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Abstract

One measurement modality for rainfall is a fixed location rain gauge. However, extreme rainfall,
flooding, and other climate extremes often occur at larger spatial scales and affect more than
one location in a community. For example, in 2017 Hurricane Harvey impacted all of Houston
and the surrounding region causing widespread flooding. Flood risk modeling requires under-
standing of rainfall for hydrologic regions, which may contain one or more rain gauges. Further,
policy changes to address the risks and damages of natural hazards such as severe flooding
are usually made at the community/neighborhood level or higher geo-spatial scale. Therefore,
spatial-temporal methods which convert results from one spatial scale to another are especially
useful in applications for evolving environmental extremes. We develop a point-to-area random
effects (PARE) modeling strategy for understanding spatial-temporal extreme values at the areal
level, when the core information are time series at point locations distributed over the region.

Keywords CAR model; change-of-support; extended-Hausdorff distance metric; geospatial
modeling; spatial-temporal extremes

1 Introduction
Spatial data can be observed over different spatial extents, leading to different types of spatial
data and different statistical models. One type is point referenced data, or observations of the
feature of interest indexed by a coordinate location. For example, whether or not a household
experienced adverse outcomes during a major storm indexed by the latitude and longitude coor-
dinates corresponding to the household. Modeling of point referenced data incorporates spatial
dependence amongst the observations. For example, the covariance between two observations
can be defined as a function of the distance between those two observations, and predictions of
observations at new locations accounts for this spatial dependence. The consequences of ignor-
ing spatial dependence includes biased estimates of standard errors, which can lead to incorrect
inference. In this paper, we investigate rainfall data collected from fixed-location rain gauges in
the Greater Houston area, revealing discernible spatial dependencies.

Even when spatial dependence in point-level data is properly accounted for, understanding
regional spatial phenomena remains valuable for informed decision-making. Areal data, observed
spatially across regions, often involves aggregating point-level data. For instance, in the case of
the Hurricane Harvey Registry, responses collected at the point level (addresses) regarding ad-
verse outcomes from the storm can be aggregated to the areal level (neighborhoods) to offer
a city-wide summary of the storm’s impacts (Miranda et al., 2021). From a modeling perspec-
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tive, incorporating spatial dependence in areal data requires specifying an adjacency matrix,
indicating which regions are considered neighbors and thus inducing dependence between them.
Various neighbor structures have been explored (Getis and Aldstadt, 2004), with a common ap-
proach being to define neighbors as regions sharing a boundary point with a given region. The
adjacency matrix can be weighted to form a spatial weight matrix, allowing a region’s neighbors
to exert spatially informed influences on its estimate in the model. For example, if region A has
two neighbors, regions B and C, the impact of B and C on A need not be identical. If region B is
larger than region C, it can be given a higher weight in the spatial weight matrix, enhancing its
influence (Getis, 2009). Similar to point-referenced data, neglecting positive spatial dependence
in areal data results in underestimation of parameter uncertainty and hence flawed statistical in-
ference. In this study, we focus on analyzing data at the hydrologic region level, as these regions
are scientifically meaningful in the context of rainfall (ACECHouston, 2019).

For our purposes, we observe time series of rainfall levels at fixed location gauges, but
produce rainfall estimates for flood modeling and management decisions that are made at well-
defined hydrologic areal regions. Our fundamental question is, how can the underlying distri-
bution of rainfall be aggregated to the hydrologic level? This is called the change-of-support
problem in spatial statistics (Gelfand et al., 2001).

Much of the change-of-support literature focuses on obtaining estimates of the mean or
median, in other words measures of center or “typical” values. In the context of flood risk, the
interest is instead in estimating extreme events. When estimating risk, accounting for high-
impact but lower probability tail events is of interest rather than the most likely scenario.
Utilizing the hierarchical modeling framework advanced in Craigmile (2014) and highlighted
in Cressie and Wikle (2011), we incorporate extreme value modeling, namely the generalized
Pareto distribution and peak-over-threshold model (GPD+POT), as the data model to capture
the extreme value nature of time series of point-level measured rainfall. We rely on asymptotic
normality of the parameter estimates of the GPD for the Gaussian characterization of the process
model in our hierarchy (Hosking and Wallis, 1987).

Our unique contribution is the synthesis of an end-to-end approach for estimating im-
portant regional hydrologic parameters in flood modeling, making use of ideas of hierarchical
spatial modeling, the change-of-support framework as described in Cressie and Wikle (2011),
and conditional autoregressive (CAR) modeling to create a unique point-to-area-random-effects
(PARE) model. Of particular importance is that our modeling is performed using spatial weights
determined by the extended Hausdorff distance (Schedler, 2020b).

We apply three methods to move from point-referenced geostatistical data to achieve ex-
tremal inference at the areal level, namely our proposed PARE method, block kriging (Cressie,
2006), and a simple regional maximum approach. Block kriging is regularly used to address
change-of-support issues in spatial modeling and the regional max model is often used by hy-
drologist studying extreme rainfall. We do not provide an extensive comparison of our PARE
method with other strategies to address the spatial change-of-support issue. We apply our mod-
eling paradigm to extreme rainfall for a large geographic region, specifically Houston, TX, with
the goal of understanding the temporal evolution of extreme rainfall levels by hydrologic regions
and accounting for spatial dependence. The methodology is adaptable to any problem where
areal aggregation of point-level data is required.
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Figure 1: The three Harris County hydrologic regions are depicted by blue (region 1), red (region
2), and green (region 3) areas. Rain gauge locations for measured rainfall are represented by the
yellow dots on the map.

