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Abstract

Predictive modeling often ignores interaction effects among predictors in high-dimensional data
because of analytical and computational challenges. Research in interaction selection has been
galvanized along with methodological and computational advances. In this study, we aim to
investigate the performance of two types of predictive algorithms that can perform interaction
selection. Specifically, we compare the predictive performance and interaction selection accuracy
of both penalty-based and tree-based predictive algorithms. Penalty-based algorithms included
in our comparative study are the regularization path algorithm under the marginality principle
(RAMP), the least absolute shrinkage selector operator (LASSO), the smoothed clipped absolute
deviance (SCAD), and the minimax concave penalty (MCP). The tree-based algorithms consid-
ered are random forest (RF) and iterative random forest (iRF). We evaluate the effectiveness of
these algorithms under various regression and classification models with varying structures and
dimensions. We assess predictive performance using the mean squared error for regression and
accuracy, sensitivity, specificity, balanced accuracy, and F1 score for classification. We use in-
teraction coverage to judge the algorithm’s efficacy for interaction selection. Our findings reveal
that the effectiveness of the selected algorithms varies depending on the number of predictors
(data dimension) and the structure of the data-generating model, i.e., linear or nonlinear, hier-
archical or non-hierarchical. There were at least one or more scenarios that favored each of the
algorithms included in this study. However, from the general pattern, we are able to recommend
one or more specific algorithm(s) for some specific scenarios. Our analysis helps clarify each algo-
rithm’s strengths and limitations, offering guidance to researchers and data analysts in choosing
an appropriate algorithm for their predictive modeling task based on their data structure.
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1 Introduction
Modern data collection technology has made it possible for researchers in many different scien-
tific domains to access high-dimensional and ultra-high-dimensional data at relatively low costs.
Sparsity is common in high-dimensional data, especially in genomics, proteomics, biomedical
imaging, tumor classification, image analysis, signal processing, and finance (Evans, 2006; Mano-
lio and Collins, 2007; Kooperberg and Leblanc, 2008; Cordell et al., 2009). Variable selection
plays a critical role in high-dimensional data modeling. Variable selection can increase estima-
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tion accuracy and model interpretability with sparsity by successfully identifying the subset of
significant predictors. Over the last decades, numerous statistical and machine learning-based
methods have been proposed for high-dimensional data, especially when the number of predic-
tors (p) surpasses the number of observations (N) (Fan and Li, 2006; Donoho, 2000; Fan and
Lv, 2010).

Conventional methods such as stepwise selection, forward and backward selection, and sub-
set selection combined with AIC and BIC were devised to address variable selection tasks suc-
cessfully. However, these methods face computational challenges as the number of predictors
(p) grows. For example, subset selection becomes exceptionally demanding when p exceeds 20
due to the potential creation of 2p subset models. Additionally, forward and backward selection
criteria encounter difficulties in backtracking variable addition or removal orders. Researchers
have proposed different families of variable selection methods in the high-dimensional setting,
some of which are penalty-driven algorithms. This type of penalty-driven method simultaneously
achieves variable selection and parameter estimation in various types of regression models. For
instance, the least absolute shrinkage selector operator (LASSO) performs variable selection via
L1-norm penalization on the regression coefficients (Tibshirani, 1996). LASSO is inclined to set
some coefficients to zero while promoting sparsity, which can lead to the exclusion of relevant
variables, potentially overlooking important features. In situations involving correlated predic-
tors or when the number of predictors surpasses the number of observations, LASSO may exhibit
instability in variable selection. Other penalty-driven variable selection algorithms are Smoothed
Clipped Absolute Deviance (SCAD) (Fan and Li, 2001) and Minimax Concave Penalty (MCP)
(Zhang, 2010). Both algorithms incorporate a nonconvex penalty function to alleviate excessive
penalization of large coefficient values in regression. The penalty-driven methods depend on
selecting appropriate tuning parameter values, which can be non-trivial.

While the aforementioned variable selection methods have been successfully applied in re-
gression modeling, they primarily focus on selecting main effects. When we consider two-way
interactions between main effects, the dimension of predictors significantly increases from p

to p + p(p − 1)/1. Conventional variable selection methods may not be well-suited for this
expanded dimensionality. However, penalty-driven variable selection methods may be more suit-
able for addressing interaction selection in high-dimensional data, e.g., additive LASSO (Hastie
and Tibshirani, 1990). Bien et al. (2013) introduced LASSO with hierarchical interaction selec-
tion. Zhao et al. (2009) proposed a composite absolute penalty function and showed that it can
perform two-way interaction selection. Yuan et al. (2009) proposed a structured two-way inter-
action selection and estimation procedure for parametric models. Choi et al. (2010) introduced
the parametric interaction selection method under the heredity assumption. Hao et al. (2018)
pointed out that these approaches perform well and exhibit oracle properties when the number
of predictors is relatively small, typically a few hundred or less. However, when p is much greater
than the sample size, these techniques become impractical due to the computational challenges
associated with handling the entire O(p2) × N design matrix and solving intricate constrained
optimization problems. More recently, interaction screening methods have been proposed to
deal with interaction selection in high dimensional data (Hao and Zhang (2014, 2017); Kong
et al. (2017)). While these methods are computationally efficient, their selection performance is
slightly subpar due to forward selection and the marginal relationship between predictors and
response. Subsequently, Hao et al. (2018) proposed the Regularization path Algorithm under the
Marginality Principle (RAMP), designed to select main effects and interactions simultaneously
under certain statistical principles defined in Section 2. The RAMP algorithm considers two-
way hierarchical multiplicative interactions within penalized linear or logistic regression, which
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means that the method has some limitations for higher-order, nonlinear interactions.
Alternatively, tree-based algorithms have the potential to detect and select higher-order

non-multiplicative interactions in high-dimensional data while sacrificing the selection process’s
interpretability. This tree-based approach enables the use of several ensemble methods for inter-
action selection and model construction, such as bagging (Breiman, 1996) and random subspace
sampling (Tin Kam Ho, 1998; Breiman, 2001). As outlined by (Kotsiantis and Kanellopoulos,
2012), these ensemble techniques effectively achieve robust modeling in environments with high
noise levels. The bagging technique involves training a multitude of models on different segments
of the dataset, which significantly reduces variance and boosts the robustness of the overall en-
semble. Additionally, random forest (RF) (Breiman, 2001; Liaw and Wiener, 2002), integrating
random subspace sampling with bagging, enhances the ensemble’s performance. This integration
promotes model de-correlation, thereby elevating the ensemble’s ability to generalize effectively
in the presence of noise and outliers. However, these tree-based ensemble methods were not
originally designed to capture interaction selection in ultrahigh dimensional data. The random
intersection trees (RIT), proposed by Shah and Meinshausen (2014), is an algorithm built on the
modification of RF that aids the search for stable, high-order non-multiplicative interactions.
The iterative random forest (iRF), developed by Basu et al. (2018), is an extension of the RIT
that can capture non-hierarchical, higher-order interactions.

