
An Introduction to irboost

Zhu Wang

April 22, 2024

Contents
1 Introduction 1

2 Installation 1

3 Applications 1
3.1 Robust boosting for regression . 1
3.2 Robust logistic boosting . 5
3.3 Robust multiclass boosting . 7
3.4 Robust Poisson boosting . 8
3.5 Robust survival boosting with accelerated failure time model 9

1 Introduction

The R package irboost fits a predictive model using iteratively reweighted boosting (IRBoost) to minimize
robust loss functions within the CC-family (concave-convex). This constitutes an application of iteratively
reweighted convex Optimization (IRCO), where convex optimization is performed using the functional descent
boosting algorithm. IRBoost assigns weights to facilitate outlier identification. Applications include robust
generalized linear models and robust accelerated failure time models. The theory and algorithms in this
implementation are described in Wang (2021).

2 Installation

The source version of the irboost package is freely available from the Comprehensive R Archive Network
(http://CRAN.R-project.org). The reader can install the package directly from the R prompt via:
install.packages("irboost")

3 Applications

3.1 Robust boosting for regression

In this example, we predict the median value of owner-occupied homes in the suburbs of Boston, using data
publicly available from the UCI machine learning data repository. The dataset comprises 506 observations
and 13 predictors. Wang (2024) provides an alternative robust estimation for comparison.

1

http://CRAN.R-project.org

urlname <- "https://archive.ics.uci.edu/ml/"
filename <- "machine-learning-databases/housing/housing.data"
dat <- read.table(paste0(urlname, filename), sep = "", header = FALSE)
dat <- as.matrix(dat)
colnames(dat) <- c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM",

"AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "MEDV")
p <- dim(dat)[2]

We apply IRBoost with the concave component bcave and the convex component least squares.
library("irboost")
param <- list(objective = "reg:squarederror", max_depth = 2)
fit1 <- irboost(data = dat[, -p], label = dat[, p], cfun = "bcave",

s = 10, params = param, verbose = 0, nrounds = 50)
plot(fit1$weight_update, ylab = "Weight") # plot robustness weights
id <- sort.list(fit1$weight_update)[1:4] # 4 obs. with smallest weights
text(id, fit1$weight_update[id] - 0.02, id, col = "red") # highlight 4 obs.

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
ei

gh
t

8 365369

182

Figure 1: Robustness weights of IRBoost for the Boston housing data.

Figure 1 displays the observation weights used when IRBoost converges, highlighting the four smallest values,
which are considered outliers. We plot the observed median housing prices against the predicted values
in Figure 2(a). Notably, the four observations with the smallest weights deviate significantly from their
predicted values, but this outcome is not surprising. IRBoost returns a weighted boosting estimation. The
implementation of irboost is equivalent to xgboost with weights. Using the weights from irboost enables
identical predictions as with xgboost. This equivalence is illustrated in the following example with Figure
2(b).
par(pty = "s")
plot(dat[, p], predict(fit1, newdata = dat[, -p]), xlab = "Observations",

ylab = "Predictions") # obs. vs predictions
text(dat[id, p], predict(fit1, newdata = dat[id, -p]) - 1, id,

col = "red") # highlight 4 obs. with smallest weights

2

abline(0, 1, col = "red") # 45-degree line
library("xgboost")
fit_xg <- xgboost::xgboost(data = dat[, -p], label = dat[, p],

weight = fit1$weight_update, params = param, verbose = 0,
nrounds = fit1$niter)

par(pty = "s") # plot type square between irboost and xgboost
plot(predict(fit1, newdata = dat[, -p]), predict(fit_xg, newdata = dat[,

-p]), xlab = "Predictions by irboost", ylab = "Predictions by xgboost")
abline(0, 1, col = "red") # 45-degree line

10 20 30 40 50

10
20

30
40

50

Observations

P
re

di
ct

io
ns

8

365

369

182

(a) Observed and predicted values.

10 20 30 40 50

10
20

30
40

50

Predictions by irboost

P
re

di
ct

io
ns

 b
y

xg
bo

os
t

(b) Irboost and xgboost with robustness weights.

Figure 2: Prediction for the Boston housing data.

