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Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a frequent neurodevelopmental disorder in
children that is commonly diagnosed subjectively. The objective detection of ADHD based on
neuroimaging data has been a complex problem with low ranges of accuracy, possibly due to
(among others) complex diagnostic processes, the high number of features considered and im-
perfect measurements in data collection. Hence, reliable neuroimaging biomarkers for detecting
ADHD have been elusive. To address this problem we consider a recently proposed multi-model
selection method called Sparse Wrapper AlGorithm (SWAG), which is a greedy algorithm that
combines screening and wrapper approaches to create a set of low-dimensional models with good
predictive power. While preserving the previous levels of accuracy, SWAG provides a measure of
importance of brain regions for identifying ADHD. Our approach also provides a set of equally-
performing and simple models which highlight the main feature combinations to be analyzed and
the interactions between them. Taking advantage of the network of models resulting from this
approach, we confirm the relevance of the frontal and temporal lobes as well as highlight how
the different regions interact to detect the presence of ADHD. In particular, these results are
fairly consistent across different learning mechanisms employed within the SWAG (i.e. logistic
regression, linear and radial-kernel support vector machines) thereby providing population-level
insights, as well as delivering feature combinations that are smaller and often perform better
than those that would be used if employing their original versions directly.
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1 Introduction
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelop-
mental disorders in children with a childhood prevalence ratio as high as 11%, with significant
increases in diagnoses every year (Visser et al., 2014). More recent reviews suggest that the
prevalence of ADHD in communities worldwide lies between 2% and 7% with an approximate
average of 5% (Sayal et al., 2018). It is characterized by a persistent pattern of inattention,
hyperactivity, and impulsivity that interferes with daily functioning and development.

While most of the neurological disorders (including ADHD) are identified based on expert
subjective criteria, there has been an increasing amount of research on automating detection of
ADHD based on neuroimaging data (Lanka et al., 2020; Loh et al., 2022). In this context, some
brain imaging techniques to provide biomarkers (predictors) on the functional alterations of the
brain in subjects with ADHD are extracted from electroen-cephalography (EEG), magnetoen-
cephalography (MEG), functional magnetic resonance imaging (fMRI), and positron emission
tomography (PET). Studies using these techniques have found differences in brain activity and
functional connectivity depending on whether the disorder is present or not (Deshpande et al.,
2015; Lanka et al., 2020). As a consequence, machine and statistical learning classifiers (here-
inafter referred to as models) have been employed to automate the process of diagnosing disorders
or diseases based on these features. More specifically, these models are trained to understand the
relation between specific characteristics obtained from the previously mentioned brain imaging
techniques and the diagnosis of ADHD that is determined by a licensed clinician through clinical
behavioral examination. Once these models have been trained, these are successively employed
to automate and/or assist the physician in the detection of ADHD.

However, there exist numerous difficulties associated with this approach such as the (i) lack
of availability of large clinical datasets, (ii) high number of features, (iii) imperfect measurements,
(iv) different diagnostic and data acquisition processes between acquisition sites (Lanka et al.,
2020). These difficulties entail further problems in replicating and generalizing the results coming
from these automated procedures to new data and subjects for which diagnostic accuracy is often
drastically reduced (Kelly et al., 2012). In particular, there are many neuroimaging studies with
high diagnostic accuracy for ADHD, but they are limited because they are based on small and
biologically homogeneous samples which cause generalizability issues to larger and heterogeneous
populations (Huf et al., 2014; Schnack and Kahn, 2016; Arbabshirani et al., 2017; Bellec et al.,
2017; Olivetti et al., 2012). Indeed, single-site analyses where the training and test datasets come
from the same site achieve higher accuracies in both training and testing compared to samples
from different imaging sites, as highlighted for example in Nielsen et al. (2013) with regards to
the study of Autism. In an attempt to address this problem and therefore make these models
generalizable to a wider population, an approach has been to aggregate larger samples from
different imaging sites (Huf et al., 2014). Nevertheless, the prediction accuracy does not increase
even when increasing sample sizes in multi-site data compared to small sample single-site data
(Schnack and Kahn, 2016; Arbabshirani et al., 2017).

Another issue with automated classification in neuroimaging is that the selection of the
model and its corresponding feature combinations can suffer from a lack of interpretability.
Indeed, interpretability is generally required to allow practitioners to obtain neurobiological
insights of the disorder/disease and consequently direct future studies as well as interventions
(Lanka et al., 2020). Indeed, in addition to the problem that no universal learning algorithm has
so far achieved important levels of diagnostic accuracy across datasets and features, most of the
best-performing models thus far lack interpretability and feature importance metrics as a result
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of their “black box” nature. This further complicates selecting and training a model for ADHD
detection. In fact, achieving both interpretability and high prediction accuracy often represents
a conflicting objective in the field of neuroimaging (Kelly et al., 2012).