This study aims to compare the predictive performance of two approaches for interaction
selection: penalty-driven algorithms, which mainly capture two-way multiplicative interactions
in regression, and tree-based ensemble algorithms, which excel at selecting higher-order non-
multiplicative interactions. While both penalized regression and tree-based ensemble methods
are popular supervised learning techniques, there is a research gap comparing their predictive
performance in high and ultra-high-dimensional data, especially in the presence of interactions.
We perform comparative simulation studies and empirical data analyses to address this gap.

The rest of the paper is organized as follows. Section 2 describes the variable selection
algorithms considered in our comparative analyses. Section 3 summarizes the settings and results
of extensive simulation experiments comparing the predictive and variable selection performance
of penalized regression methods and ensemble tree-based methods. Section 4 compares the two
sets of methods on a real high-dimensional data set. We conclude the paper with a discussion
of the main results in Section 5.

2 Methods
This section describes selected predictive modeling algorithms that perform interaction selection:
LASSO, SCAD, MCP, RAMP, and iRF. Let p denote the number of predictors, and let N denote
the sample size of the training data. A linear regression model with p main effects and their
two-way multiplicative interactions is defined as follows:

Y = β0 +
p∑

j=1

βjXj +
p−1∑
k=1

p∑
�=k+1

βk,�XkX� + ε, (1)

where ε is the independently and identically distributed error term with E(ε) = 0 and E(ε2) =
σ 2. In matrix notation, we can rewrite (1) as follows:

y = β01N + Zβ + ε, (2)
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where y = (Y1, Y2, . . . , YN)T represents the response vector, and ε = (ε1, ε2, . . . , εN)T denotes the
corresponding error vector. The augmented coefficient vector is denoted as β = (βT

1 , βT
2 )T where

β1 = (β1, β2, . . . , βp)T represents the main effects coefficients vector, and β2 = (β1,2, . . . , βp−1,p)T =
(βp+1, . . . , βq)

T corresponds to the vector of interaction coefficients with q = p + p(p − 1)/2.
Each Xi is standardized. The augmented design matrix is given by Z = (Z1 Z2) where Z1 and Z2

represent specific components of the matrix.

Z1 =

⎛
⎜⎜⎜⎜⎝

X11 X12 . . . X1p

X21 X22 . . . X2p

...
...

. . .
...

XN1 XN2 . . . XNp

⎞
⎟⎟⎟⎟⎠ and Z2 =

⎛
⎜⎜⎜⎜⎝

X11X12 . . . X1(p−1)X1p

X21X22 . . . X2(p−1)X2p

...
. . .

...

XN1XN2 . . . XN(p−1)XNp

⎞
⎟⎟⎟⎟⎠ .

In statistical modeling, interaction terms involve two fundamental principles for interaction
selection: the hierarchical principle and the marginality principle.
1. The hierarchical principle states that when interaction effects are selected, we also include

the main effects irrespective of their significance (McCullagh, 2002; Yuan et al., 2009; Zhao
et al., 2009; Choi et al., 2010).

2. Conversely, the marginality principle states that when main effects are selected, we consider
the inclusion of interaction effects among the selected main effects (Nelder, 1977; Chipman
et al., 1997; McCullagh, 2002; Zhao et al., 2009; Choi et al., 2010).
• Strong heredity rule: If both predictors Xk and X� are selected, then we include the two-

way multiplicative interaction of them.
• Weak heredity rule: If either Xk or X� is selected, then we include the two-way multi-

plicative interaction of them.

2.1 Least Absolute Shrinkage Selection Operator

The least absolute shrinkage selector operator (LASSO) is a penalized regression for variable
selection proposed by Tibshirani (1996). LASSO solves the following minimization problem:

arg min
β0,β

N∑
i=1

(Yi − β0 − (Zβ)i

)2 + λ

q∑
j=1

|βj |, (3)

where (Zβ)i is the i-th row of Zβ. In (3), we aim to estimate β instead of β1, which are the same
for the SCAD and MCP objective functions in (4) and (5). These three penalized regression
methods do not follow the statistical principles regarding interaction selection described above.
Under the LASSO penalty, the regression coefficients of unimportant predictors are shrunk
towards zero, with some forced to be exactly zero via a sufficiently large λ. When λ = 0, optimum
β̂ is equal to the ordinary least squares (OLS) solution. One of the significant limitations of this
augmented design LASSO is that it considers interaction terms while ignoring the main effects
and vice versa. Further, LASSO can select only a maximum of N variables when p > N .
Moreover, in the presence of strongly correlated variables, LASSO may choose only one of these
variables at random and ignore the others. LASSO excels in high-dimensional settings by creating
sparse models and reducing coefficients to zero for effective feature selection. However, it often
falls short in identifying interaction terms, particularly when main effects are weak, due to its
propensity to select only one variable from groups of correlated predictors.
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2.2 Smoothly Clipped Absolute Deviance
The Smoothly Clipped Absolute Deviation (SCAD) penalty, proposed by Fan and Li (2001), is a
nonconvex regularization technique used in regression models to prevent overfitting by penalizing
large coefficients. Unlike L1 regularization, which imposes a fixed penalty regardless of the β

size, SCAD has a unique property that can be advantageous in scenarios where overly penalizing
large β is a concern. The key feature of SCAD that makes it useful for not overly penalizing
large β ′s is its flattening effect for β ′s beyond a certain threshold. The SCAD method solves the
following optimization problem:

arg min
β0,β

N∑
i=1

(Yi − β0 − (Zβ)i

)2 +
q∑

j=1

P SCAD
λ (βj ), (4)

where

P SCAD
λ (βj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ|βj |, if |βj | � 2λ

−
(

|βj |2−2aλ|βj | +λ2

2(a−1)

)
, if λ � |βj | � aλ

(a+1)λ2

2 , if |βj | > aλ,

where λ is the regularization parameter, and a is a predefined constant (often set to 3.7 for
SCAD). For small β, the SCAD penalty maintains LASSO’s penalization rate (and bias), but
as the absolute value

∣∣βj

∣∣ increases, the rate of penalization gradually decreases. The SCAD
penalty is continuously differentiable on (−∞, 0) ∪ (0, ∞), but it is singular at zero with zero
derivatives outside the range [−aλ, aλ]. Small coefficients are set to zero as a result of this, while
a few additional coefficients tend to approach zero while large coefficients are retained.