2 Understanding Our Case Study, Hydrologic Regions, and Re-
turn Levels

The findings of this paper hold significant implications for flood hazard mapping in the broader
Houston, Texas area as well as subsequent analyses aimed at reducing flood risk. For example,
they offer valuable insights into the fundamental design criteria for various hydraulic structures
such as culverts, roadway drainage systems, bridges, and small dams. This study also comple-
ments recent literature that delves into attributing flood risk in Southeast Texas and coastal
Louisiana to factors like climate change and urbanization (Risser and Wehner, 2017; Van Der
Wiel et al., 2017; Van Oldenborgh et al., 2017; Wang et al., 2018; Zhang et al., 2018; Sebastian
et al., 2019), and it is particularly relevant given the recent release of NOAA Atlas 14 results
for the State of Texas (Perica et al., 2018).

To contribute to the scientific conversation in support of the resilience of the greater Hous-
ton, Texas, area we estimate rainfall return levels for three hydrologic regions depicted in Fig-
ure 1.

2.1 Return Levels

Return levels represent extreme rainfall statistics, serving to link a specific duration of rainfall
with a defined time span. While the common duration of interest is daily or 24-hour rainfall,
assessments of flood hazards can involve other durations such as 1-hour, 12-hour, 2-day, or 3-day
intervals.

An N -year return level signifies the amount of rainfall expected to be equaled or surpassed,
on average, once every N years, where N denotes the return period. This essentially indicates
the rainfall magnitude with a probability of 1

N
, of being exceeded in any given year.

It is important to recognize that the N -year return level is influenced by the duration of
analysis. Thus, one would anticipate a 100-year 24-hour rainfall to exceed a 100-year 12-hour
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rainfall at a specific location. For our purposes, we consider 25-year, 100-year, and 500-year
24-hour rainfall return levels. These levels are often referred to as the 25-, 100-, and 500-year
flood plane levels.

Our estimated return levels, with uncertainty bounds, are derived from our spatial hierar-
chical modeling, coupled with extreme value models as the data model for the time series of
rainfall measurements at each rain gauge. These estimated return levels are key inputs for the
large scale flood models in operation for the greater Houston area (Fagnant et al., 2020).

2.2 Data Collection and Processing

We derive historical precipitation data from NOAA’s Global Historical Climatology Network
(GHCN)-Daily product version 3.22 (Menne et al., 2018), a comprehensive database aggregating
daily observations from land surface stations worldwide. These data undergo stringent quality
assurance procedures and are procured from various National Meteorological and Hydrological
Centers (NMHCs) globally. Station records range from less than a year to over 175 years. Our
analysis focuses on a study area delineated within coordinates approximately 28.1°N to 31.0°N,
92.7°W to 97.0°W, coinciding with specified hydrologic regions shown in Figure 1. Within this
area, we identified 149 stations providing data from January 1, 1900, to December 31, 2020.
We compiled a dataset comprising daily precipitation totals from these 149 stations during this
period, accessible at doi.org/10.25612/837.XVGJ30NMA45X [United States National Oceanic
And Atmospheric Administration et al. (2020)].

Subsequent to initial data collection, the rainfall time series undergo processing to identify
independent rainfall events. As the extreme value theory we employ assumes the independence
of each occurrence, preprocessing is necessary to mitigate correlations between events. Such
correlations arise from single storm events generating multi-day precipitation, wherein more than
one day surpasses the specified threshold for our models. In such cases, despite the threshold
being exceeded multiple times, there exists only one storm occurrence; hence, we retain only
the highest 24 hour total from that storm. In simpler terms, if two or more consecutive days
exhibit nonzero rainfall, only the day with the highest rainfall is retained, while the others are
set to zero. Following this declustering process, the data are rendered independent, thus suitable
for subsequent peaks-over-threshold analysis. This data adjustment, known as declustering, is a
widely used technique in rainfall time series analyses (Gilleland and Katz, 2016; Fagnant et al.,
2020).

3 Methods
The models presented are hierarchical, consisting of three steps: an extreme value modeling step,
a spatial modeling step, and repeating the previous two steps for 3-different time epochs. In the
data-process-parameter model approach advocated in Cressie and Wikle (2011), the extreme
value modeling serves as our data model, and then the spatial structure of step two is captured
in our process model. Although the data will have a spatial index for all steps, spatial structure
is only modeled in the second step.

3.1 Extreme Value Modeling

Our starting point is the time series observed at each of n spatial locations. A first step is
to characterize each of these time series in an extreme value modeling context appropriate for

doi.org/10.25612/837.XVGJ30NMA45X
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the application. For this paper, the application concerns rainfall in Southeast Texas, which
has been successfully modeled using the generalized-Pareto peak-over-threshold distribution
(GPD+POT) to a contiguous segment of each time series. A primary reason for the choice
of GPD+POT is the fact that the Houston region experiences multiple extreme rain events
within a year. The GPD+POT applied to 24-hour rainfall events allows for this unique feature
for the region. A detailed characterization of the choice of this particular extreme value model
for the problem at hand is the focus of the paper Fagnant et al. (2020).