Given the above-highlighted difficulties in obtaining accurate as well as interpretable ADHD
detection through complex models, in this study we use an approach which delivers smaller-
dimensional, easily-interpretable models without losing accuracy compared to currently achieved
levels through state-of-the-art learning mechanisms. By selecting multiple low-dimensional mod-
els, this will allow clinicians and practitioners to confirm and provide further insight to the spe-
cific regions of the brain and the connections between them that may serve as potential neural
biomarkers of ADHD. Using the broad study in Lanka et al. (2020) as a benchmark for general
ADHD detection accuracy, the method we will employ for this purpose is the “Sparse Wrapper
Algorithm” (SWAG) which was put forward in Molinari et al. (2020) and is described in Sec-
tion 2. Having described the data and discussed the SWAG parameters in Section 3, we then
present the outputs of the SWAG in Section 4. Finally, in Section 5 we discuss these results to
understand if there are common important features between different methods across heteroge-
neous data and whether it is possible to make use of a collection of simple models that can be
employed to obtain better and more consistent interpretations of ADHD from a neuroimaging
standpoint without affecting the overall accuracy.

2 SWAG - the Sparse Wrapper Algorithm
To date, the majority of learning mechanisms mainly assign priority to prediction performance.
However, researchers in different fields from engineering to genomics are increasingly concerned
with interpretability (e.g. feature importance) and replicability (e.g. stability across datasets) of
the results, in addition to their prediction accuracy. The reasons for this are multiple, including
the need to better focus future research efforts, understand how to treat a problem and to provide
flexible solutions regarding features which may not be available to all data-collection centers and
procedures. There have been many studies focusing on the use of machine learning techniques to
explore the feature space and adequately model the response of interest, often through complex
non-linear functions, to achieve highly accurate testing and validation predictions. However,
while trying to preserve prediction accuracy, recent studies aim to find interpretable models to
understand phenomena better (Wang, 2019). In this perspective, sparse learning techniques have
been used to select a small number of highly relevant features in a potentially high-dimensional
dataset. As a consequence, sparse models are more easily interpretable in terms of feature impor-
tance and can be used as a basis to further investigate certain phenomena (Zhang et al., 2015;
Chandrashekar and Sahin, 2014). Sparse models also efficiently deal with the overfitting problem
by aiming to remove highly correlated features in high dimensional data as well as reducing the
computational complexity by employing lower dimensional models. Despite all these advantages,
the currently available sparse learning techniques produce a single “best” model and, especially
when dealing with high dimensional and possibly highly correlated data, tend to select many
features thereby limiting interpretability (Meinshausen and Yu, 2009; Vats and Baraniuk, 2013).
This problem inevitably transfers to the issue of replicability since a single sparse model with
a certain amount of features can also limit its use on other datasets where not all features are
measured. Indeed, there are many areas of research that would benefit from the presence of dif-
ferent combinations of relevant features to achieve a certain degree of flexibility when employing
these models, for example in medical studies (Draghici et al., 2006), online search algorithms
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(Vaughan and Chen, 2015) and pattern recognition (Wang et al., 2018).
Within this direction of research, an important push that advocates for the selection of

sets of models (instead of a single one), and to ensure that these can deliver interpretation
for practitioners, consists in the line of research put forward following the seminal work of
Rudin (2019). More specifically, as postulated also in Fisher et al. (2019), there is an increasing
support towards the use of multiple simple models that preserve the accuracy of the state-of-
the-art learning mechanisms. In fact Fisher et al. (2019), followed by Semenova et al. (2022),
introduces the definition of a “Rashomon set” which consists of the set of almost-equally-accurate
models from a learning class. More specifically, if the Rashomon set is large enough, it can also
contain multiple simple models with equivalent accuracy as the most complex models in the set,
entailing that these models are more robust, interpretable and generalizable.

