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Abstract

The programming overhead required to implement machine learning workflows creates a barrier
for many discipline-specific researchers with limited programming experience. The stressor
package provides an R interface to Python’s PyCaret package, which automatically tunes and
trains 14-18 machine learning (ML) models for use in accuracy comparisons. In addition to
providing an R interface to PyCaret, stressor also contains functions that facilitate synthetic
data generation and variants of cross-validation that allow for easy benchmarking of the ability
of machine-learning models to extrapolate or compete with simpler models on simpler data
forms. We show the utility of stressor on two agricultural datasets, one using classification
models to predict crop suitability and another using regression models to predict crop yields.
Full ML benchmarking workflows can be completed in only a few lines of code with relatively
small computational cost. The results, and more importantly the workflow, provide a template
for how applied researchers can quickly generate accuracy comparisons of many machine learning
models with very little programming.
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1 Introduction
The R programming language has long been used for data analysis, especially among academic
researchers. Despite R’s many advantages, the Python programming language has arguably been
the leader in machine learning (ML) functionality (Raschka et al., 2020; Bowles, 2015). This
innovation includes the development of automated workflows for tuning, training, and evaluating
ML models. The PyCaret library (Ali, 2020) is an example of one such innovation. It contains
access to auto-tuned ML models and a streamlined workflow for accuracy comparisons.

After the training and test sets are automatically created by PyCaret, the program tunes
hyper-parameters for 14-18 machine learning models and then ranks the models using a user-
specified accuracy criteria, such as Root Mean Squared Error (RMSE). Table 1 shows the various
ML models available in PyCaret for both classification and regression. While Python may be the
leader in ML model implementation, the R programming language has many ancillary software
packages that implement ML models. Table 1 also contains references to some R packages that
replicate each model type available in PyCaret, largely derived from Hothorn (2023).

The list of R packages in Table 1 reveals that it would take 18 different R packages to repli-
cate most of the models available in PyCaret. While meta-packages such as tidymodels (Kuhn
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Table 1: Machine learning (ML) methods available in PyCaret, listed alphabetically by token.
When a token or name is used for Both, Regression (R) and Classification (C), the C version of
the method is listed in parenthesis. Italicized tokens indicate methods that are not available in
the default execution of PyCaret and are thus not available in the stressor interface. The final
column contains references to a CRAN package that implements the method. Other acronyms
in the table include Gradient Boosting Machine (GBM) and Support Vector Machine (SVM).

Token Name Use CRAN Package

ada AdaBoost Both ada (Culp et al., 2016)
ard Automatic Relevance Detection R n/a
br Bayesian Ridge R n/a
catboost CatBoost R/C Both n/a
dt Decision Tree Both rpart (Therneau and Atkinson, 2022)
dummy No Explanatory Variables Both n/a
en Elastic Net R glmnet (Friedman et al., 2010)
et Extra Tress C ranger (Wright and Ziegler, 2017)
gbr (gbc) GBM Both gbm (Greenwell et al., 2022)
gpc Gaussian Process C C tgp (Gramacy, 2007)
huber Huber Regressor R MASS (Venables and Ripley, 2002)
knn K Nearest Neighbors Both class (Venables and Ripley, 2002)
kr Kernel Ridge R CVST (Krueger and Braun, 2022)
lasso Lasso R R glmnet
lda Linear Discriminant Analysis C MASS
lightgbm Light GBM Both lightgbm (Ke et al., 2017)
(l)lar (Lasso) Least Angle R R lars (Hastie and Efron, 2022)
lr Linear (Logistic) R Both stats (R Core Team, 2022)
mlp Multi-layer Perceptron Both deepnet (Rong, 2022)
nb Naive Bayes C naivebayes (Majka, 2019)
omp Orthogonal Matching Pursuit R Rfast (Papadakis et al., 2023)
par Passive Aggressive Regressor R n/a
qda Quadratic Discriminant Analysis C MASS
ransac Random Sample Consensus R n/a
rbfsvm SVM - Radial Kernel C e1071 (Meyer et al., 2022)
rf Random Forest Both ranger
ridge Ridge R/C Both glmnet
svm SVM (- Linear Kernel) Both e1071
tr TheilSen Regressor R deming (Therneau, 2018)
xgboost Extreme GBM Both xgboost (Chen et al., 2023)
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and Wickham, 2020), caret (Kuhn, 2022), and mlr3 (Lang et al., 2019) bring many of these
models together under a common modeling convention, the programming overhead required to
replicate the breadth of PyCaret’s offerings would be cost-prohibitive to many discipline-specific
researchers.