The peaks-over-threshold (POT) approach selects all events above a threshold for better
return period estimation, incorporating a broader range of rainfall events compared to say the
block maxima method, which is another extreme value modeling approach. POT treats indepen-
dent rainfall occurrences as identically distributed random variables and focuses on observations
exceeding a specified threshold u to analyze extremes, resulting in a conditional distribution:

P(X > u + y|X > u) = 1 − F(u + y)

1 − F(u)
, y > 0. (1)

The conditional distribution converges to the generalized Pareto distribution (GPD) of the
form:

P(X > x|X > u) =
[

1 + ξ(x − u)

σ̃

]−1/ξ

, x > u, (2)

where ξ is the shape parameter. The scale parameter for the GPD+POT is a function of the
generalized extreme value parameters and the threshold, namely

(
σ̃ = σ + ξ(u − μ)

)
. Here μ is

the location parameter and σ is the scale parameter for the Generalized Extreme Value (GEV)
distribution. These are asymptotic relationships that hold for appropriate thresholds.

The GPD+POT approach, widely adopted in recent extreme rainfall analyses, owes its
popularity to its capacity to encompass temporally precise rainfall data and its theoretical
linkage to the GEV distribution.

Return levels for each rain gauge time series can be calculated directly from the fitted
distribution parameters (σ , ξ , and threshold u) obtained during the peaks-over-threshold mod-
eling, along with the estimated rate of occurrences over the threshold. We utilize the R package
extRemes (Gilleland and Katz, 2016) to fit our GPD+POT and to calculate return levels and
corresponding confidence intervals. A detailed characterization of the choice of GPD+POT, plus
selection of the threshold to one-inch of rainfall is the provided in Fagnant et al. (2020).

For our spatial model rainfall case study we focus on three time epochs each of forty years,
namely 1920 through 1960, 1950 through 1990, and 1990 through 2020. For each temporal
window and each location, we obtain estimates for the parameters of shape, scale and rate of
the GPD+POT. These GPD+POT model estimates can be viewed in the hierarchical modeling
paradigm advanced in Cressie and Wikle (2011) as well as Cooley et al. (2012), where we consider
the data model, process model and predictive distribution. In this case, the GPD+POT serves
as the data model for our rainfall time series.

3.2 Spatial Models

For each of our three temporal windows we model the point-to-area spatial structure using three
different spatial paradigms. These paradigms include our contribution of Point-to-area Random
Effects (PARE) incorporating the extended Hausdorff distance, traditional Block Kriging, and
the Regional Max model. The statistical literature on change of support is extensive. In addition,



226 Fagnant, C. et al.

we compare our PARE model to classic approaches used by engineers working in flood modeling
(see ACEC estimates described in 5). Each paradigm is described below.

3.2.1 Model 1. Point-to-Area Random Effects (PARE)

For the first model, we make use of ideas behind the change of support framework as described in
Cressie and Wikle (2011) and conditional autoregressive (CAR) modeling Besag (1974)to create
a unique random effects model to move from the point-level to the area-level. Of particular im-
portance is that our modeling is performed using weights determined by the extended Hausdorff
distance.

A CAR model is a popular choice for accounting for spatial correlation when working with
areal or lattice data, and can easily be extended to find the relationship between covariates
measured at the same areal level. The CAR model accounts for spatial dependence between the
areal units by specifying an r × r spatial weight matrix, where r is the number of regions. If the
ij th entry of the spatial weight matrix is nonzero, regions i and j are considered “neighbors”,
and the CAR model will use observations at region i to inform estimates at region j and
vice-versa. Determining which regions are neighbors is often based on shared boundary points
(contiguity) or centroid distance (e.g., k nearest neighbors or inverse distance weighting). Instead,
we apply a method derived from the Hausdorff distance, a distance metric defined on sets.
Specifically, we pursue a specification for the weight matrix which uses the inverse of the median
Hausdorff distance between regions, yielding neighbor weights based on the maximum of the
median distances between each pair of regions. The median Hausdorff distance accounts for
irregularities in the geometry or orientation of the regions by only considering the closest 50% of a
region when computing pairwise distances. The median was chosen to give distances comparable
to the commonly used centroid distance. (Schedler, 2020a).

We make use of the covariance structure defined in a CAR model for areal data, but instead
bring everything to the dimension of the stations (point-level observations). In order to create
an n × n weight matrix, we must define distances from each point to the others. However, since
we are interested in moving to the areal level, we instead define point-to-point distances by
the associated area-to-area distance of the regions the points fall within. Particularly, we use
the extended Hausdorff distance with f = 0.5 (in other words, the median Hausdorff distance)
between our three regions to define these distances. For example, the distance between a point
in region 1 to a point in region 2 is defined as the median Hausdorff distance between regions 1
and 2. This means that there will be many repeat values in our distance matrix for every pair
of points that fall within the same pair of regions. The matrix will look like a block version of
the region-to-region distance matrix where each block is made up of a single repeated value.

Specifically, for the distance matrix, let D be the 3 × 3 matrix defining the median Haus-
dorff distance d between the three regions. D can be found using the hausMat function in the
hausdorff package (Schedler, 2020a). Let nj be the number of stations in region j. Then D and
Dblock are defined as follows,

D =
⎡⎣d[1, 1] d[1, 2] d[1, 3]

d[1, 2] d[2, 2] d[2, 3]
d[1, 3] d[2, 3] d[3, 3]

⎤⎦ , (3)

Dblock =
⎡⎣ Cn1×n1 D[1, 2]n1×n2 D[1, 3]n1×n3

D[1, 2]n2×n1 Cn2×n2 D[2, 3]n2×n3

D[1, 3]n3×n1 D[2, 3]n3×n2 Cn3×n3

⎤⎦ , (4)
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where each block in Dblock is a constant value times a matrix of 1’s of the specified dimension.
For example, D[1, 2]n1×n2 = d[1, 2] ∗ 1n1×n2 . The diagonal elements of Dblock are identically a
constant c, which we now define.