Having been put forward in parallel to the above line of research as a development of the
Panning Algorithm firstly proposed in Guerrier et al. (2016), the SWAG was put forward in
Molinari et al. (2020) and consists of a method that exactly delivers a set of multiple strong
and low-dimensional models in the spirit of a Rashomon set. This method consists of a greedy
algorithm that combines screening and wrapper approaches that can effectively address the chal-
lenges of feature selection while aiming to preserve the accuracy and efficiency of the embedded
learning mechanisms. More specifically, the SWAG aims to identify the most important features
linked to a response of interest based on a specific learning mechanism, and to do so it searches
through different low-dimensional feature combinations and selects those that deliver the highest
prediction accuracy across different dimensions. Similarly to the collection of decision trees in a
random forest approach (Breiman, 2001), the collection of models allows to highlight common
features between them to identify important ones and to create a network from the models
which provides insight on the intensity of feature interaction. Moreover, when choosing models
based on parametrized probabilistic models such as generalized linear models, it is also possible
to highlight the direction of impact of the different selected features on the response of interest.
As a result of these advantages, the SWAG and its previous versions have been successfully
employed in different applications such as diagnosis of leukemia (Guerrier et al., 2016), bowel
cancer (Mili et al., 2016), melanoma (Branca et al., 2018), Covid-19 intensive care treatment
(Parisi et al., 2020) and breast cancer detection (Miglioli et al., 2022). Further applications in
which the advantages of the SWAG were put forward can be found directly in Molinari et al.
(2020) where the SWAG was run on several datasets (from medicine to engineering) and its
performance was compared to other sparse learning methods. It was underlined how the SWAG
helped in identifying a smaller number of informative features and, in the majority of cases, how
its selected models had close or comparable prediction accuracy (if not greater) with respect to
the same models run directly on the data.

For ease of understanding, in the following paragraphs we provide a brief standalone de-
scription of the SWAG and direct the reader to Molinari et al. (2020) for further details. Firstly,
the SWAG requires the user to select a learning mechanism whose choice depends on the nature
of the response (quantitative/qualitative) as well as on possible assumptions on the relation be-
tween this response and the variables. For example, a logistic regression model could be chosen
as the learning mechanism if the response is binary and the logit-function is believed to be a
good representation of the relation between variables and this response; otherwise Generalized
Additive Models or Regression Trees could be chosen if the response is quantitative and/or the
user wants to make fewer assumptions on the form of this relation. The user then needs to specify
the maximum number of features to be included within the evaluated models throughout the
algorithm (we denote this as pmax) and this can be determined based on prior knowledge of the
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problem, domain expertise and/or on the desired level of interpretability of these models (i.e.
smaller dimensional models are easier to interpret). Based on these choices and assuming there
are p > pmax features in the dataset, the SWAG starts with a screening step for one-dimensional
models (i.e. one feature per model) and consequently uses a feature at a time to build p one-
dimensional models. To determine the training error of these one-dimensional models, one can
then use a model selection criterion to evaluate them, for example applying an r-repeated k-fold
cross-validation. Once a measure of predictive error has been chosen, these errors are then used
to select the best performing one-dimensional models (e.g. in terms of lowest prediction error)
which will then provide the most informative features for the considered response. The definition
of the best models will be determined by a performance percentile α ∈ (0, 1), which is chosen
to be significantly small (e.g. 0.01 � α � 0.1) for the obvious reason of selecting models with
the lowest possible prediction errors. Hence, smaller values of α imply a more strict selection of
models. Once this screening step is completed, we obtain a set of features which are assumed to
be highly informative with respect to the response of interest. After this step, the procedure uses
these features to build higher dimensional models by increasing the number of features used in
each step until it reaches the maximum model dimension pmax . Generally speaking, denoting d

as the dimension of interest in a specific step of the SWAG (for 2 � d � pmax), the algorithm
makes use of the best performing models from the previous step (i.e. at d −1) to construct mod-
els for the current dimension d. To do so it randomly selects from the best-performing models
for dimension d −1 and then randomly adds a single feature to it from the set of features chosen
during the first step (i.e. the screening step for one-dimensional models). With m models built at
each step (where m is user-defined), the SWAG ultimately produces a library of “strong” models
where each of them is based on a combination of 1 to pmax features. A simplified representation
of the SWAG can be found in Figure 1.

While referring the reader to Molinari et al. (2020) for detailed rules-of-thumb to determine
the meta-parameters of the SWAG, we here provide a brief description of the parameters used
in the algorithm: (i) pmax is chosen for interpretability (i.e. the smaller the better) or based on
prior knowledge of the problem (e.g. previous studies on the dimension of the problem) and is
commonly between 5 and 20 depending on the computational time available. More exact rules
exist according to the learning problem, such as rules based on the event-per-variable discussed
in van der Ploeg et al. (2014) for example. (ii) m should be large to explore more variable
combinations possible, but this increases computational time. In general a rule-of-thumb for m

is to set it equal to
(
p∗
2

)
(where p∗ is the number of screened variables in the first step) so as to

explore at least all 2-dimensional models and understand if some variables lose predictive power
when combined with others. (iii) α should ideally be small (as mentioned earlier) to select the
highest-performing models at each step, but should be adapted based the number of models (m)
evaluated at each step and the goal of making the selection less greedy.

