize robust nonconvex loss functions. Nevertheless, there is a lack
of weighted estimation to indicate the outlier status of observations. This article introduces the
iteratively reweighted boosting (IRBoost) algorithm, which combines robust loss optimization
and weighted estimation. It can be conveniently constructed with existing software. The output
includes weights as valuable diagnostics for the outlier status of observations. For practitioners
interested in the boosting algorithm, the new method can be interpreted as a way to tune robust
observation weights. IRBoost is implemented in the R package irboost and is demonstrated using
publicly available data in generalized linear models, classification, and survival data analysis.

Keywords boosting; CC-family; IRBoost; IRCO; machine learning; robust method

1 Introduction
Boosting is a powerful supervised machine learning algorithm. As an ensemble method, boosting
combines many weak learners to generate a strong prediction. Being a functional descent method,
boosting finds wide applications in regression and classification problems. Friedman (2001) and
Friedman et al. (2000) discussed boosting for a variety of convex loss functions. Boosting can
be utilized to fit various models with different base learners, including linear least squares,
smoothing splines, and regression trees (Bühlmann and Hothorn, 2007; Wang, 2018b).

The R package mboost implements robust boosting with the Huber loss for continuous
responses (Hothorn et al., 2023). Likewise, the package xgboost (Chen et al., 2024) implements a
pseudo-Huber loss function. Notably, these loss functions are convex. While convex loss functions
have computational advantages and are commonly used due to their ease of optimization, they
can lack robustness to leverage points in the predictor variables (Maronna et al., 2019) and
provide poor approximations to certain loss functions like the 0-1 loss (Wu and Liu, 2007; Zhao
et al., 2010; Park and Liu, 2011) in classification problems.

On the other hand, nonconvex loss functions, such as Tukey’s biweight loss, can be robust
to both vertical outliers in the response variable and leverage points. Moreover, nonconvex loss
functions can achieve better generalization accuracy.

Recent research has explored strategies to address outliers in boosting algorithms with

∗ Email: zwang145@uthsc.edu.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received March 18, 2024; Accepted April 22, 2024

mailto:zwang145@uthsc.edu
https://creativecommons.org/licenses/by/4.0/

Unified Robust Boosting 91

nonconvex loss functions. For example, a study on boosting in the presence of outliers examined
the role and efficiency of nonconvex loss functions for binary classification problems, aiming to
adaptively handle outliers during the boosting process (Li and Bradic, 2018). Wang (2018a) and
Wang (2018b) proposed robust functional gradient boosting for nonconvex loss functions in the
context of regression and classification problems, implemented in the R package bst (Wang and
Hothorn, 2023). These methods applied a majorization-minimization (MM) scheme, an extension
of the popular expectation-maximization (EM) algorithm in statistics. These MM algorithms
involve quadratic approximations of functions and difference-of-convex functions. However, they
fail to generate weights as an indication of the outlier status of the observations. Small weights
should be assigned to observations deviating from the underlying model.

In classical robust estimation, weights are derived from robust loss functions, such as the
Huber loss. Recent progress has been made in generating weights from robust loss functions
in more complex problems. Wang (2024b) innovatively proposed a new framework for robust
estimation by reducing the weight of the observation that leads to a large loss. The author
introduced a unified class of robust loss functions known as the concave-convex (CC) family.
Additionally, the author proposed iteratively reweighted convex optimization (IRCO), a special-
ized application of the MM algorithm designed to minimize the loss functions within the CC
family. The CC-family includes traditional robust loss functions such as the Huber loss, robust
hinge loss for support vector machines, and robust exponential family for generalized linear
models. IRCO can be conveniently implemented with existing methods and software.

In this article, we integrate IRCO and boosting into IRBoost for the CC-family. This func-
tional optimization is more general than the parameter-based estimation in Wang (2024b). For
instance, IRBoost permits a function space derived from regression trees. Unlike previous ro-
bust boosting methods, including Wang (2018a,b), the major novelty is that IRBoost provides
a unified framework for a large class of robust loss functions to estimate weights and identify
outliers.

We illustrate the proposed algorithm using the R package irboost (Wang, 2024a), applying
it to various models within the robust exponential family, such as regression, logistic regression,
and Poisson regression. Additionally, we demonstrate its application to robust survival regres-
sion with the accelerated failure time model. The package further includes implementations of
IRBoost for gamma regression, Tweedie regression, hinge classification, and multinomial logistic
regression.

2 Robust Boosting

2.1 CC-Family Function Estimation

To unify robust estimation, Wang (2024b) proposed the concave convex family with functions
� = g ◦ s satisfying the following conditions:
1. g is a nondecreasing closed concave function whose domain is the range of function s.
2. s is convex on R.
Examples of concave component g are listed in Table 1. Note that the function tcave is not
differentiable everywhere but subdifferentiable. The parameter θ controls robustness level a
model is allowed to have, and a smaller value leads to a more robust estimation. See Wang
(2024b) for a discussion of the motivation behind these functions. In classification problems,
we assume y ∈ {−1, 1}. The convex component includes common loss functions in regression
and classification such as squared loss s(u) = u2 and the negative log-likelihood function in the

92 Wang, Z.

Table 1: Concave component with θ > 0.