2.3 Minimax Concave Penalty
The Minimax Concave Penalty (MCP), proposed by (Zhang, 2010), is another popular nonconvex
penalty method to achieve variable selection and parameter estimation in high-dimensional data.
MCP, similar to SCAD, starts by penalizing coefficients at the same rate as the LASSO, gradually
reducing the rate toward zero as the absolute value of the coefficient increases. However, unlike
SCAD, MCP immediately relaxes the penalization rate, while SCAD maintains a stable rate
before reducing it. Although the unbiasedness and selection criteria we impose on the penalty
function prohibit the use of fully convex penalties, MCP achieves sparse convexity to a great
extent by constraining the maximum concavity (Zhang, 2010). The augmented design SCAD
and MCP have a similar issue to the LASSO in the interaction selection in the sense that they
do not consider the hierarchical and marginality principles. It should be noted that while MCP
is not entirely convex, it still provides a substantial level of sparsity. Mathematically, the MCP
optimization problem is formulated as follows:

arg min
β0,β

N∑
i=1

(Yi − β0 − (Zβ)i

)2 +
q∑

j=1

P MCP
λ (βj ), (5)

where

P MCP
λ (βj ) =

{
λ|βj | − β2

j

2a
, if |βj | � aλ

1
2aλ2, if |βj | > aλ.
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SCAD and MCP are known for their oracle properties, meaning that, under certain conditions,
they can correctly identify non-zero coefficients that achieve asymptotic normality as sample
size increases. On the other hand, LASSO may not possess this property without modifications.
Adaptive LASSO (Zou, 2006) was proposed to overcome this issue in LASSO. In practical terms,
the choice between LASSO, SCAD, and MCP often comes down to the specific data scenario, the
size of the dataset, the computational resources available, and the degree of bias one is willing
to accept in the final model. LASSO is typically favored for its simplicity and computational
efficiency, while SCAD and MCP are often chosen for their ability to reduce bias and handle
complex data structures more effectively (Breheny and Huang, 2015).

2.4 Regularization Path Algorithm Under the Marginality Principle
The RAMP algorithm, proposed by Hao et al. (2018), uses the marginality principle to preserve a
model’s hierarchical structure following variable selection. The RAMP algorithm can be applied
to both linear regression and logistic regression. Consider the interaction model in (1) and define
the linear main effects index set M = {1, 2, . . . , p} and the second-order interaction index set
I = {(j, k) : 1 � j < k � p}. The objective function of the RAMP algorithm can be written as
follows:

1

2N

N∑
i=1

(
Yi − β0 − XT

i βM − (XT
i )◦2

M�−1
β◦2
M�−1

)2

+ λ�||βHc
�−1

||1 + λ�||βM◦2
�−1

||1, (6)

where the penalty is imposed on the candidate interaction effects. The set M�−1 is the active main
effects set at iteration �−1. The set H�−1 is defined as the parent (main effects) set corresponding
to I�−1, the active interaction set at iteration � − 1. More precisely, H�−1 comprises the main
effects which have at least one associated interaction effect (referred to as a “child”) in I�−1.
Conversely, Hc

�−1 representing the complement of H�−1, consist of those main effects in M that
are not linked by the strong heredity constraint to H�−1, i.e., Hc

�−1 = M − H�−1. Throughout
the solution path, M�, I� and H� are iteratively updated until all the main effects and the
interaction effects are selected and meet the hierarchy and marginality principles. The RAMP
algorithm allows for three penalty functions (LASSO, SCAD, and MCP) and two heredity rules
(weak and strong). The RAMP algorithm is given in Algorithm 1.

Algorithm 1 RAMP (Hao et al., 2018).
1: Initialization: Set λmax = N−1 max |XT y| and λmin = ζλmax with some small ζ > 0.
2: Generate an exponentially decaying sequence λmax = λ1 > λ2 > · · · > λL = λmin.
3: Initialize the main effect set M0 = ∅ and interaction effect set I0 = ∅.
4: Path-building: Repeat the following steps for � = 1, 2, . . . ,L. Given M�−1, I�−1, H�−1, add

the possible interactions among main effects in M�−1 to the current model.
5: With respect to (β0, βT

M, βT

M◦2
�−1

)T , we minimize (6).

2.5 Random Forest (RF)
RF is an ensemble machine learning algorithm that constructs multiple decision trees for classi-
fication or regression, enhancing prediction accuracy and reducing overfitting by aggregating the
outputs from various trees (Breiman, 2001). Each tree in the RF is built using a random subset
of data and features, contributing to algorithm diversity. Predictions are made through majority



Interaction Selection and Prediction Performance in High-Dimensional Data 265

voting in classification tasks or averaging in regression. Noted for its robustness and effectiveness
across different data types, RF can be computationally intensive and less interpretable. The RF
algorithm is given in Algorithm 2.

Algorithm 2 Breiman’s random forest (Hastie et al., 2004).
Input: Training set D = {(Xi, Yi)}Ni=1, where X = (X1, X2, . . . , Xp) is p-predictor vector

and Y is the response.
1: Generate B different bootstrap samples, each with N observations, from the original training

dataset.
2: For each bootstrap sample numbered b (where b ranges from 1 to B), construct a decision

tree f̂b. This is done by iteratively performing the following steps for each terminal node of
the tree until the size of the node is reduced to or below a pre-set minimum, nmin

• Randomly choose m out of the total p feature variables.
• Identify and execute the optimal split from among the selected m features.
• Divide the current node into two child nodes.
Output: the ensemble of trees f̂1, f̂2, f̂3, . . ., f̂B is used to produce the final prediction for

new points as follows:⎧⎨
⎩

1
B
∑B

b=1 f̂b(X) ; for regression,

Majority vote =
{
f̂b(X)

}B
1

; for classification.