We can compare computing times between irboost and xgboost. As shown below, both computing tasks
completed within one second on an Intel® Core™ i9-10900X CPU @ 3.70GHz × 8 processor with 16GB of
RAM. Since the former involves iterative reweighting runs of xgboost, it is expected to take more computing
time than a single run of xgboost.
computing time for irboost
system.time(irboost(data = dat[, -p], label = dat[, p], cfun = "bcave",

s = 10, params = param, verbose = 0, nrounds = 50))["elapsed"]

elapsed
0.595
computing time for xgboost
system.time(xgboost::xgboost(data = dat[, -p], label = dat[,

p], weight = fit1$weight_update, params = param, verbose = 0,
nrounds = fit1$niter))["elapsed"]

elapsed
0.122

Feature importance from the learned model is displayed in Figure 3. The figure reveals that the top two

3

factors for predicting median housing prices are the average number of rooms per dwelling (RM) and the
percentage values of the lower status of the population (LSTAT).
importance_matrix <- xgboost::xgb.importance(model = fit1) # importance metric
xgboost::xgb.plot.importance(importance_matrix = importance_matrix) # plot

ZN

INDUS

RAD

AGE

CHAS

B

TAX

PTRATIO

NOX

CRIM

DIS

LSTAT

RM

0.0 0.1 0.2 0.3 0.4

Figure 3: Variable importance measures for the Boston housing data.

The first tree used to build the model is depicted in Figure 4.
xgboost::xgb.plot.tree(model = fit1, trees = 0)

Tree	0
RM

Cover:	495.182343
Gain:	18468.0781

LSTAT
Cover:	420.898376
Gain:	6743.28125<	6.94099998

RM
Cover:	74.2839355
Gain:	1723.82812

Leaf
Cover:	249.480774
Value:	6.78541994

<	14.3999996

Leaf
Cover:	171.417618
Value:	4.28161812

Leaf
Cover:	45.4739342
Value:	9.28520203

<	7.43700027

Leaf
Cover:	28.8100033
Value:	13.1649218

Figure 4: First tree in IRBoost for the Boston housing data.

We can optimize tuning parameters using cross-validation with the built-in functions in xgboost. First,
update the data format with the estimated robustness weights, then run the following code to determine the
optimal IRBoost iteration.

4

dtrain <- xgboost::xgb.DMatrix(data = dat[, -p], label = dat[,
p]) # create a DMatrix for training data

xgboost::setinfo(dtrain, "weight", fit1$weight_update) # set weight information
param <- list(booster = "gbtree", objective = "reg:squarederror")
set.seed(136) # set the seed for reproducibility
xgbcv <- xgboost::xgb.cv(params = param, data = dtrain, nrounds = 200,

early_stopping_rounds = 20, nfold = 5, prediction = TRUE)

xgbcv$best_iteration

[1] 37

Continuing in the same vein, we can identify the optimal robustness parameter θ, and the corresponding
IRBoost iteration. For instance, to select a preferable θ from the set {5, 10}, the cross-validation results
below indicate that θ = 5 yields a smaller root mean square error on the test data. Moreover, this procedure
identifies the optimal IRBoost iteration as 39.
dtrain_cv <- xgboost::xgb.DMatrix(data = dat[, -p], label = dat[,

p]) # training data
robustness_param <- c(5, 10) # two theta values
res <- NULL
for (i in 1:length(robustness_param)) {

fit_init <- irboost(data = dat[, -p], label = dat[, p], cfun = "bcave",
s = robustness_param[i], params = list(objective = "reg:squarederror",

max_depth = 2), verbose = 0, nrounds = 50) # fit irboost model
xgboost::setinfo(dtrain_cv, "weight", fit_init$weight_update) # new weights
set.seed(136)
xgbcv <- xgboost::xgb.cv(params = param, data = dtrain_cv,

early_stopping_rounds = 20, nrounds = 200, nfold = 5,
prediction = TRUE) # 5-fold CV

reslog <- xgbcv$evaluation_log[xgbcv$best_iteration] # best values in CV
tmp <- unlist(c(theta = robustness_param[i], reslog)) # combine theta
res <- rbind(res, tmp) # combine results from previous theta
rownames(res) <- NULL

}

print(res, digits = 2)

theta iter train_rmse_mean train_rmse_std test_rmse_mean
[1,] 5 39 0.30 0.019 2.3
[2,] 10 37 0.37 0.036 3.0
test_rmse_std
[1,] 0.31
[2,] 0.33

3.2 Robust logistic boosting

A binary classification problem, as proposed by Long and Servedio (2010), involves a response variable y
randomly chosen to be -1 or +1 with equal probability. Symbols A, B, and C are randomly generated
with probabilities 0.25, 0.25, and 0.5, respectively. The predictor vector ~x with 21 elements is generated as
follows: if A is obtained, xj = y for j = 1, ..., 21. If B is generated, xj = y for j = 1, ..., 11, and xj = −y
for j = 12, ..., 21. If C is generated, xj = y, where j is randomly chosen from the range of 1 to 11 with a
selection of 5 elements, and from the range of 12 to 21 with a selection of 6 elements. For the remaining
j ∈ {1, 2, 3, ..., 21}, xj = −y. The training data is generated with n = 400 samples, and the test data with
n = 200 samples.