Concave function g(z), z � 0

hcave

{
z if z � θ2/2

θ(2z)
1
2 − θ2

2 if z > θ2/2

acave

{
θ2(1 − cos((2z)

1
2

θ
)) if z � θ2π2/2

2θ2 if z > θ2π2/2

bcave θ2

6

(
1 − (1 − 2z

θ2)
3I (z � θ2/2)

)
ccave θ2

(
1 − exp(−z

θ2)
)

dcave 1
1−exp(−θ)

log(1+z
1+z exp(−θ)

)

ecave

⎧⎨
⎩

2 exp(− δ
θ
)√

πθδ
z if z � δ

erf(
√

z
θ
) − erf(

√
δ
θ
) + 2 exp(− δ

θ
)√

πθδ
δ if z > δ

gcave

{
δθ−1

(1+δ)θ+1 z if z � δ

1
θ
(z

1+z
)θ − 1

θ
(δ

1+δ
)θ + δθ

(1+δ)θ+1 if z > δ

where δ =
{

→ 0+ if 0 < θ < 1
θ−1

2 if θ � 1

tcave min(θ, z), θ � 1 for classification; θ > 0 otherwise

exponential family adopted by generalized linear models. Other examples include negative log-
likelihood functions for multinomial logistic regression, Tweedie regression, and the accelerated
failure time model for time-to-event data subject to censoring (Barnwal et al., 2022).

Given a set of observations (xi , yi), i = 1, . . . , n, where yi ∈ R and xi = (xi1, . . . , xip)T ∈ R
p,

denote � as the linear span of a set H of base learners, including regression trees and linear
predictor functions. An estimation of f = (f (x1), . . . , f (xn))

T ∈ � can be obtained by minimizing
an empirical loss function

n∑
i=1

ℓ

(
yi, f (xi)

)
, (1)

where ℓ is a CC-family member, ℓ = g ◦ s = g(s(u)). With some abuse of notation, s(u) is also
used to denote s(y, f (x)). For instance, s(u) = s(y − f (x)) in regression, and s(u) = s(yf (x)) in
a margin-based classification. To simplify the notation, f is often used to replace f (x).

The robust function estimation problem (1) can be addressed using Algorithm 1, employing
an iteratively reweighted boosting approach. This two-layer algorithm operates as follows: in each
iteration at the outer layer, observation weights are updated based on the current loss values
from the convex component. With these weights, the inner layer updates function estimation
and loss values from the convex component through weighted boosting iterations minimizing
weighted convex loss functions. In a new cycle, the outer layer weights are updated using the
boosting results. Subsequently, the inner layer runs new boosting iterations with the updated

Unified Robust Boosting 93

weights. The process repeats until convergence. This approach represents a generalization of the
iteratively reweighted least squares method commonly employed in robust estimation (Maronna
et al., 2019; Wang, 2024b).

Step 3 involves ϕ, the Fenchel conjugate of −g defined as:

ϕ(v) = sup
z∈dom g

(
zv + g(z)

)
.

Here, ∂(−g(z)) means the subdifferential of function −g at point z, which is a set of slopes
that touch the graph of −g at (z, −g(z)) and bound the graph from below. If the function is
differentiable at z, then ∂(−g(z)) contains only one element −g′(z). Let

ρ(f (k)) =
n∑

i=1

ℓ(yi, f
(k)
i),

where f (k) is generated by the algorithm. We then have the following convergence results for
IRBoost.

Algorithm 1 IRBoost.
1: Input: training samples {(x1, y1), . . . , (xn, yn)}, concave component g with parameter θ ,

convex component s, starting points zi, i = 1, . . . , n and iteration count K.
2: for k = 1 to K do
3: Compute subgradient v

(k)
i via v

(k)
i ∈ ∂(−g(zi)) or zi ∈ ∂ϕ(v

(k)
i), i = 1, . . . , n.

4: Compute f (k) = argminf∈�

∑n
i=1 s(yi, fi)(−v

(k)
i).

5: Compute zi = s(yi, f
(k)
i), i = 1, . . . , n.

6: end for
7: Output: v

(K)
i and f (K).

Theorem 1. Suppose that g is a concave component in the CC-family, and g is bounded below.
Then the loss function values ρ(f (k)) generated by Algorithm 1 are nonincreasing and converge.

This result extends Theorem 6 in Wang (2024b), which focused on linear predictor functions.
Our investigation encompasses more expansive function spaces. Conversely, when � represents
a linear space of linear models, Theorem 1 aligns with the results detailed in Wang (2024b).
Algorithm 1 is an MM algorithm, and the proof follows the same argument as Theorem 6 in
Wang (2024b). Hence, only a sketch of the proof is given below, specifically assuming that g is
differentiable.