A crucial aspect of the RF algorithm involves using a subset of features randomly selected
from the entire feature space considered for each tree using a bootstrapped sample to train de-
correlated trees. This random subset of features mainly differentiates RF from bagging. While
selecting a random subset of features is simple, determining the most effective feature for split-
ting is more complex. This selection uses different metrics depending on whether the RF is used
for classification or regression. The Gini impurity is used to measure the likelihood of incor-
rect classification at a node by considering the proportion of misclassified observations, thereby
guiding the algorithm towards the optimal split for classification trees. For regression trees, the
best split is determined by minimizing the total sum of squared deviances between the actual
and predicted values (residuals). This approach helps in making accurate and efficient splits
for regression tasks. Moreover, before each splitting event, m�p input variables are randomly
chosen as potential candidates. The default setting for m in classification tasks is √

p, with a
minimum node size of one. For regression, m is typically set at p/3, and the minimum node size
is determined to be five (Hastie et al., 2004).

2.6 iterative Random Forests (iRF)

An alternative to the multiplicative interaction method, such as RAMP, includes a popular tree-
based interaction method (Breiman et al., 1984; Breiman, 1996, 2001; Meinshausen, 2010). In
particular, RF achieves robust and accurate prediction performance while mitigating overfitting
and leveraging high-order interactions. The iterative random forest (iRF) is an extension of the
traditional RF to model stable, predictive high-order interactions for classification or regression
tasks. The iRF algorithm allows for the iterative refinement of feature importance scores by
repeatedly building random forests on reduced feature sets. This iterative process helps identify
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and prioritize the most informative features for the task. It can be particularly useful when deal-
ing with high-dimensional datasets with many features, as it can improve algorithm performance
and reduce overfitting by focusing on the most relevant features.

The iRF algorithm is a set of feature-weighted ensemble decision trees created to find sta-
ble high-order interaction terms. We summarize important steps of the iRF algorithm for a
binary classification problem as in Basu et al. (2018). Let Ui ∈ {0, 1} be a binary response,
and let Ii ⊆ {1, 2, . . . , p} be the feature-index subset for i = 1, 2, . . . , N , which are used for
identifying features in leaf nodes of RF trees. Let D = {(Xi, Yi)}Ni=1 be the training data, where
X = (X1, X2, . . . , Xp) are predictors, and Y ∈ {0, 1} is a binary response. The algorithm detects
higher-order interactions via three steps. In the first step, adaptive regularization is applied to
the RF fitting through iterative feature re-weighting, which determines the relative importance
of features. In the second step, the feature-reweighted RF is utilized to identify prevalent inter-
actions within the RF using a generalized version of the random intersection tree (RIT) method,
as proposed by Shah and Meinshausen (2014). More specifically, the computationally efficient
RIT algorithm searches order-s interactions that appear with higher frequency in a given class,
which leads to the construction of informative interaction set S ⊆ {1, 2, . . . , p} in class C ∈ {0, 1}.
The prevalence of an interaction for binary classification is defined as

P(S|U = C) :=
∑N

i=1 I (S ⊆ Ii)∑N
i=1 I (Ui = C)

,

where S ⊆ {1, 2, . . . , p}, I (·) denotes an indicator function, and 0 � sta(S) � 1. The bagged
stability score is the proportion of times an interaction appears as an output of RIT in B

bootstrap samples, which is defined as

sta(S) = 1

B

B∑
b=1

I (S ∈ S(b)).

In our simulation and empirical studies, we identified the interactions with sta(S) � 0.7. Order-s
interaction terms can be addressed and identified through Algorithm 3.

Using bootstrap sampling, the RIT algorithm searches the interaction set S satisfying the
following conditions (see Algorithm S1 in Supplementary Material):

P(S|U = 0) � π0 and P(S|U = 1) � π1,

where 0 � π0 < π1 � 1. In the last step, bagging evaluates the stability of recovered interactions
from bootstrap perturbations.

The iterative random forests offer a dynamic approach to capturing and adapting to inter-
actions in evolving data. Tracking variable importance, employing dynamic feature selection and
engineering, using visualization tools, and considering ensemble learning techniques contribute
to the algorithm’s ability to identify and respond to interaction effects over multiple iterations.

2.7 Prediction Performance Assessment Metrics

Our comparative study will evaluate the prediction performance of the selected methods for
regression and classification using the following assessment metrics.
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Algorithm 3 iterative random forests (Basu et al., 2018).
Input: D, C ∈ {0, 1}, B,K, w(1) ← (1/p, . . . , 1/p)

1: for k ← 1 to K do
2: Fit RF(w(k)) on D � Iterative reweighted RF
3: w(k+1) ← Gini importance of RF(w(k))

4: end for

5: for b ← 1 to B do
6: Generate bootstrap samples D(b) of the form {Xb(i), Yb(i)} from D
7: Fit RF(w(K)) on D(b) � Generalized RIT (through RF(w(K)))

8: R(b) ← {
(Ii ,Ui) : Xb(i) falls in leaf node it of tree t

}
9: S(b) ← RIT (R(b), C)

10: end for

11: for S ∈ ∪B
b=1S(b) do

12: sta(S) = 1
B
∑B

b=1 I
[
S ∈ S(b)

] � Bagged stability score
13: end for

Output:
(i) The interaction stability scores:

{
S, sta(S)

}
S∈∪B

b=1S(b)

(ii) The trained iRF algorithm:
{
RF(w(K))

}
.

Regression case: We used the mean squared prediction error (MSE) as the metric for assessing
the predictive performance in the regression case, i.e., continuous response:

MSE = 1

N

N∑
i=1

(
Yi − Ŷi

)2
,

where Yi is the actual response value, Ŷi is the predicted value, and N is the size of the train-
ing/testing set.

Classification case: We use the following metrics:
• Sensitivity (or Recall): measures the proportion of actual positives (true positive cases) cor-

rectly identified by the model.

Sensitivity (SENS) = True Positive (TP)
True Positives (TP) + False Negative (FN)

• Specificity: measures the proportion of actual negatives (true negative cases) correctly iden-
tified by the model.

Specificity (SPEC) = True Negative (TN)
True Negative (TN) + False Positives (FP)

• Accuracy: is the proportion of true results (both true positives and true negatives) in the
total cases as a measure of the overall correctness of the model.

Accuracy (Acc) = True Positive (TP) + True Negative (TN)
Total Number of Cases
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• Balanced Accuracy: is the average of sensitivity and specificity, and often used for imbalanced
response.

Balanced Accuracy (BalAcc) = Sensitivity + Specificity
2

• F1-Score: is the harmonic mean of precision and recall, providing a balance between them.

F1-score = 2× Precision * Recall
Precision + Recall

,

where the precision is defined as TP/(TP+FP).
Finally, we assess variable selection performance using the proportion of accurately captured
interaction terms (coverage rate for interaction terms). It is worth noting that higher sensitivity,
specificity, F-1 score, and balanced accuracy indicate better predictive performance, whereas
lower MSE indicates improved predictive performance.

