
Journal of Data Science 22 (2), 208–220 DOI: 10.6339/24-JDS1132
April 2024 Computing in Data Science

A Platform for Large Scale Statistical Modelling in R

Jason Cairns
1,∗

, Simon Urbanek
1
, and Paul Murrell

1

1Department of Statistics, University of Auckland, Auckland, New Zealand

Abstract

With the growing scale of big datasets, fitting novel statistical models on larger-than-memory
datasets becomes correspondingly challenging. This document outlines the development and use
of an API for large scale modelling, with a demonstration given by the proof of concept platform
largescaler, developed specifically for the development of statistical models for big datasets.

Keywords big data; distributed computing; modelling

1 Introduction
The rate of growth of datasets continues to outpace attempts to engage meaningfully with
them, as individual computer memory limits are increasingly exceeded (Kleppmann, 2017). At
the scale of big data, speed also becomes a constraining factor, with concurrency and parallelism
being of increasing importance. The aim of a statistician seeking to gain novel insight from such
datasets commonly includes the interactive use of a complex statistical model, often implemented
from scratch using R. The main repository for packages in R, the Central R Archive Network
(CRAN), hosts a multitude of packages engaged in this area of high-performance computing,
with a dedicated Task View available on CRAN highlighting many of them (Eddelbuettel, 2024).
With review of the existing packages, no single system satisfactorily provides the capacity to meet
the demand imposed in providing an expressive and extensible means of conveying a distributed
statistical algorithm in R, in a manner that is immediately familiar to regular R users. This is
precisely the contribution that largescaler seeks to offer as a platform, with a fuller review of
features in Section 5.

Existing systems that do come close to meeting the demand provide direction regarding
how to gain insight from larger-than-memory datasets. Most importantly, the standard solution
for handling big data is to operate over a distributed system (Boja et al., 2012). Several systems
have seen widespread use within the context of data and machine learning pipelines, such as
Spark (Zaharia et al., 2016) and Hadoop Map-Reduce (Shvachko et al., 2010). For the statistician
mostly familiar with R, these systems provide APIs to R where distributed data may be manipu-
lated and pre-made models fitted. However, these APIs are often found lacking when attempted
to be used for the creation of complex statistical models that don’t come pre-packaged, due to
this not being their primary use-case, and R not being their target language.

For instance, sparklyr is an interface to Spark from within R (Luraschi et al., 2020). The
user connects to spark and accumulates instructions for the manipulation of a Spark DataFrame
object using dplyr commands, then executing the request on the Spark cluster. It works fluidly
when intentions meet the Spark paradigm, but due to it being only an interface to an external

∗Corresponding author. Email: jason.cairns@auckland.ac.nz.

© 2024 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received July 30, 2023; Accepted April 7, 2024

mailto:jason.cairns@auckland.ac.nz
https://creativecommons.org/licenses/by/4.0/

A Platform for Large Scale Statistical Modelling in R 209

system, it is commonly required to program directly to Spark specifications, using Scala, when
more complex and custom analyses are required.

The most notable general interface in R that has capabilities for large data is the the fore-
ach package (Weston, 2020). The backends are provided by other packages, typically named
with some form of “DoX”, and can be drivers to external or R-specific systems. Parallelisation is
enabled by some backends, with doParallel allowing parallel computations (Weston, 2019a), doS-
NOW enabling cluster access through the SNOW package (Weston, 2019b), and doMPI allowing
for direct access to the Message Passing Interface (MPI) library for parallel computing (Weston,
2017). foreach remains an exceptional and general interface, but can only be as performant as
the backend driver packages. The necessity of persisting large data objects and allowing for
complex manipulation of them is not met by any of the reviewed package backends.

The most complete self-contained interface that was developed specifically for statistical
modelling in R is given by the pbdR collection. This collection allows for distributed computing
with R (Schmidt et al., 2020), with the name being the abbreviation of Programming with Big
Data in R. The packages include high-performance communication and computation capabili-
ties, including RPC, ZeroMQ, and MPI interfaces. The collection is extensive, offering several
packages for each of the main categories of application functionality, communication, compu-
tation, development, I/O, and profiling. While incredibly performant and great care has been
taken to provide an interface as close to native R as possible, the provided packages still require
an MPI form of shared program amongst all cluster nodes, which presents an unfamiliar form of
program specification to most R users. In addition, more complex analyses requiring lower-level
data manipulation end up increasingly involved with the complexities of MPI, which was au-
thored as a far more general system than its use-case in pbdR, thereby possessing a far greater
complexity than necessitated. Regardless, the direction provided of distributing large data across
compute nodes, as a means of statistical interaction, is a concept that has been proven well by
this package collection.