For a differentiable concave function g, the first-order condition is ∀u, v ∈ dom g

g(u) � g(v) + g′(v)(u − v). (2)

Substitute u with s(u), and v with s(v) in (2), we get

g(s(u)) � g(s(v)) + g′ (s(v))(s(u) − s(v)) . (3)

Substitute s(u) = s(yi, fi), s(v) = s(yi, f
(k)
i) in (3), and sum up for i = 1, . . . , n, we get

n∑
i=1

g(s(yi, fi)) �
n∑

i=1

g
(
s(yi, f

(k)
i)

)
+ g′

(
s(yi, f

(k)
i)

) (
s(yi, fi) − s(yi, f

(k)
i)

)
. (4)

94 Wang, Z.

Let Q(f |f (k)) denote the right hand side of (4). We then have

ρ(f) � Q(f |f (k)), ρ(f (k)) = Q(f (k)|f (k)). (5)

This implies that Q(f |f (k)) majorizes ρ(f) at f (k). The algorithm iterates as follows: given an
estimate f (k) in the kth iteration, Q(f |f (k)) is minimized in the k + 1 iteration to obtain an
updated minimizer f (k+1). This process is repeated until convergence. Therefore, the algorithm
generates a descent sequence of estimates:

ρ(f (k+1)) � Q(f (k+1)|f (k)) � Q(f (k)|f (k)) = ρ(f (k)). (6)

Alternatively, the majorization (5) can be constructed from a different surrogate function derived
from the Fenchel convex conjugate. The Fenchel-Moreau theorem states that the following result
holds (Wang, 2024b)

g(s(u)) = inf
v∈dom ϕ

(s(u)(−v) + ϕ(v)) .

Let

R(f |f (k)) =
n∑

i=1

s(yi, fi)(−v
(k)
i) + ϕ(v

(k+)
i).

R(f |f (k)) is another function that majorizes ρ(f) at f (k). The algorithm generates a sequence of
estimates in a descending order, similar to (6).

In step 3 of IRBoost, weights are computed using two different methods, each associated
with a surrogate function, namely Q and R. Remarkably, the solutions obtained from these
different approaches have been demonstrated to be identical (Wang, 2024b).

2.2 Boosting Algorithm for Function Estimation
In this section, we describe methods to compute step 4 in Algorithm 1. For ease of notation,
we present methods for unweighted estimation, as weighted estimation does not pose technical
difficulties:

argmin
f∈�

n∑
i=1

s(yi, fi). (7)

Boosting techniques addressing the problem (7) are well-documented in the literature; see Chen
and Guestrin (2016); Sigrist (2021), and references therein. Briefly, the boosting solution is an
additive model given by

f̂i = FM(xi) =
M∑
i=1

tm(xi), i = 1, . . . , n, (8)

where FM(xi) is stagewisely constructed by sequentially adding an update tm(xi) to the current
estimate Fm−1(xi):

Fm(xi) = Fm−1(xi) + tm(xi), m = 1, . . . , M. (9)
There are different ways to compute tm(x) = (tm(x1), . . . , tm(xn))

T: gradient and Newton-
type updates are the most popular. When the second derivative of the loss function exists, the
Newton-type update is preferred over the gradient update to achieve fast convergence (Sigrist,
2021).

tm(x) = argmin
f∈H

n∑
i=1

hm,i

(
−dm,i

hm,i

− f (xi)

)2

, (10)

Unified Robust Boosting 95

where the first and second derivatives of the loss function s for observation i are given by:

dm,i = ∂

∂f
s(yi, f)|f =Fm−1(xi),

hm,i = ∂2

∂f 2
s(yi, f)|f =Fm−1(xi).

For quadratic loss s(yi, f) = (yi−f)2

2 , we obtain hm,i = 1. In this case, the Newton-update is
reduced to the gradient update. Note that f ∈ � in (7) and f ∈ H in (10), indicating that
optimal base learners can be found in H and a linear combination of them can be found in �

through the boosting algorithm.
To prevent overfitting, boosting also implements a step-size shrinkage parameter 0 < η � 1

in the update (9):
Fm(xi) = Fm−1(xi) + ηtm(xi), m = 1, . . . , M.

2.3 Penalized Estimation
Another strategy to avoid overfitting is to add a regularization term to the objective function
(1):

n∑
i=1

ℓ(yi, fi) +
M∑

m=1

�(tm), (11)

where � penalizes the model complexity.
If H is the linear space of linear models with a p-dimensional predictor, i.e., tm(xi) = xT

i βm,
βm = (β1m, . . . , βpm)T, let

�(tm) = 1

2
λ

p∑
j=1

β2
jm + α

p∑
j=1

|βjm|,

where λ � 0, α � 0 are the L2 and L1 regularization parameters, respectively. Note that �(tm)

provides shrinkage estimators and can conduct variable selection.
Suppose that H is the linear space of regression trees. Each regression tree splits the predic-

tor space into disjoint hyper-rectangles with sides parallel to the coordinate axes (Wang, 2018b).
Specifically, denote the hyper-rectangles in the m-th boosting iteration as Rjm, j = 1, . . . , J . Let
tm(xi) = βjm, xi ∈ Rjm, i = 1, . . . , n, j = 1, . . . , J . With γ � 0, the penalty can be defined as in
Chen and Guestrin (2016):

�(tm) = γ J + 1

2
λ

J∑
j=1

β2
jm + α

J∑
j=1

|βjm|.