Once the final set of models is obtained, the user can eventually apply post-processing to
select an even smaller subset of models (see examples in Molinari et al. (2020)). Based on this
(post-processed) set of SWAG models, the user can choose to embed this set of highly-predictive
models in an ensemble learning approach if they are only interested in prediction accuracy.
However the main use of the SWAG models consists of studying the combinations of features to
interpret the contribution of each individual feature to predict the response and how they inter-
act to do so. This can be done by placing the selected features in a network where importance
and links between these features can be appropriately highlighted and studied (see Section 4 for
example). In the next sections we run this algorithm on a collection of datasets that have been
widely employed to study and develop automated detection of ADHD solely through resting-
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Figure 1: SWAG summary flowchart. M
(i)
d represents the ith model of dimension d; D

(i)
d is the

performance metric of the ith model of dimension d (in our case classification error); X̃ is the set
of screened features for the general step of SWAG; M̃d is the set of best models at dimension d

and M̃ is the set of all these sets for i = 1, . . . , pmax (I.e. the set of SWAG models). Each new
set of best models of dimension d become an input for the next dimension d = d + 1 (hence
they are denoted M̃d−1) and get combined with the individual screened features X̃ to generate
models of size d in the next step.

state fMRI signals. The goal is to find a set of strong models, based on different classification
mechanisms, that preserve the accuracy of the original mechanisms themselves while providing
insights to the importance of brain regions in detecting ADHD. In addition to obtaining an
interpretation of how these brain regions interact through the above-mentioned network repre-
sentation, another aim would be to achieve a reasonable stability of these interpretations across
different features combinations.

3 Materials and Methods
The ADHD data for this study were obtained from the ADHD-200 consortium (ADHD-200,
2012). In terms of diagnostic outcomes reported in the data, these can be categorized into three
sub-types based on standard approaches linked to the symptoms exhibited, namely ADHD-
I (inattention) for persistent inattention, ADHD-H (hyperactive/impulsive) for hyperactivity-
impulsivity and ADHD-C (combined) for a combination of both symptoms. In this context, the
ADHD-200 competition (ADHD-200, 2012) has spurred a significant growth in research activities
aimed at developing automated methods to detect ADHD sub-types. While there are established
methods to diagnose different subtypes of ADHD, it has become apparent that there are multiple
underlying causes for the disorder. These various causes may manifest with similar clinical
symptoms but have distinct neurological foundations, as highlighted in Curatolo et al. (2010).
In this work we combine all the three sub-types to specifically classify and detect the presence of
ADHD independently from its sub-type. The dataset consists of a total of 930 individuals aged
between 7 and 21 years evenly distributed between healthy controls (573 subjects) and subjects



A Multi-Model Framework to Explore ADHD Diagnosis from Neuroimaging Data 197

with ADHD (357 subjects) reporting a total of 1179 features consisting of so-called functional
connectivity between 190 regions of the brain (also referred to as “connection” in this work). This
(functional) connectivity is measured via Pearson’s correlation and is a commonly used feature
to identify biomarkers for ADHD and other disorders. Moreover, this feature is employed in
Lanka et al. (2020) which is the study of reference for this work. Additional information on data
processing, features and acquisition sites can be found with Table 4 in the Appendix, available
in supplementary materials.

Given the classification task for this ADHD data, we applied SWAG using three different
learning methods, namely logistic regression (LOGIT), linear kernel support vector machines
(SVM-L) and radial kernel support vector machines (SVM-R) to see how different learning
mechanisms manage to detect ADHD using different fitting patterns. Later, we used a separate
test dataset provided in ADHD-200 (2012) to predict the range of test accuracy for the three
different methods. Following the rules-of-thumb discussed in Molinari et al. (2020) for the choice
of the SWAG meta-parameters, we chose pmax = 20 because of the high number of features (and
need for interpretability) while we fixed α to be 0.05. At the end of the first screening step,
using the LOGIT for example, the SWAG selected 1179×0.05 ≈ 59 features. In order to explore
at least all of the 2-dimensional models, we fixed m to be

(59
2

) = 1711. Also, for all learning
mechanisms, we used an additional post-processing procedure (as described in Molinari et al.,
2020) to determine the final SWAG models. Post-processing looks at the lowest α performance
percentile across all explored dimensions and then selects the subset of SWAG models that have
a performance that is as good or better than this percentile. Of course, the user can choose to
select the subset of “best” models through another post-processing approach of their choice.