In a similar vein is the bigmemory collection. Core to this package is the creation of “mas-
sive matrices” through a “big.matrix” S4 class with a similar interface to ‘matrix’ (Kane et al.,
2013). These matrices may take up gigabytes of memory, typically larger than RAM, and have
simple operations defined that speed up their usage. A variety of extension packages are also
available that provide more functionality for big.matrices. The massive capacity of big.matri-
ces is given through their default memory allocation to shared memory, rather than working
memory as in most R objects. Importantly, bigmemory is single-node only, so can’t benefit
from the scaling capabilities that a distributed system would provide, nor does it face the same
architectural challenges. Of note within the bigmemory collection is biglasso, which extends big-
memory matrices to allow for lasso, ridge and elastic-net model fitting. It can take advantage
of multicore machines, with the ability to be run in parallel. The package biglasso is described
in detail in Zeng and Breheny (2017). Comparability is again limited between biglasso and
largescaler, as biglasso is bound to a single machine. In terms of interface, however, the most
notable difference is the support by largescaler for arbitrary data types with split and combine
methods defined for chunking, while bigmemory packages depend upon the matrix-based data
structure.

Within the motivating context provided, the largescaler project has sought to provide an
API for working with larger-than-memory data in R, allowing the developer to manipulate
distributed data and create arbitrarily complex iterative models with which to fit to the data,
over a self-contained user-specified computing cluster.

210 Cairns, J. et al.

The following sections offer a structured exploration of largescaler. The methodological
details of the largescaler API construction are given in Section 2. Section 3 describes the API
itself. This is followed in Section 4 with example usage of the API to develop a distributed
model. Finally, a discussion and summary of features is given in Section 5.

2 Construction of a Large-Data Statistical System API for R
The construction of such largescaler has roots in a theoretical reconsideration of precisely what
determines the necessary components of a system capable of complex statistical modelling with
larger-than-memory data in a distributed fashion. The structure of such considerations have
been defined principally by the response to linguistic challenges facing such an API.

In order to perform calculations on larger-than-memory data, we need some means of rep-
resenting the data, in order for it to be tangible and useful. All objects, regular or irregular,
are facilitated in their access and manipulation by way of an object system, which is an or-
ganised manner of interaction with objects. The central constraint is that the data is larger than
computer memory. Data must therefore be split into pieces in order to fit into memory. Such
a structure, common among big data systems, is known as a shard, or a chunk. The chunk
thus serves as the lowest level object manipulable by the user, and defines the lower level of
the layered object system. The end-user is typically not interested in the chunks making up
the object. Therefore higher-level objects are introduced as compositions of chunks, serving as
abstract collections. Such higher-level objects are termed distributed objects, and serve as
the primary data structure interacted with by the high-level user, with a representative example
depicted in Figure 1.

With the establishment of an object system, attention may then be turned to the actualities
of computation. For each chunk, each operation must possess the following properties:
• Operations on chunks must have some means of access to all of the relevant chunk arguments

to operate on together;
• The result of the operation must be stored somewhere.

A chunk function applicator is required that takes a function and some chunks, sending
the operation to a node which applies the function to the specified chunks. The applicator
requires some means of access to the respective chunks. An equivalent distributed object
function applicator is to be defined in a similar manner, though for distributed objects.
Likewise, following the conclusion of the operation, some means of access to the result is required
- the result is to be kept as a distributed object itself, allowing for further iterative action on it.

Some of the concerns relevent to the applicators include questions of argument sourcing
and interaction. With regards to sourcing, the optimal node should be chosen to perform the
operation in order to minimise data movement. All chunks not present in the operating node
process are needed to be made available in order for the operation to take place. Interaction
between chunks, especially in the context of the distributed object function applicator, requires
some definition of how these distributed arguments are to be treated in multiple. For instance,
whether to recycle chunks, and how they are to be appropriately combined.