Consequently, the boosting estimation in Section 2.2 requires modifications. The optimiza-
tion problem (7) is changed to

argmin
f∈�

n∑
i=1

s(yi, fi) +
M∑

m=1

�(tm).

The Newton-type update (10) is modified accordingly:

tm(x) = argmin
f∈H

n∑
i=1

hm,i

(
−dm,i

hm,i

− f (xi)

)2

+ �(tm).

Step 4 in Algorithm 1 can be modified accordingly.

96 Wang, Z.

2.4 Implementation and Tuning Parameter Selection

The requirement of z � 0 on the domain of g, that is, s(u) � 0, may be relaxed for some
concave functions g in Table 1. To satisfy all g functions, however, it is simpler to require s(u)

to be non-negative. When s(u) < 0, such as in the case of a negative log-likelihood value for
the gamma distribution, we can ensure a nonnegative loss by subtracting some data-dependent
constant. Specifically, if s(y, f (x)) < 0, one remedy is to subtract a constant C such that
s(y, f (x)) − C � 0. For the exponential family, s(y, f (xi)) � s(y, y) holds, as s(y, y) represents
the negative log-likelihood value of a saturated model. Thus, a desired convex loss is s(yi, f (xi))−
mini=1,...,n s(yi, yi) � 0.

To minimize the penalized convex loss function (11) or its weighted version in step 4 of
Algorithm 1, we employ the popular boosting R package, xgboost. There are two layers of itera-
tions in the algorithm: the outer layer updates weights, and the inner layer comprises boosting
iterations, where early stopping of iterations does not guarantee convergence. On the other hand,
the output f (K) may overfit the data. In practice, a two-stage process may be considered: In the
first stage, Algorithm 1 is applied to obtain optimal weights for the given observations. In the
second stage, a data-driven method such as cross-validation can be used to compute a reliable
estimate of errors for a weighted boosting model. This process can also be utilized to determine
an optimal parameter. For instance, Algorithm 2 can be used to select an optimal robust param-
eter θ and the corresponding IRBoost model. To illustrate the process, a data example will be
presented in Section 3.1. Other parameters, such as the boosting iteration M, penalty number
γ for trees, regularization terms λ and α, can be similarly chosen. Alternatively, since the θ pa-
rameter is typically considered a hyperparameter, a more computationally convenient approach
in the literature is to conduct estimation for different values of θ and compare the results. One
can begin with a large value of θ for less robust estimation and move towards smaller values of
θ for more robust results.

Algorithm 2 IRBoost tuning parameter selection.
1: Input: training samples {(x1, y1), . . . , (xn, yn)}, concave component g with parameters

θ1, . . . , θT , convex component s, starting points zi, i = 1, . . . , n and iteration count K.
2: for t = 1 to T do
3: Compute IRBoost model ft and robustness weights −v

(K)
it , i = 1, . . . , n with θt using Al-

gorithm 1.
4: Compute cross-validation errors εt using weighted boosting algorithm with weights

−v
(K)
it , i = 1, . . . , n.

5: end for
6: Output: t̂ = argmin1�t�T εt , θ̂ = θt̂ , v̂

(K)
i = v

(K)

it̂
, f̂ = ft̂ .

Nonconvex loss optimization algorithms may lead to local solutions depending on the initial
values. In the implementation of irboost, a user can specify the initial values zi � 0, i = 1, . . . , n,
with default values of zi being the initial weights if provided or the vector of 1s in that order. The
user may then compare the results from potentially different solutions and obtain an optimal
solution afterward.

The source version of the irboost package is freely available from the Comprehensive R
Archive Network (http://CRAN.R-project.org). The reader can install the package directly from
the R prompt via:

http://CRAN.R-project.org

Unified Robust Boosting 97

install.packages("irboost")

All analyses presented below are contained in a package vignette. The rendered output of
the analyses is available by the R-command:

library("irboost")
vignette("static_irbst", package = "irboost")

3 Applications

3.1 Robust Boosting for Regression

In this example, we predict the median value of owner-occupied homes in the suburbs of Boston,
using data publicly available from the UCI machine learning data repository. The dataset com-
prises 506 observations and 13 predictors. Wang (2024b) provides an alternative robust estima-
tion for comparison.

urlname <- "https://archive.ics.uci.edu/ml/"
filename <- "machine-learning-databases/housing/housing.data"
dat <- read.table(paste0(urlname, filename), sep = "", header = FALSE)
dat <- as.matrix(dat)
colnames(dat) <- c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM",

"AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "MEDV")
p <- dim(dat)[2]

We apply IRBoost with the concave component bcave and the convex component least
squares.

library("irboost")
param <- list(objective = "reg:squarederror", max_depth = 2)
fit1 <- irboost(data = dat[, -p], label = dat[, p], cfun = "bcave",

s = 10, params = param, verbose = 0, nrounds = 50)
plot(fit1$weight_update, ylab = "Weight") # plot robustness weights
id <- sort.list(fit1$weight_update)[1:4] # 4 obs. with smallest weights
text(id, fit1$weight_update[id] - 0.02, id, col = "red") # highlight 4 obs.