Another challenge faced by many researchers is the need to tune the hyper-parameters of
many of these ML models, which can be computationally and manually time intensive. PyCaret
provides an efficient way of tuning and training ML models using a scoring grid based on ten fold
cross-validation, where the best model is selected based on some accuracy metric supplied by
the user, with the default being RMSE for regression and percent correctly classified (PCC) for
classification. Several other R packages have implemented ML methods and automated hyper-
parameter tuning including the meta-packages referenced previously, along with EZtune (Lun-
dell, 2017). While R has a large and robust software library of ML approaches, no single package
is as comprehensive in offerings as the scikit-learn library in Python (Pedregosa et al., 2011),
as employed in PyCaret and made available in R through the stressor package.

The best way to access the power of the scikit-learn library is to learn how to use it
directly within Python. However, it is difficult for many discipline-specific researchers to master
multiple languages while simultaneously making advances within their discipline. The stressor
package is designed to give R users access to the ML innovations in Python without having
to know Python programming. The stressor package allows the users to use models tuned
and trained using Python’s PyCaret library as if they were created in R. This provides R users
quick and convenient ML benchmarks they can seamlessly incorporate into their R workflows.
The stressor package is not intended to replace existing machine learning workflows in R.
Rather, the stressor package is designed to supplement existing workflows with fast and easy
comparisons to other ML methods with little programming overhead. The mlr3, tidymodels,
and caret packages in R provide powerful machine learning workflows (tune, train, and predict)
with more flexibility than is provided by the stressor package. However, these frameworks
require more programming expertise than stressor requires, and the time it takes to implement
them may be a deterrent to their use for many applied researchers.

In addition to providing R users access to PyCaret, the stressor package also allows users to
validate their models with various forms of cross-validation (CV), including spatial CV (i.e. SCV)
(see section 3.1 for details). The stressor package also includes R functionality for data gener-
ation, which is useful for testing the loss in accuracy that occurs when a ML model is employed
on a dataset with a relatively simple underlying structure.

Figure 1 summarizes the main functions of stressor that will be described in the remainder
of this paper. We first explain the general programming philosophy of stressor along with
how to use stressor to obtain ML benchmarks from PyCaret, this is followed by a summary
of the cross-validation variants available in stressor along with the package’s data generation
functionality. The paper concludes with two real data application examples of the stressor
package on agricultural datasets.

2 Package Overview
Consider a typical data analysis workflow as partitioned into three general steps, namely (1)
data preparation, (2) model creation/validation and (3) results visualization/presentation. The
stressor package is designed leverage R’s advantages in data manipulation and visualization
(i.e. Steps 1 and 3) in R while capitalizing on Python’s offerings in ML model development via
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stressor

Data Generation
data_gen_lm()
data_gen_asym()
data_gen_sine()

Model Training
mlm_regressor()∗
mlm_classification()∗
mlm_refit()∗
reg_asym()
reg_sine()

Model Validation
cv()
cv_cluster()
predict()
score()

Figure 1: Diagram indicating main operations and utility functions of stressor. Asterisks in-
dicate functions that are wrappers to Python functions.

the PyCaret library (Ali, 2020) (Step 2). The stressor package provides functionality for Step
2 in ways that works seamlessly with the typical R user’s approach to Steps 1 and 3, as outlined
in the following list:
1. data preparation (R)
2. model creation/validation

(a) tune (Python)
(b) train (Python)
(c) validate (Python)
(d) stress (R)

3. results visualization/presentation (R).
The “stress” sub-step is an optional step that involves additional model validation techniques
intended to assess the performance of ML models in less than ideal conditions, such as the use
of spatial cross-validation (SCV) explained further in Section 3.1.