3 Simulations
In this section, we introduce various simulation experiments and summarize their results to com-
pare the performance of penalty-driven algorithms such as LASSO, SCAD, MCP, and RAMP
with two tree-based ensemble algorithms, RF and iRF, under both the regression and classifi-
cation scenarios. As mentioned in the previous section, while all of the methods are capable of
capturing interaction terms in the model, LASSO, SCAD, MCP, and RF were not primarily de-
signed for this purpose, whereas RAMP and iRF were specifically designed for capturing certain
types of interactions. We separately consider regression and classification models in the following
subsections. The glmnet package was used for LASSO implementation (Friedman et al., 2010),
the ncvreg package was used for SCAD and MCP implementation (Breheny and Huang, 2011),
the randomForest package was used for RF implementation (Liaw and Wiener, 2002), the RAMP
package was used for RAMP implementation (Feng et al., 2020), and the iRF package was used
for RF implementation (Basu and Kumbier, 2018). The tuning parameters for the selected al-
gorithms were determined using the default options provided by each package except for iRF,
where the tree depth was set to 20 instead of the default value of 5. We measure predictive
performance using the mean squared prediction error (MSE) for the regression case and using
accuracy, sensitivity, specificity, F-1 score, and balanced accuracy for the classification case.

3.1 Regression Case

We used four different simulation scenarios for regression-based response cases. The simulation
scenarios include: 1) a perfect hierarchical structured model with a multiplicative two-way in-
teraction term; 2) a non-hierarchical model (no main effect term); 3) a nonlinear model that
does not conform to obeying the marginality principle and; 4) a nonlinear model that obeys the
marginality principle (hierarchical structure). Specifically, we consider the following 4 models:
1. Linear hierarchical model: Y = β1X1 + β2X2 + β3X3 + β1,2X1X2 + ε,
2. Linear non-hierarchical model: Y = β3X3 + β1,2X1X2 + ε,
3. Nonlinear non-hierarchical model: Y = β3X3 + β1,2I (X1 > 0.5)I (X2 > 0.5) + ε,
4. Nonlinear hierarchical model: Y = β1X1 +β2X2 +β1,2X1X2 +β3,4I (X3 > 0.5)I (X4 > 0.5)+ ε,
where the parameter vector {β1, β2, β3, β1,2, β3,4} = {0.2, 0.3, 0.4, 0.3, 0.3}. In all 4 models, the
predictors were generated from a multivariate normal distribution with a zero mean vector and
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Table 1: Interaction selection coverage of six algorithms under four regression models.
LASSO SCAD MCP RAMP* RF iRF

Models p Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

25 1.000 (.000) 1.000 (.000) 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.710 (.083)
Linear 100 1.000 (.000) 0.998 (.025) 0.990 (.049) 0.995 (.035) 1.000 (.000) 0.597 (.122)
Hierarchical 500 1.000 (.000) 0.998 (.025) 0.993 (.043) 0.995 (.035) 1.000 (.000) 0.553 (.162)

1000 1.000 (.000) 0.993 (.043) 0.985 (.060) 0.992 (.050) 1.000 (.000) 0.477 (.207)

Linear 25 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.680 (.241) 1.000 (.000) 0.999 (.013)
Non- 100 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.570 (.174) 1.000 (.000) 1.000 (.000)
hierarchical 500 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.545 (.144) 1.000 (.000) 1.000 (.000)

1000 0.936 (.017) 0.944 (.035) 0.943 (.032) 0.572 (.305) 0.988 (.011) 0.397 (.142)

Nonlinear 25 0.425 (.229) 0.425 (.206) 0.425 (.210) 0.360 (.226) 0.300 (.130) 0.488 (.197)
Non- 100 0.525 (.110) 0.520 (.099) 0.520 (.099) 0.500 (.124) 0.857 (.202) 0.778 (.132)
hierarchical 500 0.500 (.000) 0.500 (.000) 0.500 (.241) 0.500 (.234) 0.823 (.234) 0.791 (.302)

1000 0.399 (.010) 0.458 (.021) 0.364 (.018) 0.319 (.250) 0.789 (.011) 0.757 (.118)

25 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.563 (.216) 0.955 (.097) 0.851 (.112)
Nonlinear 100 1.000 (.000) 1.000 (.000) 0.997 (.033) 0.656 (.295) 0.945 (.104) 0.880 (.213)
Hierarchical 500 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.942 (.160) 0.913 (.135) 0.901 (.235)

1000 0.982 (.021) 0.998 (.024) 0.933 (.037) 0.612 (.116) 0.999 (.007) 0.991 (.110)
*RAMP denotes the RAMP algorithm with weak heredity and LASSO penalty.

a covariance matrix with standard deviation σ = 1, non-zero covariance among {X1 . . . , X5}, and
zero covariance among all other predictors as shown below (Jain and Xu, 2021):

	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.3 0.3 0.6 0.6 0 . . . 0
0.3 1.0 0.3 0.2 0.1 0 . . . 0
0.3 0.3 1.0 0.2 0.1 0 . . . 0
0.6 0.2 0.2 1.0 0.1 0 . . . 0
0.6 0.1 0.1 0.1 1.0 0 . . . 0
0 0 0 0 0 1.0 . . . 0
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 . . . 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Models 1 and 2 appeared in Jain and Xu (2021), whereas models 3 and 4 are similar to the models
used by Van der Laan et al. (2007). In all 4 models, the errors, ε, were generated from the normal
distribution with mean zero and standard deviation σ = 0.5. I (A) is the usual indicator function
which takes 1 if event A holds and zero otherwise. Under each scenario, we varied the number
of predictors, p = {25, 100, 500, 1000}. In all scenarios, the number of simulation iterations was
fixed at iter = 100, and the full data sample size was n = 500. The full data was partitioned
into a 60% training set and a 40% test set in each simulation iteration.

Two evaluation metrics were used to compare the various algorithms under study. The first
metric focuses on the efficacy of the algorithm in interaction selection and was defined as the
rate at which the true interaction terms present in the underlying model are correctly identified
(coverage rate of interaction terms). High coverage means that the algorithms capture most of
the interaction terms affecting the outcome. The second metric, taken to be the training and test
MSE, was used to assess the algorithm’s predictive performance. The results of our simulations
for the regression case are presented in Tables 1-2.