Figure 1 displays the observation weights used when IRBoost converges, highlighting the
four smallest values, which are considered outliers. We plot the observed median housing prices
against the predicted values in Figure 2(a). Notably, the four observations with the smallest
weights deviate significantly from their predicted values, but this outcome is not surprising.
IRBoost returns a weighted boosting estimation. The implementation of irboost is equivalent
to xgboost with weights. Using the weights learned from IRBoost with XGBoost results in
predictions that are identical to those produced by IRBoost. This equivalence is illustrated in
the following example with Figure 2(b).

98 Wang, Z.

Figure 1: Robustness weights of IRBoost for the Boston housing data.

Figure 2: Prediction for the Boston housing data.

par(pty = "s")
plot(dat[, p], predict(fit1, newdata = dat[, -p]), xlab = "Observations",

ylab = "Predictions") # obs. vs predictions
text(dat[id, p], predict(fit1, newdata = dat[id, -p]) - 1, id,

col = "red") # highlight 4 obs. with smallest weights
abline(0, 1, col = "red") # 45-degree line
library("xgboost")
fit_xg <- xgboost::xgboost(data = dat[, -p], label = dat[, p],

weight = fit1$weight_update, params = param, verbose = 0,
nrounds = fit1$niter)

par(pty = "s") # plot type square between irboost and xgboost
plot(predict(fit1, newdata = dat[, -p]), predict(fit_xg, newdata = dat[,

Unified Robust Boosting 99

-p]), xlab = "Predictions by irboost", ylab = "Predictions by xgboost")
abline(0, 1, col = "red") # 45-degree line

We can compare computing times between irboost and xgboost. As shown below, both
computing tasks completed within one second on an Intel® Core™ i9-10900X CPU @ 3.70GHz ×
8 processor with 16GB of RAM. Since the former involves iterative reweighting runs of xgboost,
it is expected to take more computing time than a single run of xgboost.

computing time for irboost
system.time(irboost(data = dat[, -p], label = dat[, p], cfun = "bcave",

s = 10, params = param, verbose = 0, nrounds = 50))["elapsed"]

elapsed
0.941

computing time for xgboost
system.time(xgboost::xgboost(data = dat[, -p], label = dat[,

p], weight = fit1$weight_update, params = param, verbose = 0,
nrounds = fit1$niter))["elapsed"]

elapsed
0.127

Feature importance from the learned model is displayed in Figure 3. The figure reveals that
the top two factors for predicting median housing prices are the average number of rooms per
dwelling (RM) and the percentage values of the lower status of the population (LSTAT).

importance_matrix <- xgboost::xgb.importance(model = fit1) # importance metric
xgboost::xgb.plot.importance(importance_matrix = importance_matrix) # plot

Figure 3: Variable importance measures for the Boston housing data.

100 Wang, Z.

Figure 4: First tree in IRBoost for the Boston housing data.

The first tree used to build the model is depicted in Figure 4.

xgboost::xgb.plot.tree(model = fit1, trees = 0)

We can optimize tuning parameters using cross-validation with the built-in functions in
xgboost. First, update the data format with the estimated robustness weights, then determine
the optimal IRBoost iteration.

dtrain <- xgboost::xgb.DMatrix(data = dat[, -p], label = dat[,
p]) # create a DMatrix for training data

xgboost::setinfo(dtrain, "weight", fit1$weight_update) # set weight information
param <- list(booster = "gbtree", objective = "reg:squarederror")
set.seed(136) # set the seed for reproducibility
xgbcv <- xgboost::xgb.cv(params = param, data = dtrain, nrounds = 200,

early_stopping_rounds = 20, nfold = 5, prediction = TRUE)

xgbcv$best_iteration

[1] 37

Continuing in the same vein, we can identify the optimal robustness parameter θ , and the
corresponding IRBoost iteration. For instance, to select a preferable θ from the set {5, 10}, the
cross-validation results below indicate that θ = 5 yields a smaller root mean squared error on
the test data. Moreover, this procedure identifies the optimal IRBoost iteration as 39.

dtrain_cv <- xgboost::xgb.DMatrix(data = dat[, -p], label = dat[,
p]) # training data

robustness_param <- c(5, 10) # two theta values

Unified Robust Boosting 101

res <- NULL
for (i in 1:length(robustness_param)) {

fit_init <- irboost(data = dat[, -p], label = dat[, p], cfun = "bcave",
s = robustness_param[i], params = list(objective = "reg:squarederror",

max_depth = 2), verbose = 0, nrounds = 50) # fit irboost model
xgboost::setinfo(dtrain_cv, "weight", fit_init$weight_update) # new weights
set.seed(136)
xgbcv <- xgboost::xgb.cv(params = param, data = dtrain_cv,

early_stopping_rounds = 20, nrounds = 200, nfold = 5,
prediction = TRUE) # 5-fold CV

reslog <- xgbcv$evaluation_log[xgbcv$best_iteration] # best values in CV
tmp <- unlist(c(theta = robustness_param[i], reslog)) # combine theta
res <- rbind(res, tmp) # combine results from previous theta
rownames(res) <- NULL