After laying out the distributed objects and the operations that they may be engaged in,
we reach the limits of the construction of the system. The mechanical aspects of the system
developed, focus is turned to the more complex and precise notions of the arrangement of these
components; let us expand the construction limits now by exploring and describing the compo-
nent of time as it relates to the system - specifically, concurrency within the system. Here,

A Platform for Large Scale Statistical Modelling in R 211

Distributed Object Reference

process 1

process 2

process 3

Chunk Reference 1

Chunk Reference 2

Chunk Reference 3

Chunk Reference 4

chunk 1

chunk 2

chunk 3

chunk 4

Figure 1: Distributed object, showing chunks and their references across disparate nodes.

we treat concurrency in the manner of Pike (2012), where it is used to refer to the composition
of independently executing processes. Considering the system as a whole, and determining the
independently executing processes within it and how they may be composed, it is clear that a
distributed system has significant room for concurrency, which serves to aid speed and memory
usage. Assuming distinct nodes for performing operations on chunks, a remarkable thing would
occur on the requesting client: nothing happens. The processing occurs in an entirely separate
memory space, with a different processor. Were the client performing operations on regular, non-
chunk objects, the processing would bind up the client, and it would block until the operation
completed. This recognition opens up a broad mix of possibilities and complications. In terms
of possibilities, the potential for chunk operations to be non-blocking to the client means that
operations may be asynchronous, which would allow for significantly more efficient ordering of
events within the system. Long operations on chunks may take place side-by-side with client-side
operations on local objects, neither interfering with each other. The converse of such a possibility
is the new potential for race conditions, where the unordered timing of events may lead to
undesirable behaviour.

Through the defining feature of distributed data being incapable of direct reference, we
have established that there must be some entity through which to indirectly interact with the
distributed data. This entity we have given the appellation of ‘Distributed Object Refer-
ence’, and serves as a proxy which is manipulated by the user. This relationship between the
reference and the distributed data is known as “adequacy” in formal semantics, with the role
of the distributed data as the object of indirect interaction being called the “referent” (Gor-
don, 1984). It must be established that the reference itself may be of conceptual interest. The
referent chunks themselves, if completely transparent to a reference, possess no information on

212 Cairns, J. et al.

their relation to each other. This information needs to be captured somewhere accessible to the
user, with most distributed algorithms being dependent on the knowledge of how the underlying
chunks relate, in dimension or quantity. Generalising the terminology of Quine (1979), the dis-
tinction between the use and mention with respect to distributed objects lies in the contrasting
operations that may be intended of a distributed object reference: interaction may be intended
for either the referent distributed object (use), or the reference itself (mention). Such semantics
of access to the reference and referent serve as the basis for much of metaprogramming, and
may be considered a valuable component of a distributed statistical system.

3 User Interface
The largescaler platform serves as a functioning proof of concept system, capable of performing
complex statistical analyses. The implementation of this system makes use of a layered approach,
wherein each layer targets a different category of user. The interface of largescaler is the principal
new contribution by this project, delivering a novel means of interacting with distributed data
through meaningful primitives defined at every level of abstraction. A key offering of the layered
approach is the ease by which a user of the package can traverse the levels as needed, with
irrelevant information remaining hidden until required. The levels of abstraction correspond to
users of the packages, given as the following:
Analyst A user solely interested in using the provided models and statistical functions in order

to attain insight into some larger-than-memory data, typically a distributed data frame. All
details of distribution are abstracted away.

Researcher A user seeking to develop their own distributed statistical models. Distributed
objects are to be considered as singular cohesive objects.

Developer A user seeking greater expressivity in the definition of statistical models. Chunks
are considered a relevant concern to be manipulated directly.

Architect A user intending to directly modify the network topology of the distributed system,
mainly in order to attain major efficiency gains.
Each of the users are served by the packages composing the largescaler framework, in turn

serving a logical layer of abstraction. This mapping is given in Table 1.
Owing to considerations of space, this description of the user interface will focus solely on

the key offerings of the largescaler API, with descriptions of other components and packages
having a fuller treatment in Cairns (2024). Use of the API is given by way of example below.

Consider first a simple operation of summation. We have as our object of summation some
vector x that is broken up into i non-overlapping chunks, where each chunk xi is itself a vector
consisting of a subset of the elements of x. Each chunk may itself be indexed over its elements
by j , with the jth element of chunk xi denoted as xij . Summation can be defined for a chunked
vector xi by Equation 1, using associativity to render the sum of the whole as the sum of the
sum of the parts. ∑

x =
∑

i

xi =
∑

i

∑
j

xij . (1)

In an effort to maintain as close proximity as possible between the mathematical description
and the provided interface, this may be written in largescaler as in the following R code:

d(sum)(x) |> emerge() |> sum()
Here, the d() applicator function transforms the base sum() function to work over dis-

tributed objects, in this example given by x. The sum() function is therefore sent to each chunk,

A Platform for Large Scale Statistical Modelling in R 213

Table 1: A mapping of logical layers, users and the respective packages provided by the largescaler
framework.

