stressor https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

stressor

This package is designed to allow the user to apply multiple machine learning methods by calling simple
commands for data exploration. Python has a library, called pycaret, which uses pipeline processes for
fitting multiple models with a few lines of code. The stressor package uses the reticulate package to allow
python to be run in R, giving access to the same tools that exist in python. One of the strengths of R is
exploration. The stressor package gives you the freedom to explore the machine learning models side by
side.

To get started, stressor requires that you have python 3.8.10 installed on your computer. To install python,
please follow the instructions provided at:

https://www.python.org/downloads/release/python-3810/

Once Python is installed, you can install stressor from CRAN. For your convenience, we have attached
stressor with the 1ibrary statement to use the python features of stressor.

library(stressor)

Data Generation

It is convenient when testing new functions or algorithms to be able to generate toy data sets. With these
toy data sets, we can choose the distribution of the parameters, of the error term, and the underlying model
of the toy data set.

In this section, we will show an example of generating linear data with an epsilon and intercept that we
chose. We will generate 500 observations from a linear model with five independent variables and a y-
intercept of zero. Observations are simulated from this model assuming that the residuals follow a normal
distribution with a mean of zero and a standard deviation of one. With respect to the variables chosen,
each variable is sampled from a normal distribution with mean zero and standard deviation of one. For this
case, we chose to let the coefficients on each term be one, as we wanted each independent variable to be
equally weighted. When we create the response variable, Y, it is the sum of each independent variable plus
an epsilon term that is sampled from a standard normal distribution.

set.seed(43421)

Im_data <- data_gen_1lm(500, weight vec = rep(1, 5), y int = 0, resp_sd = 1)
head(1lm_data)

#> Y Vi V2 V3 V4 V5

#> 1 1.5101730 ©.9493875 -0.2231050 0.7501904 0.31629917 -0.41787475
#> 2 2.0124439 1.4844310 1.0737816 -1.8404303 0.85267167 -0.96389423
#> 3 2.6647624 -0.3505283 -0.3922640 ©.7192181 60.065188511 1.60003509
#> 4 3.9270489 2.2945235 -0.8998011 ©0.1046142 1.45699275 1.01588132
#> 5 2.6975509 0.8574341 -0.9723329 -0.9897257 2.80821651 ©.00363803
#> 6 0.8071714 0.7676524 -1.2666080 0.5582797 -0.80401673 ©.12742990

Validation of Data Generation

10of9 4/16/2024, 12:55 PM

https://www.python.org/downloads/release/python-3810/
https://www.python.org/downloads/release/python-3810/

stressor https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

Below is a visual of when we know the standard deviation of the epsilon term. We can show that our
models fit the data if we are close to the theoretical error. In the graphic below, the black dots represent the
value given the current epsilon that we are on. The red line represents the expected theoretical error.

Linear Model Validation

n=100 n =300 n =500
1.2-
) - . .
1.0 /,0 /,o o
5 L)
0.8- ; / <
e £ ot
L) L
NA - o~
Ub .// ./4 /.
) 7 / ./.
04- ./' ',/. '
0.2 o / o
Z"~ L]
./ ./ ./
q, ‘1_0 =
7]
£ n=700 n =900 n=1000
=,
12-
L]
- L
) -
1.0 7] ./' .//o
- / ' /
).8 - of = /.
Y
s 'y I
/ / i
0.6- = o .
R //. o //‘ //.
).4- .
04 /// /’/. e
//. g
02- . P /l/
'S é -
0.0-
'8 'o |'>\ e ' 'a 'a ' |\ e ' 'a 'a 'n |\ oo o 'e
QY ©F 7 Y ¥ AY oY 0 0T 0F 0¥ AY oY oY 0T o o A¥
eps

Machine Learning Model Workflow

In this section, we will demonstrate a typical workflow using the functions of this package to explore the
machine learning models (mIm) that are accessible through the pycaret module in python. First, we need to
create a virtual environment for the pycaret module to exist in. The first time you run this code it will take
some time (~ 5 min), as it needs to install the necessary modules into the virtual environment. Note that
this virtual environment will be about 1 GB of space on the user’s disk. pyCaret recommends that its library
be used in a virtual environment. A virtual environment is a separate partition of python that can have a
specific python version installed, as well as other python libraries. This enables the tools needed to be
contained without disturbing the main version of python installed.