While the distance from a region to itself is technically zero, we define the distance between
points within the same region to be a specified positive constant c that is less than the other
region-to-region distances (i.e. c < d[1, 2], d[1, 3]). We do this because there is spatial variability
of points within each region. This construction ensures the weight matrix is invertible and still
weights values within a region more than values from other regions. For our application, we
choose c = 1 mile.1 The distance matrix is converted into a weight matrix W by taking the
reciprocal of each element in the matrix in order to create inverse-distance weights. Overall, with
the block structure of our weight matrix W , the observations within each region are weighted
equally, but less than those stations within regions closer to the target region or within the
target region itself. When using c = 1, the inverse distance weight matrix has all elements � 1.
If using a different value for c, one could scalar normalize the matrix by dividing all entries of
the matrix by the value of the maximum entry.

We bring in the change-of-support concept in the mean structure of the model through
covariates by creating variables which are indicator functions describing which region each station
falls within. Let Z be the vector of point-level observations (extreme value parameter estimates
for each rain gauge location) at stations s = (s1, . . . , sn). Let Y be the process of interest measured
at the spatial areas/regions r = (r1, r2, r3). The n× 3 matrix H represents indicator variables for
the regions the station falls within, in other words,

hij =
{

1 if si ∈ rj

0 otherwise.
(5)

The traditional areal CAR model with covariates is defined through the following structure:

Yj |y(−j) ∼ N
(
xjβ +

∑
k �=j

ρwjk(yk − xkβ), mjj

)
, (6)

where y(−j) represents all areal values y except for yj , β is the coefficient for covariate x, ρ is
a spatial dependence parameter, wjk are entries from the weight matrix W , and mjj = τ 2

j , the
conditional variance of region j .

We will use a similar structure, but instead define it on the point-level. As such, we use
it to model the observations Z instead of the area-level process values Y. Our covariates xi are
represented by the matrix H, so we can set X = H. Our proposed point-to-area random effects
(PARE) model takes the following structure:

Zi |z(−i) ∼ N
(
xi

′ β +
∑
j �=i

ρwij (zj − xi
′ β), mii

)
, (7)

which can also be written as Z ∼ N(Xβ, �CAR) where �CAR = (I − ρW)−1M and M =
diag(τ 2

1 , . . . , τ 2
n ). This model can be run in R using the spautolm function from the spatialreg

package (Bivand et al., 2013) with family = “CAR”. The required inputs include observations
Z, covariates X = H, and the weight matrix W . The model output provides maximum likelihood

1The choice of c does not influence our final return level estimates. A sensitivity analysis is provided in Fagnant
(2021).
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estimates for ρ and β. We interpret the coefficient estimates β̂ to be the estimates of our pro-
cess Y at the areal level, i.e. the GPD scale, shape, and rate parameter estimates for the three
regions.

One assumption the CAR model requires is that the covariance matrix �CAR be symmetric.
Additionally, since �CAR is defined as (I − ρW)−1M, our weight matrix W must be invertible.
With the current block setup for the weight matrix, our W is indeed symmetric. However, by
construction our W has many rows and columns with the same exact values, thereby making
the matrix singular and non-invertible. We address this issue through jittering, in other words,
adding a normal random variable with small standard deviation of 0.1 to the extended Hausdorff
distance matrix which has values 7.7, 7.9, and 27.6 for each of the three pairwise distances.
The jittered matrix is made symmetric by replacing the upper trianglur values with the lower
triangular values, or vice versa.

3.2.2 Model 2. Block Kriging

For the second model, ordinary kriging is performed on the point-level extreme value estimates
to obtain estimates of the extreme value parameters on a uniform fine grid. Integrating over
the gridded points within each region reveals the “block” average, or the overall parameter
estimate for each region. This approach is an established technique in the change-of-support
literature to address the transition of spatial data from point-to-area (Gotway and Young, 2002;
Craigmile, 2014), and is known more generally as block kriging (Cressie, 2006). We present this
more established approach from the spatial literature so that we may compare it against our
proposed PARE model.

We start by defining this block kriging model in terms of an underlying hierarchical model
framework, and later describe how we estimate it in practice. We follow the notation of Cressie
and Wikle (2011), but present it in terms of our application.

We summarize the hierarchical framework behind kriging of our GPD+POT parameter
estimates below, where the predictive distribution gives the kriging estimates for new location s0.
In particular, Y ∗(s0) is the ordinary kriging predictor and σ 2

Y (s0) the associated kriging variance,
which are given below in equations (9).

In this paradigm, we let Z be the vector of point-level observations (extreme value parameter
estimates) at stations s = (s1, . . . , sn). Let Y be the process of interest assessed on a uniform
grid of points G spanning the regions. The data process Z is considered a noisy version of the
underlying process Y with measurement error, i.e. Z = Y + ε where ε ∼ N(0, σ 2

ε ). Therefore we
have the data model as [Z(si)|Y (si), σ

2
ε ] ∼ N

(
Y (si), σ

2
ε

)
.

Next we model the process at point s, or Y (s) with constant but unknown mean μY (s) =
μ and covariance CY (u, v) = Cov (Y (u), Y (v)) for s, u, v ∈ Ds . Then the process model is:
[Y (·)|μ, CY ] ∼ N (μ, CY ).