4 SWAG Results
Since the names of the features represent the Pearson correlation between two different and spe-
cific regions in the brain, whenever possible hereinafter we avoid using these composite (lengthy)
names and instead simplify nomenclature and representations for ease of interpretation of the
results. Moreover, we only present and discuss the output of LOGIT since it presents accuracy
ranges that are similar to the SVM approaches and share similar insights into the brain regions
of relevance for the detection of ADHD (see e.g. Table 13 in the Appendix). Given these sim-
ilarities, another reason for solely discussing the LOGIT results is that this method delivers
interpretable coefficients associated with the features, therefore allowing interpretation of their
impact on the presence of ADHD (unlike the SVM methods that do not produce interpretable
coefficients). To support the validity of this sole focus on LOGIT, Table 3 compares its accuracy
ranges with those of the SVM-L and SVM-R while Tables 8 and 9 in the Appendix highlight
how they all agree on the top two most important brain regions.

Following the above, and therefore using the LOGIT as the reference for the following para-
graphs, after post-processing the SWAG produced a total of 381 models of dimensions ranging
from 9 to 20 all built using 53 different features (out of the initial 59 screened features). Table 1
gives a summary of the most common features included in the SWAG models, where we recall
that each feature represents the connectivity between two given regions of the brain and is de-
noted as A↔B (All selected features can be found in Table 5). For each selected feature and using
the (0, 1) range for a proportion (%), Table 1 gives the proportion of the 381 models that contain
that feature (second column) as well as information on the proportion of times that the feature
has a positive coefficient β (third column) out of the total number of models that contain that
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Table 1: Proportion (%) of SWAG models that contain each feature (column “Imp.”); propor-
tion (%) of times the coefficient of the feature is positive (column “Pos. β”); median value of
coefficients for the feature (column “Med. β”). Each feature is followed by a letter in brackets
which indexes them for interpreting Figure 3.

Feature Imp. Pos. β Med. β

‘Insula-R’ ↔ ‘Paracentral-Lobule-R’ (A) 1 0 -0.533
‘Frontal-Sup-R’↔ ‘Frontal-Mid-R’ (B) 1 1 0.675
‘Temporal-Mid-L’↔ ‘Lingual-L’ (C) 1 1 0.508
‘Insula-L’↔ ‘Frontal-Mid-L’ (D) 1 0 -0.977
‘Frontal-Sup-R’↔ ‘Frontal-Inf-Orb-R’ (E) 0.989 0.003 -0.313
‘Supp-Motor-Area-L’↔ ‘SupraMarginal-L’ (F) 0.989 1 0.357
‘Frontal-Sup-R’↔ ‘ParahippocampaGyrus’ (G) 0.953 0 -2.081
‘Vermis-1-2’↔ ‘Temporal-Mid-L-4’ (H) 0.953 1 0.781
‘Vermis-4-5’↔ ‘Frontal-Sup-Orb-R’ (I) 0.853 0 -1.099
‘Frontal-Sup-Medial-L’↔ ‘Cingulum-Mid-L’ (J) 0.745 0 -1.007
‘Temporal-Mid-L’↔ ‘Pallidum-R’ (K) 0.738 0.979 0.222
‘Occipital-Mid-L’↔ ‘Cerebelum-Crus2-L’ (L) 0.70 1 2.261
‘Cingulum-Ant-L’↔ ‘Paracentral-Lobule-R’ (M) 0.677 0 -1.104
‘Temporal-Pole-Sup-R’↔ ‘Frontal-Mid-L’ (N) 0.617 0 -1.072
‘Frontal-Mid-L’↔ ‘Caudate-R’ (O) 0.543 1 1.162
‘Frontal-Mid-L’↔ ‘Frontal-Sup-L’ (P) 0.528 1 0.939

feature. Finally, the last column shows the median of all coefficient values associated with that
feature. For example, let us consider the feature ‘Frontal-Sup-R’↔ ‘Frontal-Inf-Orb-R’ which
therefore represents the Pearson correlation between ‘Frontal-Sup-R’ and ‘Frontal-Inf-Orb-R’
(and is labeled as “E” for future reference). In this case, this feature is present in almost 99% of
the total 381 SWAG models (a measure of feature importance) and, out of the models in which
it is indeed present, only in 0.3% of them it has a coefficient that is positive (and is therefore
negative in 99.7% of them). Moreover, considering that all features are Pearson correlations and
are all standardized in the (−1, 1) range, we notice that the ‘Frontal-Sup-R’↔ ‘Frontal-Inf-Orb-
R’ feature has a median coefficient value of −0.313 which, considering the median coefficient
values for the other features, indicates that its relative impact on ADHD detection is not that
large conditional on other features. Therefore the correlation between these regions of the brain
appears to contribute to the detection of ADHD and, in the vast majority of cases (99.7%), the
probability that a subject suffers from ADHD decreases as the correlation between these two
regions increases. This information is visualized along with other results in Figure 3 further on.