Once installed, the following message will be shown after you execute the code indicating that you are now
using the virtual environment.

create_virtualenv()

See the troubleshoot section if other errors appear. The only time you will need to install a new
environment is if you decide to delete a stressor environment and need to initiate a new one. You do not
need to install a new environment for each R session, it is one and done. These environments are stored
inside the python module on your computer.

2 0f 9 4/16/2024, 12:55 PM

https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html#troubleshoot
https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html#troubleshoot

stressor

https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

To begin using, we need to create all the mim. This may take a moment (< 3 min) the first time you run it,
as the pycaret module needs to be imported. Then depending on your data size it may take a moment (< 5
min for data <10,000) to fit the data. Note that console output will be shown and a progress bar will be
displayed showing the progress of the fitting.

For reproducibility, we have set the seed again and have defined a new data set, and set the seed for the

python side by passing the seed to the function. Here are the commands:

set.seed(43421)

Im_data <- data_gen_1m(1000)

Split the data into a 860/20 split
indices <- split_data_prob(lm_data, .8)

train <- 1lm_data[indices,]

test <- 1m_data[!indices,]

Tune the models

mlm_1lm <- mlm_regressor(Y ~

., 1Im_data, sort v = 'RMSE', seed =

43421)

Now, we can look at the initial training predictive accuracy measures such as RMSE. The mim_1m is a list
object where the first element is a list of all the models that were fitted. For example, if we were to pass
these models back to pycaret, they can be refitted or used again for predictions. The second element is a
data frame for the initial values and the corresponding models. If you want to specify the models that are
fitted, you can change the fit_models parameter — a character vector — specifying the models to be used.
Also we can change how the models are sorted based upon the metrics listed which is given to the sort_v
variable.

mlm_lm$pred_accuracy

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

30f9

Model
1r Linear Regression
ridge Ridge Regression
lar Least Angle Regression
br Bayesian Ridge
huber Huber Regressor
gbr Gradient Boosting Regressor
et Extra Trees Regressor
knn K Neighbors Regressor
lightgbm Light Gradient Boosting Machine
rf Random Forest Regressor
ada AdaBoost Regressor
par Passive Aggressive Regressor
en Elastic Net
dt Decision Tree Regressor
omp Orthogonal Matching Pursuit
lasso Lasso Regression
1lar Lasso Least Angle Regression
dummy Dummy Regressor

MAPE TT (Sec)
1r 1.5432 0.009
ridge 1.5407 0.009

N R R R R R R R R R R OKR OO OO

MAE

.8345
.8344
.8345
.8344
.8356
.0308
.9922
.0231
.0432
.0448
.1535
.2356
.4439
.5140
.8988
.9174
.9174
.0239

MSE

.0955
.0955
.0955
.0955
.0976
.6365
.6474
.6798
.7054
.7751
.1419
.4503
.3031
.6288
.6044
.7881
.7881
.5123

R2

.8261
.8261
.8261
.8261
.8259
.7425
.7406
.7336
.7303
L7221
.6656
.6015
L4877
.4181
.1243
.1022
.1022
.0132

P ©®© ©®© ®© ® ®© ®© ®O© 0O ®O ®O ® ®O ®O O O O O

RMSLE
.3664
.3664
.3664
.3664
.3671
.4293
.4308
.4390
.4331
.4406
.4869
.4654
.6173
.5561
.6988
.9362
.9362
.0254

4/16/2024, 12:55 PM

stressor

4 of 9

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

lar
br
huber
gbr
et
knn
lightgbm
rf
ada
par
en

dt
omp
lasso
1lar

dummy

.5432
.5405
.5460
.8618
.6469
.7811
.0825
.6010
.5053
.2490
.0218
.2846
L1174
.0678
.0678
.0414

© O©®© ©®© ® ®© ®© ®O©O ®O ®O O O O OO O

.008
.009
.010
.115
.133
.009
.037
.251
.069
.009
.009
.011
.009
.009
.008
.007

https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

We pulled out a test validation set and we can currently check the accuracy measures of those predicted
values, such as RMSE.