Finally, the predictive distribution for a new point s0 is given by:
Y (s0)|Z, μ, CY , σ 2

ε ] ∝ [Z(si)|Y (si), σ
2
ε ][Y (·)|μ, CY ]

∼ N (E[Y (s0)|Z], var(Y (s0)|Z))

∼ N
(
Y ∗(s0), σ

2
Y (s0)

)
,

(8)

where
Y ∗(s0) = μ + cY (s0)

′C−1
Z (Z − μ1),

σ 2
Y (s0) = CY (s0, s0) − cY (s0)

′C−1
Z cY (s0)+(

1 − 1′C−1
Z cY (s0)

)2
/
(
1′C−1

Z 1
)
.

(9)
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Defining the mean and covariance elements for Y we have:

CY (u, v) = cov(Y (u), Y (v)) for u, v ∈ Ds,

cY (s0)
′ = cov(Y (s0), Z) = (CY (s0, s1), . . . , CY (s0, sn))

and
μ = μ̂gls = (

1′C−1
Z Z

)
/
(
1′C−1

Z 1
)
.

(10)

Finally, CZ is an n × n matrix where

CZ(u, v) =
{

CY (v, v) + σ 2
ε if u = v

CY (u, v) if u �= v
(11)

These equations for the ordinary kriging predictor follow the notation of Cressie and Wikle
(2011). Note that the constant mean μ is taken to be the generalized least squares estimate,
μ̂gls .

The next step in block kriging is to predict at a uniform grid G across the three hydrologic
regions, giving a (discretized) predicted spatial surface of the entire region. We then average the
predicted values over the respective regions ŷ(rj ) = 1

nrj

∑
gk∈G∩rj

y(gk) where nrj is the number of

grid points in region j .
Turning to our specific application, we are interested in bringing extreme value analysis

from the point observation level to the level of our hydrologic regions. Similar to the PARE
model, we do this by bringing the extreme value parameter estimates to the region level and
then calculate return levels based on the region level parameter estimates. Therefore, the kriging
model above is performed where the observations are taken to be the extreme value parameter
estimates for each station based on the univariate extreme value modeling described in 3.1.

One added benefit to the block kriging model not yet present in the PARE model is that
kriging can be performed on multivariate data, meaning that the parameters can be modeled
jointly if appropriate. In exploratory data analysis we find that the shape and log(scale) pa-
rameters are negatively correlated with each other, while the rate parameter does not show
a relationship to either. In order to capture these relationships, we estimate the model above
by cokriging the shape and log(scale) parameters jointly and kriging the rate parameter sepa-
rately. The gstat package in R provides functions to fit a cross-variogram and perform cokriging
(Pebesma, 2004).

3.2.3 Model 3. Regional Max

We discuss one final model, called the regional max model, which is a more simplified approach
towards obtaining return level estimates for each region. This model is a data analytics approach
one might take in order to summarize extreme data for a region. In particular, it takes the
maximum daily rainfall value across all stations within a region to create a consolidated series
of these maximum daily rainfall totals for each region, hence the name regional max. From the
consolidated series, we can then perform traditional univariate extreme value analysis using the
GPD+POT to obtain return levels estimates for each region.

We note that this model is a data analytic approach for which the mathematical theory
has not been developed. Additionally, the Regional Max model is only spatial in the sense that
maximums are taken over spatial subsets (the regions)– the spatial structure is not modeled
directly. We include it as a simple comparison against our proposed PARE model, as well as
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the traditional Block Kriging approach to change-of-support. We predict that since the regional
max model uses the daily maximum values in combination with the GPD+POT, it will likely
produce higher return level estimates than the previous models.

4 Simulations
Recall that the purpose of the models above is to bring information and extreme value modeling
estimates from the point-referenced observations to the areal level of the three specific hydrologic
regions in the greater Houston area. In order to test the performance of the models proposed,
we simulate multiple data sets of similar spatial structure to run the models on. We simulate
data assuming we know the true extreme value parameters at the hydrologic region level. This
simulation paradigm is consistent with the requirements from the hydrologists, in that the goal
is to understand the 25-, 100-, and 500-year return levels for each of the three regions. From
these simulated data sets, in which we set the true values for each hydrologic region, we can test
how well each spatial model paradigm recovers these true values.

In order to construct simulated data, we start from the end with our estimated true values,
and work backwards step-by-step to create data that results in the proper structure. The first
step taken is to observe the mean structure of the extreme value parameters of the data that
we already have. Taking the GPD fits of the last 40 years of data (1981–2020) for the stations
within the three hydrologic regions, we find the mean values of the shape and scale parameter
estimates by region. We set these as the true parameter values for the regions, and aim to recover
similar values when we run our models on the simulated data.

In particular, the simulated rainfall data are generated on a uniform grid with a resolution
of three miles. This produces 314 points of daily rainfall data within the three hydrologic regions.
The simulation grid is visible in Figure 2. All points falling within a region are assigned the same
true shape and scale parameters, which are the average values calculated from the last 40 years
of observed data.

The rate parameter is held constant in our simulation, which is supported by the result of

Figure 2: Map of the three hydrologic regions in Harris County (outlined in black), the station
locations with data available for the 1981–2020 period (blue dots), and the grid locations where
the simulated rainfall data are generated to (+ symbols).
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fitting our three models to the rainfall data in Section 5. In particular, the rate parameter has
the least deviation between regions or models, staying fairly constant across the larger area. The
constant rate is set to be 0.0544, the observed average of the rate parameter across all stations
in the last 40-year period (1981–2020).