Layer User Package

Model Usage Analyst largescalemodels
Model Description Researcher largescaleobjects
Cluster Interaction Developer chunknet
Communication Architect orcv

yielding a new distributed object as the output. This output distributed object can be brought
back to the requesting client and combined using the provided emerge() function, yielding a
regular R numeric vector of sums. This vector of sums may then be summed as normal, provid-
ing the final result. The given example is actually a very simple application of map-reduce, and
could effectively serve as the sum() method for distributed objects

Consider something slightly more complex: the arithmetic mean. Again, a chunked mathe-
matical description is given in Equation 2, where dim(x) is the dimension of the vector argument
x, and dim(xi) then being the dimension of the specific chunk xi

x =
∑

i xi

dim(x)
=

∑
ij xij∑

i dim(xi)
. (2)

A related means of specification through largescaler is possible, given in the following code:
sum(x) / sum(d(length)(x))
Here we build on the distributed sum introduced above, but the total length of the dis-

tributed object is relevent as the denominator. Assuming a sum() method for distributed objects
as described, and the math group generic defined in a similar fashion, the denominator is defined
using the same d() function that sends a length computation to all of the chunks.

Finally, consider the cumulative sum. It is important in this case to think of chunks as
being in series, which is determined by the structure of the distributed object reference. The
main difference between a non-distributed and a distributed version of cumulative sum is that
for each chunk in the series, computation requires the cumulative sum of the previous chunk as
a starting value. Here, we have the cumulative sum S indexed by i, with the next component
in the series x. When generalised to a chunked cumulative sum, there is the additional index of
the jth chunk, where the total count of observations in the jth chunk is nj . Using a chunked
mathematical description, cumulative sum may be described by Equation 3.

Si = Si−1 + xi, S0 = 0

⇐⇒ Si,j = Si−1,j + xi,j , S0,j = Snj−1,j−1, S0,0 = 0.
(3)

This can be expressed in a functional manner using the reduce operator, also known as a
fold, and the largescaler framework provides a distributed form of such a function, where the
results of one chunk are sent as the initial value to the reduce function as applied to the next
chunk and so on in series. An example of a reduce operation is given in Figure 2.

This is put to use for cumulative sum by largescaler by the following code:
dReduce(cumsum, x) |> emerge()

A distributed object is returned that by default just holds the final accumulation, consisting
of one single chunk.

214 Cairns, J. et al.

Queue 1 Queue 2 Queue 3

master process

Process 1

Process 2

Process 3

Figure 2: Example distributed reduce pattern from controlling process.

4 A Distributed Model in Largescaler
We now move to the central problem that prompted this work; defining a novel distributed sta-
tistical algorithm. Rather than detour with a truly novel algorithm, it is prefereable to engage
with something that is familiar, but holds a fairly generic form that novel analyses often share.
Let’s consider distributed LASSO regression, using the Alternating Direction Method of Multi-
pliers (ADMM), as described by Mateos et al. (2010). We begin by assessing the mathematical
form in Subsection 4.1, followed by the “standard R” means of writing a chunked algorithm in
contraposition with the largescaler manner in Subsection 4.2.

4.1 Distributed LASSO Mathematical Definition
This section seeks to give a brief taste of what a mathematical formulation for a distributed sta-
tistical model takes, in order to demonstrate the semantic and syntactic similarity to largescaler
in Subsection 4.2. The reference for the ADMM LASSO algorithm described in this text is from
Boyd et al. (2011), along with a richer description and significant background.

We begin with a description of the input data, as given in Equation 4.

A =
⎡
⎢⎣

A1
...

AN

⎤
⎥⎦ , b =

⎡
⎢⎣

b1
...

bN

⎤
⎥⎦

Ai ∈ R
mi×n, bi ∈ R

mi

(4)

The starting data includes a column block matrix of explanatory variables, A, consisting
of N submatrices. This is equivalent to a distributed object consisting of N chunks. Here, each

A Platform for Large Scale Statistical Modelling in R 215

chunk is of the standard form where rows are individual observations and columns are variables.
We also have a block matrix b of the same number of chunks, with each chunk being the column
vector of response variables to the corresponding A chunks.