pred_1m <- predict(mlm_1lm, test)

score(testdy,

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

1r
ridge
lar
br
huber
gbr
et
knn
lightgbm
rf
ada
par
en

dt
omp
lasso
1lar
dummy

N NN PR RPDNPRP PP PR P OO O OO

pred_1m)

rmse

.9811816
.9814217
.9811817
.9814372
.9810649
.1519822
.2112827
.2961473
.1740861
.2685104
.4734451
.2243526
.7919837
.9384331
.2605309
.3843600
.3843599
.5257071

P R R PR R RRPROCOR OO O ®

mae

.7855389
.7857800
.7855389
.7857951
.7866087
.8913621
.9544208
.0304869
.9132695
.9956673
.1557082
.8216665
.4126925
.4986607
.7922139
.8606841
.8606841
.9860032

mse

.9627174
.9631885
.9627175
.9632189
.9624883
.3270630
.4672058
.6799978
.3784782
.6091187
.1710406
.9477444
.2112056
.7575229
.1100000
.6851724
.6851724
.3791965

© ®© ®© ®© ®© ®© ®© ®©O ©O ®©O ®O ®©O ®O ® ®O ® & ©®

r2
.8489721348
.8488982396
.8489721181
.8488934604
.8490080733
.7918148288
.7698296888
.7364476099
.7837489759
.7475668762
.6594144709
.2238145292
.4962368798
.4105324586
.1983604118
.1081293000
.1081293122
.0007468551

rmsle

.1575507
.1576890
.1575508
.1576978
.1576332
.1819330
.2063202
.2127031
.1870156
.2078816
.2363207
.2836395
.2888262
.3019004
.3411484
.3579984
.3579984
.3739615

B R R R R R WR R R R RRRRRBRRBR

mape

.787733
.785325
.787733
.785174
.784634
.779195
.538019
.447863
.385519
.752251
.464789
.536359
.161516
.988530
.932450
.037209
.037209
.065824

In comparison, we can fit this data using the 1m() function and check the initial predictive accuracy with

simple test data.

test_index <- split_data_prob(lm_data, .2)
test <- 1m_data[test_index,]
train <- 1lm_data[!test_index,]

4/16/2024, 12:55 PM

stressor

50f9

https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

Im_test <- 1Im(Y ~ ., train)

Im_pred <- predict(lm_test, newdata = test)

1m_score <- score(test$Y, lm_pred)

Im_score

#> RMSE MAE MSE R2 RMSLE MAPE
#> 0.9716537 0.7793268 0.9441110 0.8095243 0.1563934 1.0339178

As we look at this initial result, we see that there are some comparable models to the RMSE generated
from 1m() (which is 0.97 compared to 0.98 fitted by Huber Regressor). We see that the mim outperforms
the models that were fitted by 1m(). However, it is not clear from this output alone whether the better
performance observed from the Im model is statistically significant. A better practice would be performing a
cross-validation.

In this code we are fitting the mlm_1m and 1m_test to the 1m_data using a 10 fold cross-validation.
First the ML models:

mlm_cv <- cv(mlm_lm, 1m_data, n_folds = 10)
Then the 1m_test:
Im_cv <- cv(1lm_test, 1lm _data, n folds = 10)

Now to compare the corresponding RMSE.