2.1 Illustrative Example
One pre-requisite to the use of stressor’s PyCaret interface is an installed version of Python on
the local machine or server. Currently, the creators of PyCaret recommend the using Python ver-
sion 3.8.10. Once the user has installed Python and (possibly) added Python to their searchable
path, the user can execute the R command

R> create_virtualenv()

which initializes a virtual Python environment, named based on the timestamp of creation, and
installs PyCaret to this environment. This function prevents the user from needing to understand
the details about how to properly initiate and format virtual environment with the necessary
Python packages. To avoid cluttering a user’s computer with multiple virtual environments,
the function always tries to reuse a previous virtual environment created by stressor when
it is available. The create_virtualenv() operates by calling functions from R’s reticulate
package (Ushey et al., 2022). Note that, in some instances, the user may be required to restart
their R session and point their project to the correct user environment using the command:

R> reticulate::use_virtualenv("<environment_name>")

Once the virtual environment has been created and initialized, the user can go from prepared
dataset to ML benchmark in a few easy function calls. This is illustrated using the using the
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boston housing dataset (Harrison and Rubinfeld, 1978), made available in the stressor package,
as adapted from the corrected version available in the mlbench package (Leisch and Dimitriadou,
2021), which omits all spatial and race-based variables. This dataset contains median house prices
in 506 census tracts with 12 candidate explanatory variables. Information about the variables
can be obtained running:

R> ?boston

We first withhold 20% of the observations for post-benchmark validation using stressor’s
split_data_prob() function.

R> set.seed(90211)
R> ind <- split_data_prob(boston, 0.2)
R> train <- boston[!ind, ]
R> test <- boston[ind, ]

Then, using the training data, we call PyCaret’s tuning and training workflow with

R> mlm_boston <- mlm_regressor(formula = cmedv ~ ., data = train,
R> seed = 123)

which executes the following steps, all in PyCaret:
• Partition the training data into a tuning and validation dataset.
• Perform hyper-parameter tuning on the tuning data via a RandomGridSearch from scikit-
learn (Pedregosa et al., 2011). A random grid search explores the same space of parameters
as an exhaustive search (i.e. all possible combinations of hyper-parameters), but only ran-
domly samples over the distribution of possible parameter values. Random grid search likely
performs worse than an exhaustive search (Pedregosa et al., 2013). However, multiple runs
over the same search space will generally result in the better model being returned than
simply using model defaults.

• Score the models on several accuracy metrics using the validation data based on a user–
defined criteria, which is RMSE by default for regression problems. The command

R> mlm_boston$pred_accuracy
will generate a table of all models and their performance across all accuracy metrics. Ta-
ble 2 shows the accuracy metrics provided by PyCaret for both classification and regression
problems.
The seed argument sets a random number seed in Python, which is essential for repro-

ducibility since PyCaret does not recognize R’s random number stream. The user also has the
option to set two additional arguments, though the authors generally recommend sticking with
the defaults in each case:
• fit_models: A character vector of model tokens (see Table 1) to be included in the model

fitting.
• n_models: The number of models returned in the final scoring table. If n_models is less than

the number of models fit by PyCaret, then only the top n_models will be returned based on
the primary accuracy metric selected.
For users only interested in a quick ML benchmark to compare against their manually cre-

ated model, this step may complete the stressor portion of their project workflow. Some users
may elect to perform the benchmark using the full dataset, rather than partitioning the data
beforehand as is done in this example. That in mind, for users interested in further validation,
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Table 2: Summary of default accuracy metrics available in PyCaret.

Regression Classification

Token Name Token Name

mae Mean Absolute Error acc Accuracy
mse Mean Squared Error auc Area Under ROC Curve
rmse Root Mean Squared Error recall Recall
r2 R2 precision Precision
rmsle Root Mean Squared Log Error f1 F1
mape Mean Absolute Percentage Error kappa Kappa

mcc Mathews Correlation Coefficient

stressor facilitates a re-training of the PyCaret models using all available data (retaining the
hyper-parameters selected in the previous step) and predicting the withheld test data with the
command:

R> test_pred <- mlm_refit(mlm_object = mlm_boston, train_data = train,
R> test_data = test)

which returns a matrix of predictions, one column per method, on the test dataset using the
models re-trained using the full training data (i.e. without the internal partition for hyper-
parameter tuning and scoring). Users can then re-score their models in R using stressor’s
score function, i.e.,

R> results <- score(test_pred, test$cmedv, metrics = "RMSE")
R> head(results)
# models RMSE
# 1 et 3.092555
# 2 gbr 3.466087
# 3 rf 3.859793
# 4 lightgbm 3.686077
# 5 ada 4.518261
# 6 dt 4.552001

which shows the top performing models on the test set in descending order.