In Table 1, RF shows a better interaction selection coverage across the four models except
for the nonlinear non-hierarchical case when p = 25, where iRF performs better than RF
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Table 2: Average MSE for seven algorithms under four regression models with varying number
of predictors.

Linear hier. Linear non-hier. Nonlinear non-hier. Nonlinear hier.

p Method Train / Test Train / Test Train / Test Train / Test
LASSO 0.231 / 0.269 0.240 / 0.262 0.236 / 0.259 0.231 / 0.276
SCAD 0.231 / 0.257 0.242 / 0.252 0.236 / 0.259 0.235 / 0.268
MCP 0.237 / 0.257 0.245 / 0.252 0.237 / 0.259 0.243 / 0.266

25 RAMP-W* 0.246 / 0.252 0.301 / 0.314 0.247 / 0.256 0.253 / 0.263
RAMP-S* 0.246 / 0.251 0.334 / 0.341 0.247 / 0.255 0.252 / 0.263
RF 0.059 / 0.356 0.058 / 0.349 0.042 / 0.254 0.055 / 0.230
iRF 0.053 / 0.321 0.055 / 0.339 0.042 / 0.267 0.049 / 0.279

LASSO 0.219 / 0.286 0.227 / 0.274 0.239 / 0.273 0.228 / 0.288
SCAD 0.205 / 0.268 0.228 / 0.258 0.246 / 0.262 0.218 / 0.272
MCP 0.229 / 0.265 0.238 / 0.257 0.250 / 0.262 0.236 / 0.268

100 RAMP-W 0.244 / 0.258 0.313 / 0.335 0.257 / 0.261 0.253 / 0.263
RAMP-S 0.244 / 0.258 0.341 / 0.348 0.257 / 0.261 0.253 / 0.263
RF 0.059 / 0.384 0.057 / 0.367 0.045 / 0.260 0.055 / 0.261
iRF 0.051 / 0.347 0.053 / 0.354 0.041 / 0.281 0.047 / 0.289

LASSO 0.204 / 0.294 0.211 / 0.281 0.234 / 0.282 0.209 / 0.308
SCAD 0.140 / 0.270 0.187 / 0.259 0.230 / 0.267 0.140 / 0.272
MCP 0.213 / 0.263 0.225 / 0.256 0.245 / 0.266 0.230 / 0.272

500 RAMP-W 0.244 / 0.247 0.323 / 0.341 0.256 / 0.264 0.253 / 0.260
RAMP-S 0.244 / 0.247 0.342 / 0.352 0.256 / 0.264 0.253 / 0.260
RF 0.062 / 0.408 0.057 / 0.385 0.045 / 0.262 0.055 / 0.276
iRF 0.053 / 0.370 0.050 / 0.371 0.039 / 0.258 0.046 / 0.254

LASSO 0.206 / 0.307 0.212 / 0.288 0.238 / 0.280 0.214 / 0.311
SCAD 0.106 / 0.277 0.163 / 0.261 0.221 / 0.266 0.118 / 0.285
MCP 0.211 / 0.271 0.222 / 0.258 0.243 / 0.264 0.220 / 0.279

1000 RAMP-W 0.247 / 0.254 0.324 / 0.343 0.260 / 0.261 0.251 / 0.266
RAMP-S 0.246 / 0.255 0.341 / 0.348 0.260 / 0.261 0.252 / 0.269
RF 0.064 / 0.417 0.057 / 0.385 0.046 / 0.294 0.056 / 0.276
iRF 0.054 / 0.386 0.050 / 0.368 0.039 / 0.255 0.046 / 0.243

*RAMP-S and RAMP-W represent the RAMP with strong heredity and RAMP with weak heredity, respectively.
The results in bold font demonstrate the best performance in the test data.

and other methods. The RAMP algorithm shows better selection coverage than iRF for the
linear hierarchical model. Moreover, the table reveals that other non-hierarchical, penalty-based
algorithms nearly perfectly identify interaction terms. Although ensemble methods such as iRF
are potent for nonlinear models, they can be computationally intensive, particularly when the
predictor count p greatly exceeds the number of observations N . Notably, these methods are
not limited to two-way interactions; they can identify and select higher-order interactions.

In terms of predictive accuracy, both the weak and strong RAMP rules demonstrate steady
performance across various numbers of predictors (p), with Mean Squared Error (MSE) ranging
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Table 3: Conditional probabilities π := P(Y = 1|X) for classification models.

Model Balanced Case Imbalanced Case

Linear hierarchical
(
1 + exp

[−(0.5 + A)
])−1

(
1 + exp

[−(−1 + A)
])−1

Linear non-hierarchical
(
1 + exp

[−(0.5 + B)
])−1 (

1 + exp
[−(−1 + B)

])−1

Nonlinear non-hierarchical
(
1 + exp

[−(0.5 + C)
])−1 (

1 + exp
[−(−1 + C)

])−1

Nonlinear hierarchical
(
1 + exp

[−(0.5 + D)
])−1 (

1 + exp
[−(−1 + D)

])−1

from 0.244 to 0.264. This consistent performance is noted across all models, with the exception of
the linear non-hierarchical model. Additionally, unlike some alternative approaches, the RAMP
rules do not exhibit overfitting issues, as indicated in Table 2. In linear hierarchical models,
RAMP-W and RAMP-S consistently demonstrate the lowest test MSE across all p values. For
linear non-hierarchical models, SCAD and MCP also tend to perform well, but SCAD and MCP
show competitive performance on test sets, especially as p increases.

In nonlinear non-hierarchical and hierarchical models, iRF exhibits the best test MSE at
higher p values (p = {500, 1000}), while RF shows better test MSE for the small p cases
(p = {25, 100}). There is an overall trend where simpler methods like LASSO tend to perform
less effectively as the complexity of the model (nonlinearity) and dimensionality (p) increase.
The advanced ensemble methods (RF and iRF) demonstrate resilience to the increase in p

for the nonlinear (non-hierarchical and hierarchical) model, maintaining low MSE values and
suggesting their suitability for complex, high-dimensional data modeling. It is also notable that
the hierarchical model types do not consistently outperform non-hierarchical ones, as might be
expected, which could be due to the specific nature of the data or the interactions being modeled.

3.2 Classification Case

In the classification context, we simulated data considering balanced and imbalanced responses
for four models. Set

A := β1X1 + β2X2 + β3X3 + β1,2X1X2 + ε,

B := β3X3 + β1,2X1X2 + ε,

C := β3X3 + β1,2I (X1 > 0.5)I (X2 > 0.5) + ε, and
D := β1X1 + β2X2 + β1,2X1X2 + β3,4I (X3 > 0.5)I (X4 > 0.5) + ε.