}

print(res, digits = 2)

theta iter train_rmse_mean train_rmse_std test_rmse_mean
[1,] 5 39 0.30 0.019 2.3
[2,] 10 37 0.37 0.036 3.0
test_rmse_std
[1,] 0.31
[2,] 0.33

3.2 Robust Logistic Boosting
A binary classification problem, as proposed by Long and Servedio (2010), involves a response
variable y randomly chosen to be −1 or +1 with equal probability. Symbols A, B, and C are
randomly generated with probabilities 0.25, 0.25, and 0.5, respectively. The predictor vector x
with 21 elements is generated as follows: if A is obtained, xj = y for j = 1, . . . , 21. If B is
generated, xj = y for j = 1, . . . , 11, and xj = −y for j = 12, . . . , 21. If C is generated, xj = y,
where j is randomly chosen from the range of 1 to 11 with a selection of 5 elements, and from the
range of 12 to 21 with a selection of 6 elements. For the remaining j ∈ {1, 2, 3, . . . , 21}, xj = −y.
The training data is generated with n = 400 samples, and the test data with n = 200 samples.

We fit a robust logistic boosting model with the concave component acave, setting the
maximum depth of a tree to 5. With a large parameter θ = 100, the robustness weights are very
close to 1 as shown below.

set.seed(1947)
dat2 <- dataLS(ntr = 400, nte = 200, percon = 0) # percon=0 means clean data
param <- list(objective = "binary:logitraw", max_depth = 5)
fit2 <- irboost(data = dat2$xtr, label = dat2$ytr, cfun = "acave",

s = 100, params = param, verbose = 0, nrounds = 100)
range(fit2$weight_update) # range of robustness weights

[1] 0.9999975 1.0000000

102 Wang, Z.

Figure 5: Robustness weights of IRBoost with θ = 3 for the contaminated simulation data.

To add outliers, we simulate data with 10% contamination in the response variables of the
training data and then apply IRBoost. Figure 5 displays the robustness weights obtained from
the algorithm.

set.seed(158)
dat3 <- dataLS(ntr = 400, nte = 200, percon = 0.1) # 10% data contamination
param <- list(objective = "binary:logitraw", max_depth = 5)
fit3 <- irboost(data = dat3$xtr, label = dat3$ytr, cfun = "acave",

s = 3, params = param, verbose = 0, nrounds = 100)
plot(fit3$weight_update, ylab = "Weight") # plot robustness weights

In the third robust logistic boosting, we set the robustness hyperparameter value θ to 1
(s=1 in the irboost function) for a more robust estimation. Consequently, certain observations
exhibit decreased weights, as illustrated in Figure 6.

Figure 6: Robustness weights of IRBoost with θ = 1 for the contaminated simulation data.

Unified Robust Boosting 103

Figure 7: Classification errors and IRBoost iterations for the simulation data.

param <- list(objective = "binary:logitraw", max_depth = 5)
fit4 <- irboost(data = dat3$xtr, label = dat3$ytr, cfun = "acave",

s = 1, params = param, verbose = 0, nrounds = 100)
plot(fit4$weight_update, ylab = "Weight") # plot robustness weights

The prediction accuracy can be compared for different models. The prediction error of the
test data at each IRBoost iteration is depicted in Figure 7, demonstrating that the most accurate
predictions come from the robust model, even in the presence of outliers.

err2 <- err3 <- err4 <- rep(NA, 100)
for (i in 1:100) {

pred2 <- predict(fit2, newdata = dat2$xte, iterationrange = c(1,
i + 1)) # prediction with the first i trees

err2[i] <- mean(sign(pred2) != dat2$yte) # error at iteration i
pred3 <- predict(fit3, newdata = dat3$xte, iterationrange = c(1,

i + 1))
err3[i] <- mean(sign(pred3) != dat3$yte)
pred4 <- predict(fit4, newdata = dat3$xte, iterationrange = c(1,

i + 1))
err4[i] <- mean(sign(pred4) != dat3$yte)

}
plot(err2[1:100], ylim = c(0.05, 0.3), type = "l", xlab = "IRBoost iteration",

ylab = "Classification error")
points(err3[1:100], col = "red", type = "l", lty = "dashed")
points(err4[1:100], col = "blue", type = "l", lty = "dotted")
legend("topright", lty = c("solid", "dashed", "dotted"), col = c("black",

"red", "blue"), legend = c(expression(paste("clean data with ",
theta == 100)), expression(paste("cont'd data with ", theta ==
3)), expression(paste("cont'd data with ", theta == 1))))

104 Wang, Z.

Figure 8: Robustness weights of IRBoost for the iris data.