Figure 2 is a visual representation (sagittal slice) of the top 35% most frequent features
selected using the LOGIT (i.e. the 19 most frequently included features in the SWAG models
out of the total 53 features considered). In this case, the represented features are the original
correlations between brain regions, therefore a feature in this figure can be seen as the connection
between two regions of the brain (the color of each node represents the lobe to which the brain
channel belongs, the line represents their connection and the width of the line represents the
importance of the given feature for classification). As one can see, links with and within the
frontal region of the brain (red points) appear to be the most frequent. This is indeed confirmed
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Figure 2: Visual representation (sagittal slice) of the selected features using LOGIT learning
method. Each point represents a brain region and the line shows the connection between two
regions, therefore, 2 connected points denotes one feature.

in Table 2 below (as well as in Tables 8 and 9 in the Appendix reporting region importance for
SVM-L and SVM-R).

More precisely, Table 2 shows the frequencies of the brain regions associated with the se-
lected features. For example, the previously mentioned feature (i.e. ‘Frontal-Sup-R’↔ ‘Frontal-
Inf-Orb-R’) connects two regions of the frontal lobe, and therefore results in two counts associ-
ated to this region, while the feature ‘Insula-L’↔ ‘Frontal-Mid-L’ results in one count for the
insula lobe and one for the frontal. One should remember that each model contains 9 to 20
features and each feature in each model is aggregated to calculate the frequency. Based on this
count system, one can clearly notice that the majority of the selected features are associated
with the frontal and temporal lobes of the brain. It must be underlined that, since every fea-
ture (brain connection) is aggregated based on a given brain region, the frequencies given by
the previously described count system can also be considerably larger than the total number of
original features (i.e. 1179).

Having presented the outputs of the SWAG based on LOGIT, let us briefly summarize
the outputs for the other two learning methods employed. In particular, after post-processing,
SWAG produced a total of 114 models of dimensions 18, 19, and 20 for SVM-L (built using 110
different features, see Table 10) while for SVM-R, the SWAG produced a total of 146 models
of dimensions 17, 18, 19 and 20 (using 47 different features, see Table 11). We must note that,
given the greedy nature of SWAG and the different loss-functions characterizing these methods,
the features in the set of models for the respective methods do not have a considerable overlap
because there is little overlap in the screened features in the first step of the SWAG. Table 12 in
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Table 2: Frequency table for LOGIT models. Features are aggregated into brain regions (left
column) with corresponding frequency (right column).

Brain Region Frequency

Frontal 2903
Temporal 1179
Insula 762
Vermis 688
Paracentral 639
Cingulum 542
Lingual 381

Table 3: Accuracy metrics for the three classifiers with and without SWAG. The accuracies of
the original models without SWAG are shown in the second column. As SWAG produces a set
of models, we give the range of accuracies in the last column.

Classifiers Without SWAG Classifiers With SWAG

Lasso Logistic 0.544 Logistic (0.532,0.614)
Linear SVM 0.567 SVM-L (0.52,0.608)
Radial SVM 0.626 SVM-R (0.561,0.632)

the Appendix represents all features that remained after post-processing (for all methods) and
are shared between at least two of the considered methods. Additionally, to interpret our results,
we need to focus on biological aspects. Even though there is a lack of overlap between the selected
features in terms of different learning mechanisms, technically different features may still have
biological and functional similarities, especially if the involved regions are adjacent or within
the same lobe. Additional details regarding the overlap of features among the three methods
can be found in the Appendix. Hence, aside from testing on homogeneous data, a more stable
comparison between methods in terms of common feature importance overlap would require a
common screening criterion between all of them in the first step of the SWAG, but this is left for
future work. Nevertheless, despite the lack of overlap in specific features, most of the selected
features again come from the frontal and temporal regions as well. This also suggests that, as
we would expect, the different features selected among methods may actually be pointing to the
same underlying brain functions represented by these regions. One can find the frequency tables
and more information about the final SWAG models in the Appendix.

To compare these different learning mechanisms when applied to the data directly or within
the SWAG, we represent the achieved accuracy and accuracy ranges (for the SWAG models)
when applied to the test data in Table 3. In the first two columns of the table we represent
the test accuracy of the learning mechanisms when applied directly to the data. It must be
noted that, for the LOGIT method, we employed the Lasso logistic regression (Friedman et al.,
2010) to make a fairer comparison in terms of feature selection (the SVM methods do not have
a natural corresponding feature selection version). The final two columns, on the other hand,
report the range of the test accuracy for each classifier when used within the SWAG.