2.2 General Workflow

The stressor workflow is designed to keep data manipulation confined to R as much as is
feasible. The only data manipulation step outsourced to PyCaret is the partitioning prior to
hyper-parameter tuning. Figure 2 demonstrates the details of the stressor workflow. Red
rounded-boxes in the figure are the functions that are called by the user, while blue boxes
represent the Python functions called to execute each task. Tan boxes represent the R objects,
often derived from Python objects as facilitated by the reticulate package.
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create_virtualenv() create_virtualenv()

use_virtualenv()

mlm_regressor()
mlm_classification() compare_models()

List object
Models (list)

List of
modelsData

cv() / refit_mlm() .fit()

predict_model()Predicted Values

score() Final Results

1

2

3

4

Figure 2: A flowchart demonstrating the model comparison workflow of the stressor package.
Red squares indicate functions called by the user in R, blue squares indicate Python functions/ob-
jects, gray squares indicate functions from the package reticulate, and tan squares indicate R
objects. A summary of steps include (1) create a virtual environment, (2) call fit and score the
models, (3 - optional) perform cross-validation (CV), and (4 - optional) re-score all the models
based on the CV results.

3 Additional Package Features
The primary purpose of the stressor package is to provide R users easy access to PyCaret
in order to provide quick ML benchmarks to supplement a practitioners existing data analysis
workflows. However, researchers often want to use their models – not always appropriately –
to make predictions beyond the bounds of the observed data (i.e. extrapolation). Measuring
predictive capability in such scenarios requires adaptations of traditional accuracy metrics to
determine how the model performs “under stress”. The stressor package also provides R-specific
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cross-validation functions that allow R users to “stress-test” the trained machine learning models
beyond what is provided in PyCaret. Additionally, the stressor package also provides some data
generation functions that generate simple datasets with known variable relationships. This allows
users to explore the penalty associated with deploying a complicated ML model on relatively
simple data. These package features are described in the following sub-sections.

3.1 Cross-Validation

The stressor package also allows users to easily test their models predictive capabilities using
several variants of CV and/or constrained sample sizes. For example, users could re-score all
ML models using CV using two lines of code:

R> cv_models <- cv(mlm_boston, data = boston, n_folds = 10)
R> head(score(boston$cmedv, cv_models, metrics = "RMSE"))
# models RMSE
# 1 et 3.049584
# 2 gbr 2.878879
# 3 rf 3.225423
# 4 lightgbm 3.327633
# 5 ada 3.590602
# 6 dt 4.735953

At this point, we caution the reader on the potentially problematic use of cross-validation
on the same data used to tune the models. This argument is explained succinctly in Neunhoeffer
and Sternberg (2019) with additional discussion in Hastie et al. (2009). However, the practical
experience of the authors suggest this problem usually only occurs on heavily tuned ML models
and its consequences can be avoided by using multiple model validation paradigms to confirm
model performance. This includes using variants of traditional CV that better quantify a ML
model’s ability to make predictions for new (and yet unseen) explanatory variable combinations
via spatial cross-validation (SCV).

SCV is similar to traditional tenfold CV, with the primary difference being that the data
are partitioned into spatially disjoint sets versus a random partition of the data to reduce the
influence of spatial-autocorrelation (Brenning et al., 2012; Brenning, 2012; Lovelace et al., 2019).
If ignored, the autocorrelation may result in underestimates of the true RMSE (Wadoux et al.,
2021; Hengl et al., 2021; Ploton et al., 2020). There are several R and Python packages that
implement variants of SCV (Schratz and Becker, 2023). However, these methods are focused
on partitioning data based on space and time variables and use methodology that does not
guarantee balance in the resulting cross-validation groups. The stressor package implements
an adaptation of SCV that can be generalized to any set of variables (not just space and time)
while also preserving approximate balance in the resulting k-folds, or groups. The approach is
implemented using the following algorithm:
• Scale the X variables.
• Perform k-means clustering on the scaled variables, creating kmult ∗k, sub-clusters that will be

combined into k roughly equal sized groups for cross-validation. The variable kmult is a mul-
tiplier with a recommended value of 5-10. This range for kmult ensures the creation of enough
sub-groups to ensure balanced observations in the k-fold groups during the consolidation
step, while still ensuring sufficient sample sizes within each sub-group.
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Figure 3: Illustration of two dimensional grouping with respect to spatial grouping. Note that
multiple groups are spread across each dimension.