3.3 Robust Multiclass Boosting

In a 3-class classification using the iris dataset, we run IRBoost with concave function acave
and θ = 1. The robustness weights are illustrated in Figure 8, and the model achieves perfect
prediction.

lb <- as.numeric(iris$Species) - 1 # convert text to numeric values
num_class <- 3
set.seed(11)
param <- list(objective = "multi:softprob", max_depth = 4, eta = 0.5,

nthread = 2, subsample = 0.5, num_class = num_class)
fit5 <- irboost(data = as.matrix(iris[, -5]), label = lb, cfun = "acave",

s = 1, params = param, verbose = 0, nrounds = 10)

plot(fit5$weight_update, ylab = "Weight") # plot robustness weights

compute num_class probabilities per case
pred5 <- predict(fit5, newdata = as.matrix(iris[, -5]))
reshape to a num_class-columns matrix
pred5 <- matrix(pred5, ncol = num_class, byrow = TRUE)
pred5_labels <- max.col(pred5) - 1 # probabilities to labels
sum(pred5_labels != lb) # classification errors

[1] 0

3.4 Robust Poisson Boosting

A survey, collected from 3066 Americans, studied health care utilization (Heritier et al., 2009;
Wang, 2024b). The dataset includes information on doctor office visits and 24 risk factors. A

Unified Robust Boosting 105

Figure 9: Robustness weights of IRBoost for the doctor office visits data.

robust Poisson boosting model is fitted with the concave component ccave, and the estimated
robustness weights are illustrated in Figure 9. Doctor office visits ranging from 200 to 750 in
two years are highlighted for the 8 patients with the smallest weights.

data(docvisits, package = "mpath")
convert factors and other types of variables into a
numeric matrix
x <- model.matrix(~age + factor(gender) + factor(race) + factor(hispan) +

factor(marital) + factor(arthri) + factor(cancer) + factor(hipress) +
factor(diabet) + factor(lung) + factor(hearth) + factor(stroke) +
factor(psych) + factor(iadla) + factor(adlwa) + edyears +
feduc + meduc + log(income + 1) + factor(insur) + 0, data = docvisits)

param <- list(objective = "count:poisson", max_depth = 1)
fit6 <- irboost(data = x, label = docvisits$visits, cfun = "ccave",

s = 20, params = param, verbose = 0, nrounds = 50)

plot(fit6$weight_update, ylab = "Weight") # plot robustness weights
id <- sort.list(fit6$weight_update)[1:8] # 8 obs. with smallest weights
text(id, fit6$weight_update[id] - 0.02, docvisits$visits[id],

col = "red") # highlight 8 obs.

3.5 Robust Survival Boosting with Accelerated Failure Time Model

Cox regression in survival analysis is based on a partial likelihood function. A robust extension
in the CC-family is beyond the scope of this article. Alternatively, one may apply robust sur-
vival regression with the accelerated failure time model in irboost. The following code provides
robust survival analysis for patients with advanced lung cancer from the North Central Cancer
Treatment Group. Model performance is evaluated with multiple measures for survival data.
Figure 10 illustrates the robustness weights using IRBoost.

106 Wang, Z.

Figure 10: Robustness weights of IRBoost for the lung cancer data.

library("survival")
lung1 <- lung[complete.cases(lung),] # remove missing data
y_upper_bound <- rep(NA, dim(lung1)[1])
set right-censoring obs. to y_upper_bound = Inf
for (i in 1:dim(lung1)[1]) {

if (lung1$status[i] == 2) {
y_upper_bound[i] <- lung1$time[i]

} else y_upper_bound[i] <- Inf
}
x <- as.matrix(lung1[, !names(lung1) %in% c("time", "status")]) # predictors
dtrain <- xgboost::xgb.DMatrix(data = x, label_lower_bound = lung1$time,

label_upper_bound = y_upper_bound) # input data format
param <- list(objective = "survival:aft", eval_metric = "aft-nloglik",

aft_loss_distribution = "normal", aft_loss_distribution_scale = 1.2,
max_depth = 3)

library("Hmisc")
fit7 <- irb.train(params = param, data = dtrain, cfun = "hcave",

s = 3, nrounds = 50)
evaluate model prediction accuracy
Hmisc::rcorr.cens(predict(fit7, newdata = dtrain), Surv(time = lung1$time,

event = lung1$status))

C Index Dxy S.D. n
9.805945e-01 9.611889e-01 5.940054e-03 1.670000e+02
missing uncensored Relevant Pairs Concordant
0.000000e+00 1.200000e+02 2.112800e+04 2.071800e+04
Uncertain
6.572000e+03

plot(fit7$weight_update, ylab = "Weight") # plot robustness weights

Unified Robust Boosting 107

4 Discussion
In this article, we introduced IRBoost as a unified robust boosting algorithm and demonstrated
its versatility in regression, generalized linear models, classification, and time-to-event data anal-
ysis. The method served well for outlier detection and yielded more robust predictive models.
Leveraging existing weighted boosting software, the approach could conveniently conduct tuning
parameter selections and further explore the developed models for variable importance. The R
package irboost proved to be a valuable tool in machine learning applications.