For a fair comparison, as mentioned in the introduction the benchmark and motivation for
this work are the results in Lanka et al. (2020) where, using the same features and ADHD labels,
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the authors reported an overall accuracy of 0.572 which was obtained by a consensus-classifier
combining 18 different machine learning classifiers. A natural comparison for these results would
be those coming from the ADHD-200 competition (ADHD-200, 2012), however caution should
be used in such a comparison given that the competition included phenotypic features and
focused on three-way classification approaches to classify ADHD sub-types (as opposed to this
work which focuses solely on detection of ADHD on a whole). With this in mind, most teams
reported accuracies between 0.374 and 0.605 (ADHD-200, 2012). Since these accuracies do not
come with feature-importance metrics (as the SWAG models do), we also report the accuracy
of the only alternative that also provides variable importance which is the random forest: the
latter obtains an accuracy of 0.561. Not surprisingly, the random forest also found the frontal
and temporal lobes to be the most important lobes of the brain in the detection of ADHD.
Additionally, the lasso logistic method selected 123 features whereas SVM classifiers used all of
the features. Thus, the SWAG produced low-dimensional, easy-to-interpret models due to the
very small number of features used by keeping the accuracy comparable to the models using the
same dataset if not higher. The SWAG therefore delivered a library of low-dimensional models
while preserving accuracy and, in the case of LOGIT, a more complete interpretation due to the
corresponding coefficients.

For completeness, in addition to accuracy, we also provide the equivalent versions of Table 3
for the sensitivity and specificity metrics given respectively in Table 6 and Table 7 in the Ap-
pendix. Examining the tables demonstrates that all models with and without SWAG have higher
specificities compared to sensitivities. Discarding the SVM-L which achieves perfect specificity
at the cost of null sensitivity, some SWAG-LOGIT models correctly classify 89% of children
without ADHD. However, none of the SWAG models demonstrate the same level of effective-
ness in correctly identifying true positive cases of ADHD. In ADHD-200 (2012), the winning
team achieved 94% specificity by using a weighted combination of several algorithms (Eloyan
et al., 2012). As highlighted previously however, it is not advisable to draw comparisons between
our results and those from the competition given the different data and tasks, also considering
the lack of interpretability of those results. We also note that it is difficult to achieve high
sensitivity and good generalization in the population due to heterogeneity. Achieving this goal
requires extensive collaborative neuroimaging endeavors across multiple sites, even if compiled
retrospectively (Arbabshirani et al., 2017; Castellanos and Aoki, 2016).

As mentioned in Section 2 and largely based on the information provided in Table 1, the
SWAG can also help in delivering a network of features. The latter consists of a visual represen-
tation of the selected features which can help to determine the size and direction of impact of
the features according to the other features they are connected to, see e.g. Molinari et al. (2020)
and Miglioli et al. (2022). Building a SWAG network for these results can help to interpret
the relation between the selected features and thus provide further insight into which connec-
tions help in the detection of ADHD. Figure 3 shows the SWAG network of the models using
LOGIT. As mentioned previously, each feature represents a connection between specific regions
and therefore in Figure 3 each node represents a feature and is labeled with the corresponding
letter presented in Table 1. In particular, the size of the nodes is proportional to the frequency
of the feature within the SWAG models while the thickness of the edges connecting them repre-
sents the frequency with which the features are present in the same model together (the thicker
the line, the more the features are present together). The latter information is not provided
in Table 1 as neither is the color of the edges which represents the intensity and direction of
the Spearman correlation between these features. However we can find information regarding
the median value of the coefficients associated with each feature (node) which is indeed also
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Figure 3: SWAG network of the ADHD dataset using LOGIT. Each node represents a feature
consisting in a connection between specific regions of the brain. The corresponding feature names
can be found in Table 1. The color of the node illustrates the sign of the median of the estimated β

coefficients (i.e. the median of all coefficients that a feature takes in each of the SWAG models).
The size of each node is proportional to the percentage of models that contain that feature
among all SWAG models. The thickness of each link between different nodes is proportional to
the percentage of times two features are present together among all SWAG models. The color of
the link shows the value of the Spearman correlation coefficient between two different features
(blue for positive correlation and red for negative). The grey links represent the connection
between features that appear together with less frequency than the ones with red/blue links
between them.

presented in the last column of Table 1: purple for a positive median coefficient and green for
negative.

5 Discussion
From our findings, which confirm and extend on conclusions from previous research, it becomes
evident that ADHD is characterized by significant disruptions in connectivity within and between
posterior and anterior regions of the brain. Specifically, connectivity within and between the
frontal and temporal/parietal lobes of the brain were identified to be important across models.
These observations are in agreement with our current understanding of the neural basis of brain
alterations in ADHD. For example, there is a growing body of evidence pointing to the temporal
lobe as a key area of interest in understanding ADHD (Sowell et al., 2003; Carmona et al.,
2005; Kobel et al., 2010). Likewise, the importance of the frontal cortex for ADHD has long
been known and recent studies demonstrate that alteration of frontal activity via neurofeedback
improves ADHD sympotology (Rubia et al., 2019). Given the centrality of fronto-temporal and
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fronto-parietal networks in attentional systems, multiple studies have reported alterations in
structure, function and connectivity in both temporal and parietal cortices in addition to the
frontal lobe (Soman et al., 2023; Lin et al., 2023). The fact that our approach identifies specific
connections in these brain networks provides confidence that the accuracy provided is based
on underlying neural alterations in individuals with ADHD that are plausible based on prior
literature.