The standard form of the LASSO as an optimisation problem is expressed in Equation 5.

minimise f (x) + g(z) subject to x = zwhere f (x) = 1

2
‖Ax − b‖2

2

g(z) = λ |z|1
(5)

The body of the ADMM loop is given by Equation 7. Of note is the complexity, the presence
of iteration, and the interactions between sets of chunks getting reduced and emerged. Here, we
have that ρ > 0 is a penalty parameter and S is a soft thresholding operator, with one formulation
given by Boyd et al. (2011) as Equation 6.

Sκ(a) =
⎧⎨
⎩

a − κ a > κ

0 |a| � κ

a + κ a < −κ

. (6)

xk+1
i := (AT

i Ai + ρI)−1(AT b + ρ(zk − uk
i)),

zk+1 := S λ
ρN

(xk+1 + uk),

uk+1
i := uk

i + xk+1
i − zk+1.

(7)

4.2 Distributed LASSO R Description

This subsection gives both base R syntax for working with a local chunked dataset, as well as
the minimal changes that are required when using largescaler to transform the expressions to
handle distributed data. The core substance of this subsection is to demonstrate the ease with
which R is able to meet a mathematical definition, and the successive ease by which largescaler
is able to turn that into a truly distributed algorithm. As in Subsection 4.1, the working example
is given of distributed LASSO. Consider first some chunked data, given as a diff below. In the
diff, semantic differences are demarcated through underlining, with shared code given centrally,
with no dividing line. On the left of the diff we have how the LASSO as described might be
encoded in the absence of the API, assuming that the data fit into memory, and on the right,
we make use of largescaler with no such constraining assumption.

In the largescaler code, distributed data may come from multiple files and multiple hosts
holding the chunks, and this is easily provided for. The distribution comes with the necessity
to carefully differentiate between the reference of the distributed object, and the distributed
object itself, hence the use of the Ref() function as provided by largescaleobjects. The ability
to explicitly distribute local values to particular locations is also demonstrated here. In this
illustration of the LASSO with largescaler, it is assumed that the input matrix chunk files have
been precomputed and written to disk, which largescaler provides the facility for. Furthermore, it
is assumed that rho and lambda are scalar numerics. Initialised values for these parameters and
the function definition for the soft thresholding operator S are passed over in this illustration
because they serve to distract from the core demonstration. They are the same in both the
distributed and non-distributed versions, and are available in the source code provided in the
Supplementary Materials.

216 Cairns, J. et al.

R largescaler

A <- read.csv("~/filepath/A")

b <- read.csv("~/filepath/b")

M_N <- dim(A)

A <- read.dmatrix(c("host1:~/filepath/A1",
"host2:~/filepath/A2"))

b <- read.dmatrix(c("host1:~/filepath/b1",
"host2:~/filepath/b2"))

M_N <- dim(Ref(A))

m <- ncol(A)
S_z <- S(lambda/(rho*M_N\2\))
z_curr <- rep(1, m)

x_curr <- u_curr <- rep(list(z_curr),
N)

x_curr <- u_curr <- distribute(z_curr,
where=A)

The layout of the data is followed by the iterative loop, given in the below diff. Within the
iterative loop, we can see that very little is actually needed to be changed in order to distribute
this algorithm. We make use of a function that operates on distributed objects which we define
ourselves in the successive diff, as well as the emerge to bring the distributed local as we saw
before.

R largescaler

while (l1_norm(z_curr - z_prev) >tolerance) {
x_prev <- x_curr; z_prev <- z_curr; u_prev <- u_curr

x_curr <- mapply(x.update, x_prev,
A, b, u_prev,

MoreArgs = list(rho, z_prev))
z_curr <- S_z(rowMeans(x_curr) +

rowMeans(u_curr))
u_curr <- mapply(function(u_prev,

x_curr, z_curr)
u_prev + x_curr - z_curr,

u_prev, x_curr,
MoreArgs = list(z_curr))

x_curr <- d.x_update(x_prev, A, b,
u_prev, rho, z_prev)

z_curr <- S_z(rowMeans(emerge(x_curr)) +
rowMeans(emerge(u_curr)))

u_curr <- u_prev + x_curr - z_curr

}
z_curr

Note the significantly simplified and reduced logic in switching to largescaler, which bears
a far closer resemblance to the mathematical description. The x_update() function given above
is exemplary of the approach provided by largescaler, which allows for the switching of a local
to a distributed function through the higher-order d() function, as demonstrated below:

A Platform for Large Scale Statistical Modelling in R 217

R largescaler

x_update <- function(x_prev, A, b, d.x_update <- d(function(x_prev, A, b,

u_prev, rho, z_prev) {
optim(x_prev, function(x_prev)

(1/2)*l2_norm(A %*% x_prev - b)^2 +
(rho/2)*l2_norm(x_prev - z_prev + u_prev)^2)$par

} })

And this serves to define a distributed LASSO, using ADMM.
Now, in practical use, we have the following example wrapping the given distributed LASSO

description, reproducibly run from the supplementary code files through installing the provided
packages and running make test-lasso from within the largescalemodels directory. Distributed
objects dA and db are distributed matrices provided by the package for testing purposes. The
dataset dA is a simulated matrix possessing dimensions of 20 × 5e7, and the returned result is a
vector of estimated coefficients for the LASSO.

> library(largescalemodels)

> print(dA)
server bound to address 192.168.22.224 at port 36125
Distributed Object
Consisting of 6 chunks

> print(db)
Distributed Object
Consisting of 6 chunks

> dpielasso <- dlasso(dA, db, tolerance=1, rho=3, lambda=3)
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 8
Iteration: 9
Iteration: 10

> dpielasso
[1] 24.94446984 0.19473798 1.26184713 0.26234990 0.32975632 0.09505969

218 Cairns, J. et al.

[7] 0.28556012 0.14810753 82.34335087 0.17584890 0.15710146 0.27761540
[13] 0.26950565 8.38837401 2.14788401 0.17330150 0.61847250 0.23920172
[19] 0.08070681 0.07492101

5 Discussion/Conclusions
Data manipulation is a basic necessity, as it is required for modelling, and is provided well by
other systems. The largescaler platform is capable of a full set of data manipulations, including
all that are provided by the dplyr package. Model fitting is demonstrated in the proof-of-concept
largescalemodels package, which includes a variety of models, including linear models and gen-
eralised linear models.

A roll-call description of features which largescaler offers in unique combination follows:
Distributed Computation The largescaler platform holds the capability for distributed com-

putation as a core component of the provided API. This is given by the do-ccall and
do-dcall functions at the chunk and distributed object levels respectively.

Evaluation of User-Specified Code User-specified code is similarly run via the given do-
ccall and do-dcall functions.

Native Support for Iteration The combination of the user-specified code functions with the
built-in garbage collection allows for arbitrary looping without memory issues.

Object Persistence at Nodes The chunk and distributed object concepts in largescaler de-
pend on exactly this property.

Support for Distributed File Systems Local filesystems over separate hosts are supported.
Reading from HDFS or the like is not currently a core component of the API, but could easily
be extended to allow for it.

Ease of Setup Initialisation functions are included with the framework; all that is required is
that the largescaler packages are installed on all the hosts, as well as a reliable ssh connection
to them.

Inter-Node Communication The movement from the message-queue-based approach to the
final direct approach facilitated this.

Interactive Usage Interactivity has been a capability from the beginning.
Backend Decoupling As a new framework, there is only one backend available, which is pro-

vided by orcv. The layered approach allows for any other backend that provides the orcv
interface to be swapped in.

Evaluation of Arbitrary Classes This is a core feature that drives the means of combination
of emerged distributed objects.

Package-specific API Unique API, following the principle of least surprise, with naming and
semantics similar to base R.

Methods for Standard Generics Some provided; e.g. summary, ops, etc.
Methods for dplyr Generics Provided by the largescaleobjects package, including true group-

by.
Current limitations are given largely by the fact that the software itself is a Proof of Concept,

used to demonstrate the possibility of combining the described features to provide a unique
and expressive API for distributed statistical model definition in R. One such limitation is the
necessitation of a unix machine to run it. This is due to the direct use of the pthreads library
for low-level concurrency primitives, requiring a special port to Windows, which is out of scope
for such a platform. Furthermore, there is the possibility that this impediment to access for

A Platform for Large Scale Statistical Modelling in R 219

Windows users has also reduced the uptake of largescaler, thereby constraining the user base
and preventing what may have otherwise been more open source contributions to fix bugs, add
features, and allow for a more robust platform.