score(1lm_data$y, mlm_cv)
#> RMSE MAE MSE R2 RMSLE MAPE

#> Lr 2.364924 1.870219 5.592865 -0.9244870 0.2981139 2.776382
#> ridge 2.363766 1.869422 5.587389 -0.9226029 0.2979252 2.773871
#> Lar 2.364924 1.870219 5.592865 -0.9244870 0.2981139 2.776382
#> br 2.363785 1.869435 5.587481 -0.9226344 0.2979288 2.773913
#> huber 2.353164 1.861261 5.537381 -0.9053951 0.2965040 2.761076
#> gbr 2.311607 1.828339 5.343527 -0.8386907 0.2905366 2.638235
#> et 2.269689 1.806269 5.151489 -0.7726111 0.2854914 2.508345
#> knn 2.335107 1.855689 5.452724 -0.8762651 0.2938159 2.636042
#> Lightgbm 2.372964 1.869536 5.630957 -0.9375943 0.2985878 2.837477
#> rf 2.281818 1.817093 5.206693 -0.7916066 0.2870201 2.552018
#> ada 2.186354 1.754228 4.780145 -0.6448326 0.2771474 2.193652
#> par 2.576865 2.055230 6.640235 -1.2848838 0.2992653 3.583453
#> en 2.124765 1.711973 4.514628 -0.5534691 0.2731174 1.411179
#> dt 2.716927 2.166145 7.381690 -1.5400162 0.3503943 3.437621
#> omp 2.421582 1.945890 5.864059 -1.0178041 0.3030696 1.884166
#> lasso 2.355189 1.899553 5.546917 -0.9086763 0.3000909 1.058293
#> Llar 2.355189 1.899553 5.546917 -0.9086763 0.3000909 1.058293
#> dummy 2.414994 1.947364 5.832195 -1.0068397 0.3066178 1.023737

score(1lm_data$yY, 1lm_cv)
#> RMSE MAE MSE R2 RMSLE MAPE
#> 1.0640627 0.8360287 1.1322295 0.8052017 0.1406658 1.5685498

We can see that the top five ML models are close in value to the linear model.

4/16/2024, 12:55 PM

stressor

6 of 9

Real Data Example

https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

We want to show how our functions apply to a real data example. We can simulate data, but it is never
quite like observed data. The purpose of this data set is to show the use of the functions in this package —
specifically cross-validation. This is crucial to show how these work in comparison to existing functions.

We will be using the Boston Housing Data from the mlbench package. There are two versions of this data,
the second version includes a corrected medv value, standardizing the median income to USD 1000’s. As
some of the original data was missing. This data version also has had the town, tract, longitude and latitude

added. For this analysis, we are ignoring spatial autocorrelation and therefore will be removing these

variables from the analysis.

This next code chunk opens the cleaned Boston data set attached to this package and fits the initial

machine learning models. It then displays the initial values from the first fit.

data(boston)
mlm_boston <- mlm_regressor(cmedv ~
mlm_boston$pred_accuracy

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

gbr
et
rf

Model

Gradient Boosting Regressor

Extra Trees Regressor

Random Forest Regressor

lightgbm Light Gradient Boosting Machine

ada
dt

1r
ridge
lar
br
huber
en
lasso
1lar
knn
omp
dummy

par

gbr

et

rf
lightgbm
ada

dt

1r

ridge
lar

br

© ®© ®© ® ®O O OO O O ©

Ad

aBoost Regressor

Decision Tree Regressor

L

inear Regression
Ridge Regression

Least Angle Regression

Bayesian Ridge
Huber Regressor
Elastic Net

Lasso Regression

Lasso Least Angle Regression

K Neighbors Regressor

Orthogonal Matching Pursuit

Dummy Regressor

Passive Aggressive Regressor
MAPE TT (Sec)
.1106
.1115
.1148

1197

.1439
.1550
.1706
.1708
L1737
.1730

Q.
.151
.263
.056
.091
.035
.035
.035
.035
.035

© ®© ®© ® ®©O ®©O O O ©

122

., boston)

N OO U1 W wwwwwwwww NN NN NN

MAE

.1218
.1753
.2152
.4390
.7002
.0190
.3687
.3493
.4298
.3931
.3622
.5681
.6315
.6315
.9844
.5777
.4549
.1163

13

27
27
29
29

78

MSE

.7524
11.
11.

2063
2131

.9694
15.
20.
24.
24.
24.
24.
L7117
.9055
.0143
.0141
33.
62.
.6894
83.