To make the IRBoost algorithm scalable for large-scale data sets, one direction is to use
the stochastic majorization-minimization schemes (Mairal, 2013). These stochastic variants of
the MM algorithm can efficiently optimize the objective function by using only a subset of the
data at each iteration, rather than the entire dataset. This allows the algorithm to scale to very
large problem sizes. Stochastic IRBoost remains a future research topic. The current R package
irboost does not support user extensibility with other distributions. However, such functionality
may be developed in a future release of the package.

Acknowledgments
The author would like to thank the Editor and an Associate Editor for their constructive com-
ments, which substantially help improve an early draft of the manuscript. The author expresses
gratitude for the contributions of the R package xgboost to this work.

Funding

This work was partially supported by the National Institute of Diabetes and Digestive and
Kidney Diseases of the National Institutes of Health under Award Number R21DK130006.

Supplementary Material
The R code necessary to reproduce the analysis presented in the manuscript is provided.

References
Barnwal A, Cho H, Hocking T (2022). Survival regression with accelerated failure time

model in XGBoost. Journal of Computational and Graphical Statistics, 31(4): 1292–1302.
https://doi.org/10.1080/10618600.2022.2067548

Bühlmann P, Hothorn T (2007). Boosting algorithms: Regularization, prediction and model
fitting (with discussion). Statistical Science, 22(4): 477–505.

Chen T, Guestrin C (2016). Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
785–794.

Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, et al. (2024). Xgboost: extreme
gradient boosting. R package version 1.7.7.1.

Friedman J (2001). Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451

https://doi.org/10.1080/10618600.2022.2067548
https://doi.org/10.1214/aos/1013203451

108 Wang, Z.

Friedman J, Hastie T, Tibshirani R (2000). Additive logistic regression: A statistical view of
boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):
337–407. https://doi.org/10.1214/aos/1016218223

Heritier S, Cantoni E, Copt S, Victoria-Feser MP (2009). Robust Methods in Biostatistics, volume
825. John Wiley & Sons.

Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B, Otto-Sobotka F, et al. (2023). mboost:
Model-Based Boosting. R package version 2.9-9.

Li AH, Bradic J (2018). Boosting in the presence of outliers: Adaptive classification with non-
convex loss functions. Journal of the American Statistical Association, 113(522): 660–674.

Long PM, Servedio RA (2010). Random classification noise defeats all convex potential boosters.
Machine Learning, 78(3): 287–304. https://doi.org/10.1007/s10994-009-5165-z

Mairal J (2013). Stochastic majorization-minimization algorithms for large-scale optimization.
In: NIPS 2013 - Advances in Neural Information Processing Systems, 26, Dec 2013, South
Lake Tahoe, United States, 2283–2291.

Maronna RA, Martin RD, Yohai VJ, Salibián-Barrera M (2019). Robust Statistics: Theory and
Methods (with R). John Wiley & Sons, Hoboken, NJ.

Park SY, Liu Y (2011). Robust penalized logistic regression with truncated loss functions. Cana-
dian Journal of Statistics, 39(2): 300–323. https://doi.org/10.1002/cjs.10105

Sigrist F (2021). Gradient and Newton boosting for classification and regression. Expert Systems
with Applications, 167: 114080. https://doi.org/10.1016/j.eswa.2020.114080

Wang Z (2018a). Quadratic majorization for nonconvex loss with applications to the
boosting algorithm. Journal of Computational and Graphical Statistics, 27(3): 491–502.
https://doi.org/10.1080/10618600.2018.1424635

Wang Z (2018b). Robust boosting with truncated loss functions. Electronic Journal of Statistics,
12(1): 599–650. https://doi.org/10.1214/18-EJS1434

Wang Z (2024a). irboost: Iteratively Reweighted Boosting for Robust Analysis. R package version
0.1-15.

Wang Z (2024b). Unified robust estimation. Australian & New Zealand Journal of Statistics,
66(1): 77–102. https://doi.org/10.1111/anzs.12409

Wang Z, Hothorn T (2023). bst: Gradient Boosting. R package version 0.3-24.
Wu Y, Liu Y (2007). Robust truncated hinge loss support vector machines. Journal of the Amer-

ican Statistical Association, 102(479): 974–983. https://doi.org/10.1198/016214507000000617
Zhao L, Mammadov M, Yearwood J (2010). From convex to nonconvex: A loss function analysis

for binary classification. In: 2010 IEEE International Conference on Data Mining Workshops,
1281–1288. IEEE.

https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1007/s10994-009-5165-z
https://doi.org/10.1002/cjs.10105
https://doi.org/10.1016/j.eswa.2020.114080
https://doi.org/10.1080/10618600.2018.1424635
https://doi.org/10.1214/18-EJS1434
https://doi.org/10.1111/anzs.12409
https://doi.org/10.1198/016214507000000617

	Introduction
	Robust Boosting
	CC-Family Function Estimation
	Boosting Algorithm for Function Estimation
	Penalized Estimation
	Implementation and Tuning Parameter Selection

	Applications
	Robust Boosting for Regression
	Robust Logistic Boosting
	Robust Multiclass Boosting
	Robust Poisson Boosting
	Robust Survival Boosting with Accelerated Failure Time Model

	Discussion