In spite of this the potential for future work remains significant, enabled by the high level of
extensibility provided by the system. External systems which serve to monitor performance or
take up the role of garbage collection would grant the possibility of greater reliability. Robustness
could be gained through self-healing datasets, a potential that has a precedent in a current
prototype, which allows for resiliance to node failure in a more efficient manner than that of the
current Resilient Distributed Datasets (Zaharia et al., 2012). Further resiliance can be gained
within the system through operating the location service as a distributed hash table, leaving no
central point of failure in a fully peer-to-peer system.

Supplementary Material
The supplementary material includes a zipped directory of the source packages composing
largescaler. The packages can also be accessed on GitHub through the following hyperlinks:
• orcv
• chunknet
• largescaleobjects
• largescalemodels

References
Boja C, Pocovnicu A, Batagan L (2012). Distributed parallel architecture for big data. Infor-

matică Economică, 16(2): 116. MR2965745
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J, et al. (2011). Distributed optimization and sta-

tistical learning via the alternating direction method of multipliers. Foundations and Trends®
in Machine Learning, 3(1): 1–122. https://doi.org/10.1561/2200000016

Cairns J (2024). A Platform for Large-Scale Statistical Modelling in R, Ph.D. thesis, University
of Auckland.

Eddelbuettel D (2024). CRAN task view: High-performance and parallel computing with r.
Gordon MJC (1984). The Denotational Description of Programming Languages. 1st edition.

Springer, New York, NY.
Kane MJ, Emerson J, Weston S (2013). Scalable strategies for computing with massive data.

Journal of Statistical Software, 55(14): 1–19. https://doi.org/10.18637/jss.v055.i14
Kleppmann M (2017). Designing Data-Intensive Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems. O’Reilly Media, Inc.
Luraschi J, Kuo K, Ushey K, Allaire J (2020). Sparklyr: R interface to Apache Spark. R package

version 1.1.0.
Mateos G, Bazerque JA, Giannakis GB (2010). Distributed sparse lin-

ear regression. IEEE Transactions on Signal Processing, 58(10): 5262–5276.
https://doi.org/10.1109/TSP.2010.2055862 MR2722673

Pike R (2012). Concurrency is not parallelism. Heroku.
Quine WV (1979). Mathematical Logic. Harvard University Press, London, England. MR0695499
Schmidt D, Chen WC, de la Chapelle SL, Ostrouchov G, Patel P (2020). pbdBASE: pbdR base

wrappers for distributed matrices. R package version 0.5-3.

https://github.com/jcai849/orcv
https://github.com/jcai849/chunknet
https://github.com/jcai849/largescaleobjects
https://github.com/jcai849/largescalemodels
https://www.ams.org/mathscinet-getitem?mr=2965745
https://doi.org/10.1561/2200000016
https://doi.org/10.18637/jss.v055.i14
https://doi.org/10.1109/TSP.2010.2055862
https://www.ams.org/mathscinet-getitem?mr=2722673
https://www.ams.org/mathscinet-getitem?mr=0695499

220 Cairns, J. et al.

Shvachko K, Kuang H, Radia S, Chansler R (2010). The Hadoop distributed file system. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 1–10. IEEE.

Weston S (2017). doMPI: Foreach parallel adaptor for the Rmpi package. R package version
0.2.2.

Weston S (2019a). doParallel: Foreach parallel adaptor for the ‘Parallel’ package. R package
version 1.0.15.

Weston S (2019b). doSNOW: Foreach parallel adaptor for the ‘SNOW’ package. R package
version 1.0.18.

Weston S (2020). Foreach: Provides Foreach Looping Construct. R package version 1.4.8.
Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, et al. (2012). Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing. In: 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12), 15–28.

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al. (2016). Apache Spark:
A unified engine for big data processing. Communications of the ACM, 59(11): 56–65.
https://doi.org/10.1145/2934664

Zeng Y, Breheny P (2017). The biglasso package: A memory-and computation-efficient solver
for lasso model fitting with big data in R. arXiv preprint: https://arxiv.org/abs/1701.05936.

https://doi.org/10.1145/2934664
https://arxiv.org/abs/1701.05936

	Introduction
	Construction of a Large-Data Statistical System API for R
	User Interface
	A Distributed Model in Largescaler
	Distributed LASSO Mathematical Definition
	Distributed LASSO R Description

	Discussion/Conclusions