• Consolidate the kmult groups into k-folds for cross-validation. This is done by ordering the size
of each cluster and merging clusters in order of their size based on existing cluster centroids.

• Once a group gets too large, prevent smaller groups from joining it.
• Continue consolidation until the k groups are obtained.

Figure 3 shows an example of what two dimensional grouping looks like using our SCV approach.
The grouping is accomplished via a grouping_formula argument in the cv() function, with
constraints that ensure that the final k groups contain roughly equal numbers of observations.
If the grouping_formula argument is NULL, then SCV will use all explanatory variables in
the original trained formula of the object. The focus on group size balancing in this algorithm
inevitably leaves one or two of the k groups that seem scattered because they have consolidated
the leftover kmult groups. This is intentional, as other methods (Le et al., 2019; Wang et al., 2019)
for k-means clustering that impose approximate group balance within the k-means clustering
step are more computationally intensive and lack widespread implementation.

We note that the motivations for SCV have only been rigorously explored for spatio-
temporal variables in the literature. However, we argue that the use of a generalized SCV often
provides a better measure of how a model will be used in practice: which is making a prediction
on a new and yet unseen combination of x-variables.

To illustrate the use of SCV, we adapt the previous CV example with the boston housing
dataset as follows:

R> cv_models_2 <- cv(mlm_boston, data = boston, n_folds = 10, k_mult = 5)
R> head(score(boston$cmedv, cv_models_2, metrics = "RMSE"))
# models RMSE
# 1 et 3.632840
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# 2 gbr 3.564639
# 3 rf 3.793448
# 4 lightgbm 3.772861
# 5 ada 4.200270
# 6 dt 4.751349

The SCV routine allows users a fast way to determine the sensitivity of their accuracy
results to changes in the method for validating accuracy. For example, if the accuracy metric for
a particular ML varies widely when using train/test data, CV, and SCV, the user will know to
be skeptical of using that ML model in deployment due to its inconsistent performance.

Other exploratory forms of model stress-testing, such as methods to iteratively reduce the
training data size and explore the degradation in accuracy across iterations, are also included
in the stressor package. However, these methods are only exploratory and not as well vetted
as the SCV cross-validation variant described previously. Details regarding these exploratory
methods are outlined in Haycock (2023), but their demonstration of use remains a topic of
future work.

3.2 Data Generation
Another feature of the stressor package is the ability to generate datasets with known relation-
ships between the explanatory variables and the response variable. These synthetic data sets can
then be used for testing the ability of new functions or algorithms to recover known solutions
in simple data cases. The stressor package contains methods for generating data from linear,
asymptotic, and sinusoidal data generating models relating a response variable y to a matrix X

of explanatory variables represented mathematically as

y = β0 + β1x1 + · · · + βpxp + ε, (1)
y = β0 − α1e

−β1x1 − · · · − αpe−βpxp + ε, (2)
y = β0 + α1 sin (β1(x1 − γ1)) + · · · + αp sin (βp(xp − γp)) + ε, (3)

where α, β, γ represent model coefficients with residuals ε ∼ N(0, σ 2
ε ) where σε is user-defined.

Note that this linear dataset generation function does not allow for the specification of interaction
terms. Note also that the individual Xi ’s are sampled from a standard normal distribution with
the exception of Equation 2, which samples the Xi ’s from a uniform distribution. This can be
executed by the data_gen function within stressor with arguments:
• n – an integer with the number of observations for the data.frame,
• weight_vec/weight_mat – a vector or matrix specifying the coefficients of the parameters,
• y_int – a numeric specifying the intercept along the y-axis, and
• resp_sd – a numeric specifying εσ .

The functions reg_asym() and reg_sine() are functions that use the optim function in
order to quickly calculate the performance of the “ideal” model fit for the created datasets.
Haycock (2023) shows the ability of reg_asym() to approximate the true asymptotic model
coefficients with good-enough initial parameter guesses, but a consistent inability to approximate
true model coefficients using reg_sine(). The intent of these functions, along with R’s lm()
function for linear data, is to determine the penalty associated with using an ML model to when
the true model form is known. To illustrate this, generate a dataset with 5000 observations from
a data generating model derived from Equation 2 with α1 = · · · = α5 = 5, β1 = · · · = β5 = 1,
β0 = 0, and σε = 1.
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R> set.seed(70157)
R> tmat <- matrix(c(rep(5, 5), rep(1, 5)), nrow = 2,
R> byrow = TRUE)
R> data_1 <- data_gen_asym(5000, weight_mat = tmat,
R> resp_sd = 1)

We then split the data into a 80/20 training/test set and fit the true model using the true
coefficients as our initial guess (including an initial guess of zero for β0).