5

We fit a robust logistic boosting model with the concave component acave, setting the maximum depth of a
tree to 5. With a large parameter θ = 100, the robustness weights are very close to 1 as shown below.
set.seed(1947)
dat2 <- dataLS(ntr = 400, nte = 200, percon = 0) # percon=0 means clean data
param <- list(objective = "binary:logitraw", max_depth = 5)
fit2 <- irboost(data = dat2$xtr, label = dat2$ytr, cfun = "acave",

s = 100, params = param, verbose = 0, nrounds = 100)
range(fit2$weight_update) # range of robustness weights

[1] 0.9999975 1.0000000

To add outliers, we simulate data with 10% contamination in the response variables of the training data and
then apply IRBoost. Figure 5 displays the robustness weights obtained from the algorithm.
set.seed(158)
dat3 <- dataLS(ntr = 400, nte = 200, percon = 0.1) # 10% data contamination
param <- list(objective = "binary:logitraw", max_depth = 5)
fit3 <- irboost(data = dat3$xtr, label = dat3$ytr, cfun = "acave",

s = 3, params = param, verbose = 0, nrounds = 100)
plot(fit3$weight_update, ylab = "Weight") # plot robustness weights

0 100 200 300 400

0.
92

0.
94

0.
96

0.
98

1.
00

Index

W
ei

gh
t

Figure 5: Robustness weights of IRBoost with θ = 3 for the contaminated simulation data.

In the third robust logistic boosting, we set the robustness hyperparameter value θ to 1 (s=1 in the irboost
function) for a more robust estimation. Consequently, certain observations exhibit decreased weights, as
illustrated in Figure 6.
param <- list(objective = "binary:logitraw", max_depth = 5)
fit4 <- irboost(data = dat3$xtr, label = dat3$ytr, cfun = "acave",

s = 1, params = param, verbose = 0, nrounds = 100)
plot(fit4$weight_update, ylab = "Weight") # plot robustness weights

The prediction accuracy can be compared for different models. The prediction error of the test data at each
IRBoost iteration is depicted in Figure 7, demonstrating that the most accurate predictions come from the

6

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
ei

gh
t

Figure 6: Robustness weights of IRBoost with θ = 1 for the contaminated simulation data.

robust model, even with outliers.
err2 <- err3 <- err4 <- rep(NA, 100)
for (i in 1:100) {

pred2 <- predict(fit2, newdata = dat2$xte, iterationrange = c(1,
i + 1)) # prediction with the first i trees

err2[i] <- mean(sign(pred2) != dat2$yte) # error at iteration i
pred3 <- predict(fit3, newdata = dat3$xte, iterationrange = c(1,

i + 1))
err3[i] <- mean(sign(pred3) != dat3$yte)
pred4 <- predict(fit4, newdata = dat3$xte, iterationrange = c(1,

i + 1))
err4[i] <- mean(sign(pred4) != dat3$yte)

}
plot(err2[1:100], ylim = c(0.05, 0.3), type = "l", xlab = "IRBoost iteration",

ylab = "Classification error")
points(err3[1:100], col = "red", type = "l", lty = "dashed")
points(err4[1:100], col = "blue", type = "l", lty = "dotted")
legend("topright", lty = c("solid", "dashed", "dotted"), col = c("black",

"red", "blue"), legend = c(expression(paste("clean data with ",
theta == 100)), expression(paste("cont'd data with ", theta ==
3)), expression(paste("cont'd data with ", theta == 1))))

3.3 Robust multiclass boosting

In a 3-class classification using the iris dataset, we run IRBoost with concave function acave and θ = 1.
The robustness weights are illustrated in Figure 8, and the model achieves perfect prediction.

7

0 20 40 60 80 100

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

IRBoost iteration

C
la

ss
ifi

ca
tio

n
er

ro
r

clean data with θ = 100
cont'd data with θ = 3
cont'd data with θ = 1

Figure 7: Classification errors and IRBoost iterations for the simulation data.

lb <- as.numeric(iris$Species) - 1 # convert text to numeric values
num_class <- 3
set.seed(11)
param <- list(objective = "multi:softprob", max_depth = 4, eta = 0.5,

nthread = 2, subsample = 0.5, num_class = num_class)
fit5 <- irboost(data = as.matrix(iris[, -5]), label = lb, cfun = "acave",

s = 1, params = param, verbose = 0, nrounds = 10)

plot(fit5$weight_update, ylab = "Weight") # plot robustness weights

compute num_class probabilities per case
pred5 <- predict(fit5, newdata = as.matrix(iris[, -5]))
reshape to a num_class-columns matrix
pred5 <- matrix(pred5, ncol = num_class, byrow = TRUE)
pred5_labels <- max.col(pred5) - 1 # probabilities to labels
sum(pred5_labels != lb) # classification errors