1353
6916
0099
0915
4397
7832

5862
2987

3044

0 00 N U1y L1yt v b DM DD DWW W W W

.0077
.1583
.2292
.6343
.7275
.4073
.7956
.7963
.8504
.8727
.0719
.1803
.2788
.2788
.7336
.7159
.7760 -0
.9282 -0

RMSE

®© ®© © ©®© ®© ®© O ®O O O O O OGO O

R2
.8615
.8453
.8441
.8122
.7950
.7180
.6858
.6849
.6785
.6777
.6496
.6461
.6328
.6328
.5557
L2226
.0148
.1049

®© ®© ©®© ®© ®© ® O O 0O 0O 0O O O ®O OO O

RMSLE
.1393
.1414
.1467
.1570
.1755
.2007
.2453
.2513
L2473
.2589
.2931
.2562
.2506
.2506
.2237
.3140
.3798
.4482

4/16/2024, 12:55 PM

stressor

7 of 9

#>
#>
#>
#>
#>
#>
#>
#>

Observe the initial values for the Boston data set. Now compare these to the cross-validated values.

mlm_boston_cv <- cv(mlm_boston, boston, n_folds = 19)

huber
en
lasso
1lar
knn
omp
dummy
par

®© ®© ®© ®O ®O O OO

L1731
L1724
.1735
.1735
.1832
.2728
.3508
.3716

®© ®©O ®© ®© ®© O OO

.051
.035
.034
.036
.033
.032
.032
.034

mlm_boston_score <- score(boston$cmedv, mlm_boston_cv)

mlm_boston_score

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

gbr
et

rf
lightgbm
ada
dt

1r
ridge
lar
br
huber
en
lasso
1lar
knn
omp
dummy
par

0 W 0 V1 U1 L1 LT 1 T A M M ph W W W W N

RMSE
.880214
.09579%0
.091200
.223722
.582974
.485803
.908502
.931873
.909012
.006509
.584459
.328285
.386974
.386960
.836711
.116394
.183814
.937533

A OO U1 A W W W W W W W W NN DNMNMDNDDNDDN

MAE

.096367
.038773
.145828
.129938
.773172
.837352
.451202
.439230
.469367
.486602
.587230
.710624
.754152
.754145
.009170
.873471
.643323
.676229

MSE

8.295632
9.583918
9.555518

10.
12.
20.
24.
24.
24.

25

29

29

65

79

392383
837703
122431
093388
323376
098402

.065131
31.
28.
.019492
.019338
34.
.875855
84.
.879500

186187
390621

067194

342437

© ®© © ®© ®© ®© ®© ®© ®O ®© ®O ® ®O ® O ©®

® ©

R2

.901413505
.886103331
.886440846
.876495421
.847434883
.760862124
.713670689
.710937485
.713611106
.702122364
.629378842
.662601752
.655128160
.655129997
.595140547
.217121821
.002337712
.050700482

© ©®© ©®© ®© ® ® ®© ©O©O 0O ®O ®O ®O O O O ®O O ©

https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

RMSLE
.03826106
.04008861
.04044387
.04176346
.04837222
.05795620
.06492690
.06533195
.06523700
.06636305
.07572677
.06863061
.06925798
.06925790
.07285509
.10323051
.11942902
.12318012

O ®© ®© ®© ®© ®© ®© ®© ®©O ®© ®O ®© ®O ® ®O ® O ©®

MAPE

.1097795
.1035976
.1106439
.1082107
.1497296
.1437426
.1745373
.1745591
.1759787
.1770225
.1812409
.1788665
.1803929
.1803927
.1819197
.2868320
.3630920
.3213036

Clustered cross-validation is subsetting the parameter space into groups that share similar attributes with

one another. Therefore, if we train on those groups the other group should fit similarly across the test

group.
Now, compare to the clustered cross-validation:

mlm_boston_clust_cv <- cv(mlm_boston, boston, n_folds = 10, k_mult

mlm_boston_clust_score

mlm_boston_clust_score

#>
#>
#>
#>

gbr
et
rf

RMSE
3.752646
3.665735
4.154256

<- score(boston$cmedv, mlm_boston_clust_cv)