The binary response variable Y for the classification simulations was generated using the con-
ditional probability defined in Table 3. The predictor variables and the error term for the clas-
sification simulations are generated in the same manner as described in the regression case in
Section 3.1. Similar to the regression case, the full data in each simulation iteration was split
into a 60% training set and a 40% test set. We again use the rate of correctly identifying inter-
action terms as our interaction selection performance metric and report the results in Table 4.
For predictive performance, we calculated five metrics for both the training and testing sets.
The five performance metrics comprised accuracy, balanced accuracy, sensitivity, specificity, and
F1-score. The predictive performance results for the classification scenarios are summarized in
Figures 1-4.
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Table 4: Interaction selection coverage of six algorithms under four classification models with a
balanced response.

LASSO SCAD MCP RAMP∗ RF iRF

Method p Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

25 0.455 (.321) 0.528 (.243) 0.430 (.207) 0.468 (.263) 0.753 (.275) 0.477 (.223)
Linear 100 0.268 (.249) 0.345 (.197) 0.277 (.159) 0.423 (.218) 0.677 (.253) 0.415 (.235)
Hierarchical 500 0.125 (.179) 0.175 (.186) 0.163 (.179) 0.423 (.218) 0.447 (.260) NA (NA)

1000 0.160 (.212) 0.145 (.167) 0.199 (.435) 0.503 (.276) 0.615 (.153) NA (NA)

25 0.305 (.389) 0.410 (.398) 0.335 (.363) 0.350 (.230) 0.580 (.496) 0.631 (.409)
Linear 100 0.200 (.333) 0.265 (.351) 0.195 (.317) 0.305 (.245) 0.560 (.498) 0.968 (.125)
Non-hierarchical 500 0.115 (.234) 0.110 (.208) 0.080 (.184) 0.326 (.135) 0.400 (.492) NA (NA)

1000 0.207 (.119) 0.200 (.170) 0.202 (.165) 0.198 (.201) 0.603 (.101) NA (NA)

25 0.057 (.143) 0.060 (.145) 0.023 (.085) 0.040 (.136) 0.340 (.206) 0.538 (.253)
Nonlinear 100 0.026 (.090) 0.016 (.073) 0.010 (.057) 0.033 (.111) 0.326 (.211) 0.114 (.282)
Non-hierarchical 500 0.000 (.000) 0.000 (.000) 0.000 (.000) 0.000 (.000) 0.173 (.186) NA (NA)

1000 0.000 (.000) 0.000 (.000) 0.000 (.000) 0.000 (.000) 0.119 (.213) NA (NA)

25 0.233 (.308) 0.313 (.287) 0.223 (.250) 0.333 (.255) 0.327 (.250) 0.635 (.299)
Nonlinear 100 0.090 (.211) 0.133 (.211) 0.093 (.171) 0.196 (.246) 0.215 (.222) 0.333 (.492)
Hierarchical 500 0.056 (.134) 0.050 (.128) 0.026 (.090) 0.183 (.314) 0.207 (.209) NA (NA)

1000 0.087 (.211) 0.062 (.221) 0.058 (.206) 0.110 (.351) 0.188 (.300) NA (NA)
∗RAMP denotes the RAMP algorithm with weak heredity and LASSO penalty.

Figure 1: Classification performance for 7 algorithms under a balanced linear hierarchical model.
RAMP-W and RAMP-S denote the RAMP algorithm with LASSO penalty under the weak and
strong heredity rules, respectively.

We first analyze the interaction selection results. Overall, RF demonstrates superior perfor-
mance over the RAMP and other penalty-based interaction selection methods. iRF also showed
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Figure 2: Classification performance for 7 algorithms under a balanced linear non-hierarchical
model.

Figure 3: Classification performance for 7 algorithms under a balanced nonlinear non-hierarchical
model.
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Figure 4: Classification performance for 7 algorithms under a balanced nonlinear hierarchical
model.

good coverage results when it didn’t suffer from convergence issues, i.e. when p = {25, 100}.
For large values of p (500 and 1000), iRF failed as indicated by the NA’s in Table 4. This is
likely due to the computational burden associated with such extensive interaction selection for
large p cases. Finally, the penalty-based algorithms, LASSO, SCAD, MCP, and RAMP, showed
their best performance under the linear hierarchical model, especially for small p = 25, but they
suffered under other models, especially the nonlinear non-hierarchical model.

We now turn our attention to the predictive performance results in Figures 1-4. Analyzing
the training set curves reveals that the RF and iRF algorithms attain robust performance in the
metrics, regardless of the number of predictors (p). Among the other five algorithms, LASSO
shows slight superiority across the various performance metrics. The four algorithms, SCAD,
MCP, RAMP-W, and RAMP-S, have similar performance in terms of accuracy, balanced ac-
curacy, F1 score, and sensitivity. RAMP-W and RAMP-S have lower training specificity than
SCAD and MCP under three of the four scenarios considered, especially as p increases.

For the test set results, all algorithms underperform across the various metrics, but they
all maintain reasonable performance in terms of sensitivity, F1 score, and accuracy. Despite
the big drop in its specificity, iRF maintains the highest specificity rates across all models and
dimensions, except for p = 1000, where RAMP-S and RAMP-W show competitively higher
specificity rates. Another noteworthy observation is how the RF’s testing specificity drops for
higher dimensions, p = 500, 1000. The dramatic change in the performance of the two tree-based
algorithms (RF and iRF) when transitioning from training to testing data hints at the potential
challenge of overfitting for these algorithms. We also examined the case of imbalanced response
for the same four classification models. The results were quite similar to the balanced response
case. Thus, these results were deferred to the supplementary material section.
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4 Real Data Application
Breast cancer is the most frequent cancer among women, accounting for about one-fifth of all
malignancies diagnosed in women worldwide. It is the second most common cause of death from
cancer among women. In this section, we compare the performance of the predictive modeling
algorithms described in earlier sections using the bcTCGA breast cancer gene expression data
from The Cancer Genome Atlas Program (TCGA) of the National Cancer Institute’s Center for
Cancer Genomics: bcTCGA. The bcTCGA data contain information on 17, 323 gene expressions
from 536 women with breast cancer. The BRCA1 gene, a key discovery in breast cancer research,
along with the BRCA2 gene (identified a year later), are the core causes for 70% of breast cancer
cases. Due to BRCA1 interactions with other genes, identifying genes that interact with it is
crucial for further research (Deng and Brodie, 2000; Antoniou et al., 2003; Kuchenbaecker et al.,
2017). The selected techniques are particularly valuable in this context for reducing the vast
number of potential gene interactions to a more manageable set that is significant for cancer
development. These interactions can then be further studied in a laboratory setting and targeted
for cancer treatment development. In our regression analysis, the BRCA1 gene expression level
serves as the response variable, with the other 17322 genes serving as predictors. This scenario is
a typical example of the p 
 n scenario. A two-fold cross-validation approach was used where we
repeatedly (100 times) split the dataset into training and testing sets at a ratio of 6 : 4. In each
iteration, we computed the training and testing MSE for each of the seven predictive algorithms
under study. Table 5 displays the average training and testing MSE for the seven algorithms.
SCAD outperforms other algorithms with the minimal test MSE observed and higher standard
deviation. The RAMP algorithm demonstrates a marginally better test MSE of 0.200 compared
to iRF’s 0.220. Both RF and iRF exhibit signs of overfitting.