For the next step, we use the parameter estimates at each location to simulate daily rain-
fall data from the GPD. Since we use the GPD to model independent exceedances above the
threshold, we can similarly only generate data values that are independent observations above
the threshold. As such, we only generate a proportion of the daily data– a proportion which
is equal to our constant rate. For a 40-year period, we generate 795 daily values. In order to
preserve the same rate parameter estimates for our fit, we fill the remaining daily values with
zero representing a rain value below the threshold. We generate rainfall values (exceeding the
threshold) from the GPD using the revd function from the extRemes package in R (Gilleland
and Katz, 2016).

The generated rainfall data lacks time-reference since we did not assign the data values to
specific dates. We can only guarantee that the generated observations are independent. The lack
of time-referencing only poses a problem for the regional max model, since it works off of the raw
time-referenced daily data and not the GPD fits at the station level. In the interest of evaluating
the performance of the regional max model in capturing the true parameter values, we propose
an additional step to reorder the simulated rainfall values to impose a pseudo-time-referencing.
This approach makes use of the idea that for one day, if there is a large rainfall amount at
one station, the other stations are more likely to also have larger rainfall amounts that day. In
general, rainfall totals across stations in a single day will be correlated, though not perfectly. To
impose temporal considerations, we rank each simulated series and then perturb the ranks with
uniform random noise, and then re-rank each series to assign a temporal structure. This strategy
induces temporal correlation in the simulated series. Therefore, the regional max approach can
be implemented, taking the maximum across each “day” based on the region each station falls
within.

4.1 Results from Simulation Study

Fifty iterations of the simulation are performed and the results displayed in Table 1. Model
performance is evaluated using two metrics: the Root Mean Square Error (RMSE), and the
Mean Absolute Error (MAE). If ξ̂1, ξ̂2, . . . , ξ̂50 are the 50 estimates of the shape parameter for a
given model, ξ is the true value of the shape parameter for the simulation, then the RMSE and
MAE are calculated as follows:

RMSE =
√∑50

i=1(ξ̂i − ξ)2

50

MAE =
∑50

i=1 |ξ̂i − ξ |
50

.

(12)

We obtain values of both the RMSE and MAE the shape and scale parameters for each
combination of the three regions and each of the three models.

While the first two models both performed well at recovering the true parameter values,
our PARE Model performs almost uniformly better than the block kriging model according to
the RMSE and MAE. The block kriging model only performed better in estimating the scale
parameter for region 3, according to the RMSE. The regional max model performed much worse
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Table 1: Extreme value parameter estimates from our proposed models tested on the simulated
data for 50 iterations. Bolding denotes the smallest value of either RMSE or MAE for estimating
the given parameter for a given region. Note that the rate parameter is held constant, so rate
estimates are not evaluated here. Included are the true parameter values used for simulation
(truth), as well as the mean parameter estimates (mean), root mean squared error (RMSE), and
mean absolute error (MAE) for each region and each model from the 50 iterations. Smaller values
of RMSE and MAE indicate better performance of a model at recovering the true parameter
values. Our proposed PARE model performs almost uniformly better according to these metrics.

Region 1 Region 2 Region 3
Mean RMSE MAE Mean RMSE MAE Mean RMSE MAE

Scale Truth 233.64 246.78 229.38
PARE 233.96 1.3466 1.0536 247.07 1.3125 1.0537 229.70 1.1994 0.9160

Block Kriging 235.85 2.5194 2.2470 245.11 2.1282 1.8337 229.61 1.1697 0.9225
Regional Max 250.84 17.5993 17.1950 264.27 17.8354 17.4853 247.01 17.9624 17.6309

Shape Truth 0.2044 0.2319 0.1641
PARE 0.2013 0.0056 0.0044 0.2295 0.0050 0.0041 0.1621 0.0044 0.0035

Block Kriging 0.1984 0.0072 0.0065 0.2261 0.0073 0.0061 0.1700 0.0071 0.0060
Regional Max 0.3326 0.1291 0.1282 0.3676 0.1363 0.1357 0.2775 0.1143 0.1134

at capturing the true parameter values, especially that of the scale, just as we expected after
seeing the large scale estimates in the results on observed data (see Table 2). The RMSE and
MAE values for the regional max were around 10–30 times larger than those of the other two
models.

5 Case Study Results
We apply the proposed models to our rainfall data for the last 40 years (1981–2020) and compare
the regional extreme value estimates produced by each. The comparison of parameter estimates
and return levels are available in Tables 2 and 3, respectively.

One discovery of note that makes the implementation of the block kriging model in R fast
and simple is the option to input a SpatialPolygonsDataFrame as the “newdata” argument in
the kriging functions of the gstat package (Pebesma, 2004). In particular, we can input the
spatial polygons for our three hydrologic regions, and get the averaged estimates directly. When
polygons are input as the new data to krige, the function uses sp::spsample to randomly sample
points uniformly across each polygon and calculates a block average (Pebesma, 2004; Bivand
et al., 2013). This is intuitively the same calculation we are doing, without specifying a grid of
points beforehand.

This built-in function implementation runs much faster than kriging to a fine grid and
then averaging over the points within each region. For example, when cokriging the shape and
log(scale) parameters, kriging to a fine grid of 19,791 points and then averaging the gridded
points by region took over 15 minutes while kriging to the regions took only 3.7 seconds, a
substantial improvement to computation time. One could definitely use a coarser grid to speed
things up, but the gstat functions (gstat::predict and gstat::krige for multivariate and
univariate kriging, respectively) with “newdata” set to the region polygons performs quickly
and produces very similar estimates to the gridded version with 19,791 points. We compare
the averaged parameter estimates for each region in Supplemental Table 1, where the values
obtained from using the gstat function shortcut are displayed in brackets. Due to the similarity
of the estimates (with the largest deviation being 0.16 in the scale parameter), we evaluate all
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Table 2: Comparison of extreme value parameter estimates (standard errors in parentheses)
across our proposed models for the last 40 years of data, 1981–2020. As we predicted, the
regional max results differ more than the other two models with its scale parameters being
much higher, which may lead to larger return level estimates.