MAE
2.722356
2.566496
2.798413

MSE
14.08235
13.43761
17.25785

R2

RMSLE

= 5)

MAPE

0.8326433 0.04915424 0.1408009
0.8403055 0.04730942 0.1309730
0.7949053 0.05368193 0.1450138

4/16/2024, 12:55 PM

stressor https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

#> lightgbm 4.023057 2.752783 16.18499 0.8076553 0.05210606 0.1408062
#> ada 4.433633 3.332406 19.65710 0.7663922 0.05852669 0.1778279
#> dt 5.394398 3.608300 29.09953 0.6541770 0.06953791 0.1882557
#> 1r 5.879360 4.278917 34.56687 0.5892023 0.07986385 0.2287874
#> ridge 5.741469 4.099545 32.96447 0.6082455 0.07815901 0.2207254
#> lar 6.092678 4.370884 37.12072 0.5588520 0.08399236 0.2395658
#> br 5.808605 4.075319 33.73989 0.5990303 0.07884975 0.2192994
#> huber 6.444105 4.469043 41.52649 0.5064932 0.08726243 0.2302259
#> en 5.900504 4.247760 34.81595 0.5862423 0.07639839 0.2110481
#> lasso 6.105984 4.411099 37.28304 0.5569229 0.07907545 0.2195190
#> llar 6.106000 4.411162 37.28323 0.5569207 0.07907643 0.2195278
#> knn 8.027975 5.668933 64.44838 0.2340862 0.10082338 0.2561170
#> omp 8.542734 6.256828 72.97830 0.1327154 0.10913893 0.3073734
#> dummy 9.640141 7.050797 92.93233 -0.1044212 0.12579351 0.3862600
#> par 21.356794 14.663207 456.11264 -4.4205085 0.18068971 0.8859428

What we notice about this result is when we ignore spatial autocorrelation and we compare the 10 fold
cross-validation with the clustered cross-validation, we see a general improvement in the values. This
suggests that maybe there is some other underlying factors, i.e. spatial relationships.

The power to be able to explore is a compliment to the purpose of R. With stressor, you are able to fit
multiple machine learning models with a few lines of code and perform 10 fold cross-validation and
clustered cross-validation. With a simple command, you can return the values from the predictions.

Troubleshooting

When initiating the virtual environment, you may receive some errors or warnings. reticulate has done a
nice job with the error handling of initiating the virtual environments. reticulate is a package in R that
handles the connection between R and python.

For MacOS and Linux, please note that the create_virtualenv() function will not work unless you have
cmake. lightgbm requires this compiler and they have detailed instructions of how to install it, see here.

If your system is not recognizing the python path that you have, you will need to add it to your system
variables, or specify initially the python path that create_virtualenv() needs to use. If you are still having
trouble getting the virtual environment to start you can use reticulate’s function
reticulate::use_virtualenv(). It also helps sometimes to unset the RETICULATE_PYTHON variable. Also note
that if the environment has python objects in it the user will have to clear them to restart the reticulate
python version.

If you receive a warning that says

“Warning Message: Previous request to use_python() ... will be ignored. It is superseded by request to
use_python()’

If the second use_python command has the matching virtual environment you can ignore this warning and
continue with your analysis.

If you receive an error stating

ERROR: The requested version of Python ... cannot be used, as another version of Python ... has already
been initialized. Please restart the R session if you need to attach reticulate to a different version of Python.

If this error appears, restart your R session and make sure to clear all python objects. Then run the
create_virtualenv() function again. There should be no problems attaching it after that, as long as your

8 0of 9 4/16/2024, 12:55 PM

https://github.com/microsoft/LightGBM/blob/master/docs/Installation-Guide.rst
https://github.com/microsoft/LightGBM/blob/master/docs/Installation-Guide.rst

stressor https://cran.r-project.org/web/packages/stressor/vignettes/stressor.html

environment does not contain any python objects.

9 0f9 4/16/2024, 12:55 PM