R> tind <- split_data_prob(data_1, 0.2)
R> train_1 <- data_1[!tind, ]
R> test_1 <- data_1[tind, ]
R> model_1 <- reg_asym(Y ~ ., train_1,
R> init_guess = c(as.vector(tmat), 0))
R> score(test_1$Y, predict(model_1, test_1), metrics = "RMSE")
# 0.9902157

This validates the ability of the model, when given a proper initial guess, to recover the
true model error, which in this case was one. This validation serves as a best case baseline for
any other models fit to these data. We then compare this with the model results obtained from
PyCaret for this same dataset.

R> mlm_asy <- mlm_regressor(Y ~ ., train_data = train_1, seed = 457)
R> asy_pred <- mlm_refit(mlm_asy, train_1, test_1)
R> score(test_1$Y, asy_pred, metrics = "RMSE")
# models RMSE
# 1 gbr 1.033126
# 2 lightgbm 1.053717
# 3 rf 1.087795
# 4 et 1.085792
# ...
# 15 llar 2.070206
# 16 omp 2.268977
# 17 dummy 2.378251
# 18 par 4.492784

These few lines of code revealed the ability of GBM and several tree-based methods to
well approximate the true model error, while several of the linear-based estimators struggled
in comparison. This process could be quickly repeated for different coefficients and different
dataset sizes to get a sense of the sample sizes and data types required for each ML model to
be successful. It is also a useful way to identify ML models that are over-fitting the data in
situations where the ML model reports an accuracy value substantially less than the true model
error.

4 Real Data Examples
Over half of the land in the Conterminous United States (CONUS) is devoted to the production
of food, fuel, and fiber (USDA, 2019). Though biophysical factors (i.e. sun, soil, and water)
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strongly influence these cultivation geographies (Burchfield and Nelson, 2021; Liang et al., 2017;
Ray et al., 2015), centuries of human activity have pushed cultivation geographies far beyond
what landscapes can naturally support. For example, over the last century, technological inno-
vation and political-economic incentives have driven a tripling of soy and wheat yields and a
five-fold increase in corn yields (USDA, 2019). Recent efforts have focused on using ML modeling
to quantify the predictive power of these non-biophysical factors, including landscape diversity
metrics in predicting crop yields (Spangler et al., 2022; Schumacher et al., 2023).

One particularly important crop for farming in CONUS is corn. Urban et al. (2015) states
that the demand for corn is increasing, with the US as the world’s largest producer. Roberts et al.
(2013) mentions that the changing climate will have drastic effects on crop yield. Understanding
what factors are most predictive of current corn yields is critical for determining how yields may
be altered, and/or how farmers will need to adapt in a changing climate.

Predicting crop yield for the past decades has relied heavily on classic econometric models
(Roberts et al., 2013), biophysical crop models (Rosenzweig et al., 2013), process-based models
(Soltani, 2012), and statistical models (Srivastava et al., 2014). Recently, there has been a drive
to incorporate ML models into predicting crop yield (van Klompenburg et al., 2020). Studies
have found that when ML models are combined with previous statistical models, predictive
capability is increased (Crane-Droesch, 2018; Roberts et al., 2017a,b).

Three examples of using ML models for agricultural data include one use of RF to predict
crop yields (Schumacher et al., 2023) and two examples of agricultural diversity (Spangler et al.,
2022; Goslee, 2020). RF has been a popular method for agricultural problems due to its high
accuracy results without much hyper-parameter tuning. For many researchers, the need to tune
hyper-parameters for ML models becomes a barrier to their use. This section demonstrates how
the ML workflow can be greatly simplified for R users through a demonstration of one regression
and one classification example of two agricultural datasets.