Method Parameter Region 1 Region 2 Region 3

1. PARE Model scale 215.08(4.3232) 236.68(4.8949) 223.99(3.6994)
shape 0.2(0.0164) 0.16(0.0168) 0.19(0.0134)
rate 0.06(0.0023) 0.04(0.0023) 0.06(0.0019)

2. Block Kriging scale 208.83 (16.521) 228.30 (18.557) 229.41 (17.530)
shape 0.2205 (0.0696) 0.1771 (0.0715) 0.1121 (0.0672)
rate 0.0559 (0.0058) 0.0554 (0.0058) 0.0557 (0.0057)

3. Regional Max scale 291.21 (14.897) 343.46 (16.778) 331.38 (16.747)
shape 0.1523 (0.0377) 0.1397 (0.0355) 0.1351 (0.0366)
rate 0.0565 (0.0019) 0.0601 (0.0020) 0.0557 (0.0019)

Table 3: Comparison of return level estimates (in inches) across the proposed models for the last
40 years of data, 1981–2020. Standard error estimates are displayed in parentheses. Additionally,
the model estimates are compared to region estimates produced by the American council of
engineering companies (ACEC) in Houston (ACECHouston, 2019). The ACEC estimates for
regions 2 and 3 are marked with asterisks because the hydrologic regions are slightly different
than the HCFCD designation. Our proposed PARE model produces very similar estimates to
the ACEC study for region 1, which is the same as our region 1.

Method Return Period Region 1 Region 2 Region 3

1. PARE Model 25-Year 11.634(0.6874) 10.442(0.5857) 11.399(0.5461)
100-Year 16.48(1.2435) 14.291(1.0239) 15.856(0.9666)
500-Year 24.131(2.3097) 20.002(1.8186) 22.7(1.7504)

2. Block Kriging 25-Year 12.01 (2.27) 11.21 (2.06) 9.14 (1.44)
100-Year 17.28 (4.48) 15.46 (3.89) 11.87 (2.54)
500-Year 25.80 (8.97) 21.91 (7.36) 15.61 (4.44)

3. Regional Max 25-Year 12.96 (1.33) 14.68 (1.44) 13.75 (1.35)
100-Year 17.54 (2.39) 19.68 (2.53) 18.37 (2.39)
500-Year 24.23 (4.32) 26.83 (4.48) 24.94 (4.22)

ACEC Estimates 25-Year 10.90 11.50* 12.30*
100-Year 16.30 16.90* 18.00*
500-Year 24.20 25.00* 27.20*

future results using the faster method.
Additionally, since the PARE and block kriging models both perform modeling on the log

of the scale parameter, the estimates from these models must be translated back to the regular
scale. Since these estimates are derived from the idea of taking the mean of the log(scale), we
use approximations to bring it back to the mean of the scale as opposed to just taking the
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exponential value of the estimate. We use Taylor series approximations to transform back to the
scale, which are outlined and derived in the appendix of Fagnant (2021).

After fitting each of our proposed models to the last 40 years of data, we compare results for
the estimates across the three regions by looking at both the extreme value parameter estimates
as well as the estimated return levels. In Table 2, we see that the scale parameter estimates for
the PARE model and block kriging are similar, whereas those of the regional max model are
much larger, by roughly 50%. For all three models, the shape parameter for region three is the
smallest. Similarly, region three usually has the largest scale parameter. We also note that the
rate parameter estimates vary the least across regions or models, which provides the justification
for holding the rate parameter constant in the simulations in Section 4.1. The approximately
constant estimates suggest the modeling of this parameter might be weighed against the added
complexity of including it. If we want to simplify modeling, we could hold this parameter constant
across regions.

From the estimated extreme value parameter estimates, we also calculate the 25-, 100-,
and 500-year return level estimates (equivalent to the 4%, 1%, and 0.2% precipitation events,
respectively) and display the results in the first 9 rows of Table 3. The regional max model
produces the largest return level estimates, but has somewhat similar results to the PARE
model. For the PARE model, region one exhibits the largest return levels. The return levels for
region three in the block kriging approach are lower than expected.

An important distinction in the return level estimates is that the PARE model produces
smaller standard errors, illustrating the viability of our approach. However, in order to calculate
standard errors and confidence intervals for the return levels, one piece of information we need
is the covariance matrix of the shape and scale parameters. Due to the nature of modeling
the parameters separately in the PARE model, we set the covariance to be zero, despite the
parameters being negatively correlated. Future development of this model will address joint
models the two parameter estimates, so that the covariance can be used to improve our knowledge
of the precision of the estimates.

We extend our modeling of return levels for each region to the temporal setting by incor-
porating the moving window approach used in Fagnant et al. (2020). Specifically, we repeat our
modeling on data subset to different 40-year periods. In order to get a general idea of how these
regional return level estimates have changed over time, we choose three 40-year windows spaced
evenly across our period of record. The overlapping windows chosen are 1921–1960, 1951–1990,
and 1981–2020. We provide tables of the parameter estimates for the last window in Table 2,
and the first and second windows in Supplemental Tables.