[1] 0

3.4 Robust Poisson boosting

A survey, collected from 3066 Americans, studied health care utilization Heritier et al. (2009), Wang (2024).
The dataset includes information on doctor office visits and 24 risk factors. A robust Poisson boosting model
is fitted with the concave component ccave, and the estimated robustness weights are illustrated in Figure 9.
Doctor office visits in two years are highlighted for the 8 smallest weights, ranging from 200 to 750.
data(docvisits, package = "mpath")
convert factors and other types of variables into a
numeric matrix

8

0 50 100 150

0.
80

0.
85

0.
90

0.
95

1.
00

Index

W
ei

gh
t

Figure 8: Robustness weights of IRBoost for the iris data.

x <- model.matrix(~age + factor(gender) + factor(race) + factor(hispan) +
factor(marital) + factor(arthri) + factor(cancer) + factor(hipress) +
factor(diabet) + factor(lung) + factor(hearth) + factor(stroke) +
factor(psych) + factor(iadla) + factor(adlwa) + edyears +
feduc + meduc + log(income + 1) + factor(insur) + 0, data = docvisits)

param <- list(objective = "count:poisson", max_depth = 1)
fit6 <- irboost(data = x, label = docvisits$visits, cfun = "ccave",

s = 20, params = param, verbose = 0, nrounds = 50)

plot(fit6$weight_update, ylab = "Weight") # plot robustness weights
id <- sort.list(fit6$weight_update)[1:8] # 8 obs. with smallest weights
text(id, fit6$weight_update[id] - 0.02, docvisits$visits[id],

col = "red") # highlight 8 obs.

3.5 Robust survival boosting with accelerated failure time model

Cox regression in survival analysis is based on a partial likelihood function. A robust extension in the
CC-family is beyond the scope of this article. Alternatively, one may apply robust survival regression with the
accelerated failure time model in irboost. The following code provides robust survival analysis for patients
with advanced lung cancer from the North Central Cancer Treatment Group. Model performance is evaluated
with multiple measures for survival data. Figure 10 illustrates the robustness weights using IRBoost.
library("survival")
lung1 <- lung[complete.cases(lung),] # remove missing data
y_upper_bound <- rep(NA, dim(lung1)[1])
set right-censoring obs. to y_upper_bound = Inf
for (i in 1:dim(lung1)[1]) {

if (lung1$status[i] == 2) {

9

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
ei

gh
t

750

365
300

260

224 208

200200

Figure 9: Robustness weights of IRBoost for the doctor office visits data.

y_upper_bound[i] <- lung1$time[i]
} else y_upper_bound[i] <- Inf

}
x <- as.matrix(lung1[, !names(lung1) %in% c("time", "status")]) # predictors
dtrain <- xgboost::xgb.DMatrix(data = x, label_lower_bound = lung1$time,

label_upper_bound = y_upper_bound) # input data format
param <- list(objective = "survival:aft", eval_metric = "aft-nloglik",

aft_loss_distribution = "normal", aft_loss_distribution_scale = 1.2,
max_depth = 3)

library("Hmisc")
fit7 <- irb.train(params = param, data = dtrain, cfun = "hcave",

s = 3, nrounds = 50)
evaluate model prediction accuracy
Hmisc::rcorr.cens(predict(fit7, newdata = dtrain), Surv(time = lung1$time,

event = lung1$status))

C Index Dxy S.D. n
9.805945e-01 9.611889e-01 5.940054e-03 1.670000e+02
missing uncensored Relevant Pairs Concordant
0.000000e+00 1.200000e+02 2.112800e+04 2.071800e+04
Uncertain
6.572000e+03
plot(fit7$weight_update, ylab = "Weight") # plot robustness weights

Heritier, Stephane, Eva Cantoni, Samuel Copt, and Maria-Pia Victoria- Feser. 2009. Robust Methods in
Biostatistics. Vol. 825. John Wiley & Sons.

Long, Philip M, and Rocco A Servedio. 2010. “Random Classification Noise Defeats All Convex Potential
Boosters.” Machine Learning 78 (3): 287–304.

Wang, Zhu. 2021. “Unified Robust Boosting.” arXiv Preprint arXiv:2101.07718.
———. 2024. “Unified robust estimation.” Australian & New Zealand Journal of Statistics 66 (1): 77–102.

10

0 50 100 150

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Index

W
ei

gh
t

Figure 10: Robustness weights of IRBoost for the lung cancer data.

11

	Introduction
	Installation
	Applications
	Robust boosting for regression
	Robust logistic boosting
	Robust multiclass boosting
	Robust Poisson boosting
	Robust survival boosting with accelerated failure time model