Delving into more fine-grained insights from SWAG outputs, Table 1 and Figure 3 reveal
varying strengths in brain connections between ADHD and healthy individuals. Positive coeffi-
cients in the SWAG network are observed in eight connections, while eight others display negative
coefficients. Notably, the strength or weakness of certain brain connections in ADHD tends to
co-vary with other connections of similar strength or weakness, indicating a network-level imbal-
ance. For instance, features with positive coefficients associated to frontal and temporal regions
(such as B and C) exhibit a positive Spearman correlation, while those with negative coefficients
(such as D and E) co-vary similarly. On the contrary, features characterized by connections
within the frontal lobe (i.e. B and E in the network) and that are associated with positive and
negative coefficients respectively, demonstrate a negative Spearman correlation therefore high-
lighting anti-variation. This underscores that ADHD-induced neural changes represent a broader
network-level imbalance rather than isolated alterations in specific regions. By recognizing this,
we can postulate that the development of ADHD therapies may be more effective through a net-
work re-balancing approach, leveraging insights from consistent directional impacts (β) outlined
in Table 1. This is indeed exemplified by focusing on how the implicated regions, associated
with processes impaired in ADHD such as attention and motor control, can yield novel insights.
More in detail, while the focus of this work remains the population-level patterns (given the
heterogeneous nature of the data), among the features that relate to ADHD we must underline
how the connectivity with the Supplementary Motor Area (F) increases the probability of ob-
serving ADHD and is indeed linked to a lack of motor control, contributing to symptoms like
fidgeting which is observed in subjects with ADHD. Conversely, the connections that involve the
frontal control region (e.g. D, G and I) exhibit an anti-variation with the Supplementary Motor
Area connectivity, supporting executive control processes such as sustained attention and also
control of motion, thereby reducing the probability of ADHD. In fact, stronger connections in
these regions correlate with lower ADHD probability.

The main clinical implications of our study encompass several key points. Firstly, we iden-
tify interactions between broader brain regions, serving as reliable and reproducible potential
biomarkers for ADHD. However, the current accuracy of these biomarkers is modest, limiting
their immediate clinical applicability. Instead, they prove valuable for gaining insights into the
neural basis of ADHD. Our study injects realism into claims of utilizing neuroimaging as a
clinical diagnostic aid for ADHD, highlighting the need for further refinement before real-world
deployment. Additionally, we demonstrate the utility of the SWAG in characterizing model
generalizability, offering the prospect of employing different models for distinct subsets of the
disorder to enhance overall accuracies. Acknowledging the heterogeneity of ADHD, we advocate
for a nuanced approach, recognizing that a singular model may struggle to comprehensively
characterize this heterogeneous spectrum disorder. As one can see however, the SWAG models
mainly focused on temporal and frontal lobes of the brain. In Table 1 the features that are fre-
quently chosen as significant have a consistent impact on the probability of having ADHD (i.e.
coefficients always have the same sign), irrespective of the feature combinations and variations
in different models. All of this supports the idea of obtaining stable results by using a multi-
model approach like SWAG despite the data inconsistencies between diverse acquisition sites.
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Our results highlight significant regions of focus for future research in this area, contributing
to address the challenges in achieving high accuracy and generalization performance, especially
when dealing with diverse clinical populations (Lanka et al., 2020). Notwithstanding these lim-
itations, with a better understanding of the progression of these disorders and ongoing research
on the sensitivity of neuroimaging-derived metrics to underlying pathology, it is conceivable that
neuroimaging-based machine learning tools could assist clinicians in future ADHD diagnoses.
However, several challenges outlined earlier in this paper, regarding the classification of various
disorders and diseases, must be addressed before reaching that point.

6 Conclusion
The use of a multi-model framework based on the SWAG highlights how shifting from a single
model paradigm can be useful in gaining further insights into complex and hard-to-predict
problems. Indeed, the SWAG models managed to preserve current ranges of ADHD detection
accuracy while delivering consistent findings across different models, methods and across diverse
datasets, as well as provide consistent and interpretable results to inform and direct future
studies in this field.

Supplementary Material
All of our code is open source in the following GitHub repository https://github.com/
yagmuryavuzozdemir/SDSS_SWAG_ADHD. One can find the necessary codes and the datasets
used in the analysis of our work in this folder.
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