4.1 Classification Example: Crop Suitability

Understanding what factors influence the suitability of a parcel of land for growing a crop is
critical for determining how suitability might shift in a changing climate. An example of this
kind of analysis is found in Burchfield (2022). The data set detailed in that reference consists of
variables of the following general categories:
• climate - includes variables such as various measures of temperature (i.e. different times of

the year and conditions) and precipitation, at the 1 km grid for North America.
• soil - includes variables such as amount of clay, sand, gravel in the topsoil and the pH of the

soil, at the 1km scale.
• irrigation - includes the percentage of time the land has been irrigated from the United

States Department of Agriculture (USDA’s) Census of Agriculture (USDA, 2019) years of
2002, 2007, 2012, and 2017, also at the 1km pixel scale.

• topography - includes variables such as slope and elevation, data from the 1km and 30m
resolution.

• Presence/Absence - the presence of the following crops: corn, winter wheat, soybeans, cotton,
spring wheat, alfalfa, and hay. This is reported as binary response if the 30m pixel contains
two instances of that crop being planted in the years from 2008 to 2019.
For this classification problem, we are trying to predict the suitability of a crop for a

certain plot of land, with presence being defined as the crop was planted in a given plot of land
(represented by 30m pixels) more than twice from 2008 to 2019 as a binary response (one present,
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Table 3: Table of the PCC results for CV and SCV for the stressor ML models.
Abbr. Models CV SCV

rf Random Forest Classifier 83.64 81.23
et Extra Trees Classifier 83.17 80.49
lightgbm Light Gradient Boosting Machine 82.60 80.55
gbc Gradient Boosting Classifier 79.99 78.40
ada AdaBoost Classifier 77.32 74.42
lda Linear Discriminant Analysis 76.29 74.52
ridge Ridge Classifier 76.28 74.51
dt Decision Tree Classifier 75.90 70.72
knn K Neighbors Classifier 75.73 71.98
lr Logistic Regression 74.41 72.77
qda Quadratic Discriminant Analysis 74.20 71.62
nb Naive Bayes 71.99 70.59
svm SVM - Linear Kernel 61.59 63.74
dummy Dummy Classifier 48.20 38.65

zero absent). In the data, 2.5 million pixels were randomly sampled across the Midwest to East
Coast, and then paired with soil and climate information available at the 1km scale. There are
56 candidate explanatory variables for model training. Climate and soil data was available for
CONUS at the 1km scale. The code necessary to fit the models to the data and perform both
CV and CV are as follows:

R> ml_ap <- mlm_classification(AP ~ ., data = apmc)
R> ml_cv <- cv(ml_ap, data = apmc, n_folds = 10)
R> ml_cv_accuracy <- score(apmc$AP, ml_cv, metrics = "Accuracy")
R> ml_scv <- cv(ml_ap, data = apmc, n_folds = 10, k_mult = 5)
ml_scv_accuracy <- score(apmc$AP, ml_scv, metrics = "Accuracy")

Table 3 shows the PCC for CV and SCV. We observe for all models except for svm, the PCC
is reduced when we group for SCV on the predictor variables. We see the rf, et, and lightgbm
models have a PCC greater than 80% for both CV and SCV. We also see that the null, or dummy,
model had a PCC of 48% for CV and 38% for SCV. The table shows that tree-based methods
and variations of GBM are more effective than other model forms for classifying crop suitability,
with similar results for both traditional and spatial cross-validation.

4.2 Regression Example: Corn Yield

Beside crop suitability, another important factor to consider is the yield (i.e. amount of food
produced per acre of land) of the crop. An example of the use of this dataset can be found
in Schumacher et al. (2023). Most of the variables are the same as the classification data set,
though all variables are aggregated to represent the average for the county. Additional variables
include time, geographic location (latitude and longitude) and the Shannon Diversity Index
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Table 4: The RMSE values for CV, SCV, SCV with group on latitude and longitude of the 18
ML models.
Abbr. Models CV SCV SCV lat/lon

et Extra Trees Regressor 16.33 22.37 22.69
rf Random Forest Regressor 17.78 23.82 24.56
lightgbm Light Gradient Boosting Machine 18.41 23.41 24.18
gbr Gradient Boosting Regressor 22.38 25.73 26.05
knn K Neighbors Regressor 23.58 33.76 34.53
dt Decision Tree Regressor 26.37 33.40 33.75
ada AdaBoost Regressor 28.19 30.52 29.96
lr Linear Regression 29.17 30.56 30.84
ridge Ridge Regression 29.17 30.57 30.84
br Bayesian Ridge 29.17 30.58 30.85
lar Least Angle Regression 30.65 31.85 31.69
lasso Lasso Regression 29.84 31.78 31.74
llar Lasso Least Angle Regression 29.84 31.78 31.74
en Elastic Net 30.91 32.63 32.58
huber Huber Regressor 33.50 35.19 35.16
omp Orthogonal Matching Pursuit 38.16 39.37 38.87
dummy Dummy Regressor 39.38 40.15 39.69
par Passive Aggressive Regressor 48.63 43.81 52.62