For the classification case, we use the Wisconsin breast cancer dataset available at the UCI
Machine Learning Repository (Wolberg et al., 1995). The dataset consists of 569 observations on
30 predictors and one binary response variable representing tumor diagnosis with 62.742% benign
(non-cancerous) cases and 37.258% malignant (cancerous) cases. The features, which describe
characteristics of the cell nuclei, are computed from a digitized image of a fine needle aspirate of
a breast mass. The features included radius, texture, perimeter, area, smoothness, etc. This is a
typical classification problem that can be handled by any of the predictive modeling algorithms
studied here. Similar to the regression case, we used a two-fold cross-validation approach by
repeatedly (100 times) splitting the dataset into training and testing sets at a ratio of 6 : 4. The
predictive performance results averaged over 100 iterations are summarized in Table 6.

Table 5: Average MSE for seven algorithms on the breast cancer (bcTCGA) data with a contin-
uous response.

Method Train (SD) Test (SD)

LASSO 0.206 (0.012) 0.214 (0.119)
SCAD 0.206 (0.101) 0.182 (0.215)
MCP 0.207 (0.011) 0.191 (0.112)
RAMP-W 0.196 (0.022) 0.200 (0.101)
RAMP-S 0.178 (0.042) 0.212 (0.108)
RF 0.038 (0.051) 0.300 (0.121)
iRF 0.039 (0.097) 0.220 (0.186)

https://www.cancer.gov/ccg/access-data
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Table 6: Classification performance of six algorithms for the Wisconsin breast cancer data.

LASSO SCAD MCP RAMP∗∗ RF iRF

Metric∗ Train/Test Train/Test Train/Test Train/Test Train/Test Train/Test

ACC 0.951/0.943 0.970/0.959 0.966/0.957 0.974/0.961 0.999/0.956 1.000/0.947
SENS 0.920/0.905 0.937/0.921 0.934/0.920 0.959/0.940 0.998/0.932 1.000/0.924
SPEC 0.969/0.965 0.989/0.960 0.984/0.979 0.982/0.973 1.000/0.970 1.000/0.961
F1 0.933/0.921 0.959/0.949 0.954/0.940 0.964/0.947 0.999/0.940 1.000/0.928
B.ACC 0.944/0.935 0.963/0.954 0.960/0.949 0.971/0.957 0.999/0.951 1.000/0.942
∗ACC, SENS, SPEC, F1, B.ACC denote average accuracy, sensitivity, specificity, F1-score, and balanced
accuracy, respectively. ∗∗RAMP represents RAMP with the weak heredity rule.

As highlighted in the table, RAMP achieved the highest scores in test accuracy, balanced
accuracy, and sensitivity. MCP excelled in specificity, and SCAD led in F1 score performance.
Notably, SCAD’s test accuracy, balanced accuracy, and F1 score results were closely comparable
to those of RAMP. Finally, it is readily seen that the tree-based algorithms (RF and iRF) suffered
overfitting issues, with the test set results being significantly lower than the training set ones.

5 Discussion
This study compared two predictive modeling approaches that enable interaction selection: the
penalty-based approach (LASSO, SCAD, MCP, and RAMP) and the tree-based approach (RF
and iRF). Our findings from extensive simulations and real data applications revealed that
RAMP had superior predictive performance under linear hierarchical regression scenarios, ex-
hibiting lower MSE across varying dimensions (different values of p). iRF showed signs of over-
fitting in prediction performance in most regression and classification scenarios, but it was
found to be best-suited for nonlinear hierarchical/non-hierarchical large p regression scenarios
(p = {500, 1000}). Similarly, RF suffered from overfitting but was best suited for the nonlinear
hierarchical and non-hierarchical small p regression scenarios (p = {25, 100}). SCAD and MCP
performed superiorly under linear non-hierarchical scenarios.

While all of the six techniques under comparison are capable of capturing interactions,
RAMP and iRF are specifically designed to capture interactions and, hence, were expected
to have superior interaction selection performance. Overall, our interaction selection results
revealed mixed results across most scenarios under both regression and classification tasks.
For regression tasks, non-hierarchical penalty-based algorithms such as LASSO, SCAD, and
MCP also demonstrated superior interaction selection performance compared to RAMP (in
most scenarios) and iRF (except for non-linear non-hierarchical models). iRF outperformed
RAMP in selecting interactions for regression tasks except under linear hierarchical regression
models where RAMP was superior to iRF. In classification tasks, RAMP had superior interaction
selection performance to the other penalty-based algorithms, while iRF did not deliver stable
results, especially for the large p scenarios.

Taking the above results collectively, we were not be able to declare one algorithm as a
clear winner across all or even the majority of scenarios. There were at least one or more scenar-
ios that favored each of the algorithms included in this comparative study. However, from the
general pattern, we can recommend 1) the use of RF and iRF for regression/classification tasks
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involving nonlinear models, 2) the use of RAMP for regression/classification tasks involving lin-
ear hierarchical models, and 3) the use of SCAD or MCP for regression tasks involving linear
non-hierarchical models. Future work shall expand this comparative study to include nonpara-
metric interaction selection algorithms with and without hierarchical structures (e.g., Dong and
Wu, 2022). Such extension would allow for a better understanding of their potential advantages.

Supplementary Material
The supplementary material includes the following: (1) README: a brief explanation of the
supplementary material; (2) application datasets; (3) code files; and (4) the description of the
RIT algorithm and additional simulation results.
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