We display return level estimates along with standard errors for the three models for
each window of time. See Supplemental Table 4 for 1921–1960 and Supplemental Table 5 for
1951–1990. To visualize clearly how return levels have changed over time for the three hydrologic
regions, we also plot the return level estimates by window as a simple time series, along with
95% pointwise confidence intervals. Time series plots of the 25-, 100-, and 500-year return levels
estimates with 95% pointwise confidence intervals, for each of the three regions, are provided in
Figures 3–5.

Region one has similar return levels for the final period (ending in 2020) across all models.
The return level is around 24–25 inches for the 500-year and around 17 inches for the 100-year.
The uncertainty associated with the block kriging and regional max models, makes interpretation
of trends more difficult. For example, region two saw slight decreases in return levels from 1960
to 1990 for the block kriging model and the regional max model, but the uncertainty is large.

Considering the PARE model results, regions one and two exhibit a steady increase in return
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Figure 3: Return level estimates and 95% CIs for moving windows - PARE model. Regions are
identified in Figure 1, and color coded in the same fashion.

Figure 4: 24-hour return level estimates and 95% CIs for moving windows - block kriging. Regions
are identified in Figure 1, and color coded in the same fashion. Values for visualization extracted
from Fagnant (2021).

Figure 5: Return level estimates and 95% CIs for moving windows - regional max. Regions are
identified in Figure 1, and color coded in the same fashion. Values for visualization extracted
from Fagnant (2021).
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levels since 1921. The increase in return levels from 1990 to 2020 was greater than that from
1960 to 1990. Region one represents the area to the northwest of Houston, TX, and region two
covers the center part of the city. Region three saw the most gradual increase in extreme rainfall
over time. It is worth noting, that region three is coastal and includes Galveston Island, which
is regularly inundated with heavy rains.

Two interesting results are that the return level estimates for the PARE model demonstrate
consistent trends, comparable to the findings in Fagnant et al. (2020), and also provide precise
confidence intervals for the 25-, 100- and 500-estimated return levels for each region. For all
regions and return levels, the PARE model has lower uncertainty estimates than the regional
max and the block kriging approach. The regional max model in has very wide confidence
intervals across all windows and regions. Similar to how we suspected the construction of the
data using the maximum increases the return level estimates for the regional max model, it also
increases the variability of these estimates and therefore the confidence interval widths.

There has been an effort in recent years to update extreme rainfall data in the Houston
area. In particular, NOAA Atlas 14 released updated rainfall frequency estimates for all of
Texas in 2018 (Perica et al., 2018). This updated data set provides gridded precipitation fre-
quency estimates (equivalent to return levels) across Texas for multiple durations (ranging from
5 minutes to 60 days) and multiple return periods (from 1 to 1000 years). We wish to compare
our regional return level estimates to updated region estimates for the Harris County hydrologic
regions using this updated NOAA Atlas 14 data. As of the time of writing, the only such study
found which also aims to bring return level estimates to the region level is a report produced by
the American Council of Engineering Companies (ACEC) in Houston in 2019 (ACECHouston,
2019). The goals of this study slightly differed from ours, as they used the NOAA Atlas 14
frequency estimates directly, and also use these estimates to determine ideal regions for Harris
County (i.e. grouping the watersheds into regions themselves). This resulted in almost the same
designation as that of the Harris County Flood Control District (HCFCD) manual (Storey and
Talbott, 2009) which we use, except that ACEC placed the Sims Bayou watershed in region 2
as opposed to region 3.

We compare our estimated regional return levels for the last 40-year window (1981–2020) to
the ACEC study estimates in the last three rows of Table 3. We note that since regions 2 and 3
were slightly different between our analysis and theirs, we cannot compare these values directly,
and so mark them with an asterisk. However, region 1 is designated exactly the same for both
studies. We discover that our proposed PARE model matches the ACEC estimates more closely
than the other models, indicating that the PARE model run on raw rainfall data performs
similarly to the most recent advanced modeling of rainfall frequency estimates by NOAA. It
is promising that estimates from our PARE model are consistent with these estimates derived
from NOAA Atlas 14, because the NOAA report is the official source of precipitation frequency
estimates provided for the U.S. government (Perica et al., 2018) and is widely used and accepted.

6 Discussion
We brought forward an end-to-end approach to estimating the return level, focusing on 25-, 100-,
and 500-year levels for Houston, Texas. Our approach made use of hierarchical spatial modeling,
and introduced point-to-area-random-effects or PARE to address the change of support. Our
multi-tiered approach provides return level estimates for key regions in flood modeling along with
uncertainty quantification. The results are consistent over our three time epochs, representing a
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span of 100 years. When compared with the block kriging and regional max models, we obtain a
clear picture of the rainfall dynamics in Houston, Texas. A key advantage of the PARE approach
is the use of standard software, ensuring ease of use for future problems. The method also easily
incorporates additional fixed effects.

Supplementary Material
A pdf file containing the Supplemental Tables is included in the Supplemental Materials. Code
to reproduce the PARE analysis for the three windows considered in this paper is provided as a
Quarto project available for download on Github (https://github.com/juliaSchedler/ST_PARE),
or viewing as a rendered vignette at https://juliaschedler.github.io/ST_PARE/. Due to large
file sizes, additional resources on the GPD fitting process for all 80 years’ worth of rolling win-
dows and models used for comparison to PARE are provided in another Github Repository
(https://github.com/carly-fagnant/Spatial_Extreme_Value_Modeling).
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