(SDI) (Aguilar et al., 2015). The corn yield variable is provided at the county level and all other
variables are aggregated to the county scale. This data spans from 2008 to 2018 and we assume
that each year is independent of the previous one.

The code for producing the results in Table 4 is nearly identical to the previous examples
provided in this paper. The only difference is that SCV is run twice: one using all the variables,
and again using only the geographical coordinates of the county centroids, which is more akin
to other implementations of SCV.

R> mlm_yield <- mlm_regressor(Yield ~ ., corn_yield)
R> yield_cv <- cv(mlm_yield, corn_yield, n_folds = 10)
R> yield_scv <- cv(mlm_yield, corn_yield, n_folds = 10, k_mult = 5)
R> yield_scv_latlon <- cv(mlm_yield, corn_yield, n_folds = 10, k_mult = 5,
R> grouping_formula = ~ lat + lon)

Table 4 shows that the RMSE values for SCV are notably larger than for CV, illustrating
the potential loss of accuracy that comes with predicting corn yields for a new county not already
represented in the training data in a different year. The only variables relevant for the SCV seem
to be the spatial ones (i.e. latitude and longitude). Figure 4 provides a visual representation of
the results in Table 4 for twenty separate runs of cross-validation. We see in Figure 4 SCV and
SCV_latlon have more variation in their RMSE, suggesting that estimates from SCV have a
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Figure 4: Side by side comparison of the three methods of CV to show that overall CV has
better RMSE values than SCV and SCV with grouping. SCV groups are clustered first on all
explanatory variables (SCV) and then again using only latitude and longitude to create the
clusters (SCV lat/lon).

higher variance than estimates from CV. However, in this case, the best models using CV (which
are, as before, tree-based methods and variations of GBM) are also the best models using SCV,
which encourages their use.

This section has demonstrated the stressor package workflow on a real regression example.
Note that the workflow is very similar to the classification example previously presented. With
only a few lines of code, we can go from prepared data to accuracy results for 14-18 ML models,
which is beneficial for discipline-specific researchers looking for a quick comparison against their
preferred ML or analytical modeling approach.

5 Conclusion and Further Work
This paper has demonstrated the utility of the stressor by giving R users access to Python
ML libraries without having to learn a new programming language. We have demonstrated the
utility of the package on two different data examples, in each case showing the simplicity of the
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programming required to obtain results. We have also shown some of the additional features
of the stressor package, including a novel implementation of SCV as well as data generation
routines to explore the hypothetical performance of ML models on synthetic dataasets. Access
to the development version of the stressor package can be found at:

https://github.com/beanb2/stressor

The continued use of the package on applied research problems will inevitably identify
opportunities for package improvement. One example of a pending improvement involves im-
proving the data generation methods by allowing for the ability to generate noise variables (i.e.,
explanatory variables with no relationship to the response variable) in the explanatory variable
set to better test the sensitivity of the various ML models to extraneous variables. Finally, an
opportunity exists to make the non default ML models available in PyCaret also available to
the user of the stressor package.

There will always be more flexibility available to those who use PyCaret directly. However,
for those who are not positioned to learn Python or who do not want to disrupt their R work-
flow when performing a simple ML benchmark, the stressor package provides a simple and
convenient interface to PyCaret that requires very little programming or software overhead to
implement. The stressor package has already proven to be a useful tool for benchmarking ML
results (Schumacher et al., 2023), and its ongoing use reinforces the potential of the stressor
package to improve access to Python ML models for current and future R users.

Supplementary Material
The supplementary materials associated with this paper contain all the data and code neces-
sary to reproduce the figures and tables shown in this paper. Dataset descriptions have been
provided in the text, but additional information about the files can be found in the README
file contained in the supplementary materials folder.
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