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ABSTRACT 

Compositional data are positive multivariate data, constrained to lie within 

the simplex space. Regression analysis of such data has been studied and many 

regression models have been proposed, but most of them not allowing for zero 

values. Secondly, the case of compositional data being in the predictor variables 

side has gained little research interest. Surprisingly enough, the case of both the 

response and predictor variables being compositional data has not been widely 

studied. This paper suggests a solution for this last problem. Principal 

components regression using the 𝛼 -transformation and Kulback-Leibler 

divergence are the key elements of the proposed approach. An advantage of this 

approach is that zero values are allowed, in both the response and the predictor 

variables side. Simulation studies and examples with real data illustrate the 

performance of our algorithm. 
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1 Introduction 

Compositional data are positive multivariate data whose vector elements sum to the same 

constant usually taken to be 1 for convenience. Data of this type arise in many fields such as 

geology, ecology, archaeometry, economics, geochemistry, biology, political sciences and 

forensic sciences, showing their wide applicability. Their support, termed simplex, is given 

by 

𝕊𝐷−1 = {(𝑥1, … , 𝑥𝐷)𝑇|𝑥𝑖 ≥ 0, ∑ 𝑥𝑖 = 1

𝐷

𝑖=1

}, (1) 

where D denotes the number of variables (better known as components). 

There are various techniques for regression analysis with compositional data being the 

response variables. See for example Aitchison (2003) who used classical methods on the log 

-ratio transformed space and Gueorguieva et al. (2008) who applied Dirichlet regression. 

Stephens (1982) and Scealy and Welsh (2011) transformed the data on the surface of the unit 

hyper-sphere, using the square root transformation, and thus treat them as directional data. 

Tsagris (2015b) proposed the 𝛼-regression which relies upon the 𝛼-transformation (Tsagris 

et al., 2011), whereas divergence based regression techniques were suggested by Tsagris 

(2015a) and Murteira and Ramalho (2016). Finally, compositional data regression from the 

Bayesian perspective was suggested by Shimizu et al. (2015). 

An important issue in compositional data is the presence of zeros, which cause problems 

for the logarithmic transformation. The issue of zero values in some components is not 

addressed in most papers and especially in the task of regression. When zero values exist in 

data, Dirichlet models and the log-ratio transformation suggested by Aitchison (1982, 2003) 

and Egozcue et al. (2003) will not work unless a zero value imputation is applied first. The 

square root transformation on the other hand, the 𝛼 -regression and divergence based 

regression models treat the zero values naturally. More recently, Tsagris and Stewart (2018) 

proposed a Dirichlet regression modified to account for zero values. As for the classification 

setting, Tsagris (2014) proposed the use of a power transformation applicable to cases with 

zero values in the data. 

Most papers focus on compositional data being in the response variable side. The case of 

compositional data in the predictor variables side was treated first by Hron et al. (2012) who 

applied the isometric log-ratio transformation, defined in (4), to the compositional data and 

then applied a standard linear regression model. The case of both the dependent and the 

independent variables containing compositional data has been treated by Wang et al. (2015) 

in the context of variable selection. Wang et al. (2013) suggested the use of the isometric log 

-ratio transformation (4) on both sides. Wang et al. (2010) is the one closest to our work who 

transformed the compositional data using (4) and then applied partial least squares. 
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The isometric log-ratio transformation (4), or the more general 𝛼-transformation (6), 

reduces the dimensionality of the compositional data by 1, via the sub-Helmert matrix (the 

Helmert matrix (Lancaster, 1965) without the first row). Collinearities in the data may still 

exist, and this is why Tsagris (2015b) suggested the use of principal components regression 

(Jolliffe, 2005). A second advantage of the latter approach is that unlike the isometric log    

-ratio transformation (4), the 𝛼-transformation (6) is applicable when zero values are present 

and no zero values imputation is necessary. This is very important, since in large datasets with 

many zero values, (not necessarily sparse data) imputation is not a suggested strategy. In 

addition, Tsagris (2015b) showed that 𝛼-PCR can lead to better predictions, with a value of 

𝛼 other than zero. 

We propose a solution combining some of the aforementioned papers. Specifically, we 

engage the 𝛼-principal components regression (𝛼-PCR) for the independent compositional 

data and the multinomial logit regression (MLR) model (Murteira and Ramalho, 2016) for the 

response compositional data. We not only substitute the partial least squares of Wang et al. 

(2010) with PCA but we also generalize either of these methods since a more general 

transformation than a logarithmic is applied. In addition, zero values are treated naturally, 

without any modification of the data or conditional distributions. 

In the next section we present some preliminaries regarding the statistical analysis of 

compositional data, the MLR model (Murteira and Ramalho, 2016) and the 𝛼 -PCR 

(Tsagris,2015b). The new approach is presented in Section 3. Simulation studies are presented 

in Section 4 and a demonstration with real data is given in Section 5. Finally, the conclusions 

close the paper. 

 

2 Preliminaries 

Below we summarize some important information regarding compositional data that will 

help us throughout this paper. We start with the listing of some relevant transformations, 

continuing with the 𝛼-PCR and the multinomial logit regression. 

2.1 Transformations for compositional data 

2.1.1 Additive log-ratio transformation 

For a composition 𝐱 ∈ 𝕊𝐷, the additive log-ratio transformation is defined in Aitchison 

(1982) as 

𝑦𝑖 = log (
𝑥𝑖

𝑥𝐷
)  𝑓𝑜𝑟 𝑖 = 1, … , 𝐷 − 1,  (2) 

where 𝑥𝐷 is the last component playing the role of the common divisor, the choice of which 

is not restrictive, since any component can play this role. 
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2.1.2 Centered log-ratio transformation 

The drawback of (2) is that it treats the components asymmetrically. The interpretation of 

the results, in many cases, depends upon the common divisor. For this reason Aitchison (1983) 

suggested the centered log-ratio transformation 

𝑤𝑖 = log (
𝑥𝑖

∏ 𝑥𝑗
1/𝐷𝐷

𝑗=1

) , for 𝑖 = 1, … , 𝐷. (3) 

Note that the zero sum constraint in Equation (3) is an obvious drawback of this 

transformation as it can lead to singularity issues. 

2.1.3 Isometric log-ratio transformation 

In order to remove the redundant dimension imposed by this constraint, one can apply the 

so called isometric log-ratio transformation (Egozcue et al., 2003) 

𝑧0 = 𝐰𝐇𝑇 , (4) 

where 𝐇  is the Helmert matrix (Lancaster, 1965) (an orthonormal 𝐷 × 𝐷  matrix) after 

deletion of the first row. This is a standard orthogonal matrix in shape analysis used to 

overcome singularity problems (Dryden & Mardia, 1998;, Le & Small, 1999). By left 

multiplying the data with the Helmert matrix (without the first row) the data are mapped onto 

ℝ𝐷−1 and the zero sum constraint is removed. 

2.1.4 𝜶-transformation 

Tsagris, Preston & Wood (2011) developed the 𝛼 -transformation as a more general 

transformation than that in Equation (4). Let 

𝐮𝛼 = (
𝑥1

𝛼

∑ 𝑥𝑗
𝛼𝐷

𝑗=1

, … ,
𝑥𝐷

𝛼

∑ 𝑥𝑗
𝛼𝐷

𝑗=1

)

𝑇

 (5) 

denote the power transformation for compositional data as defined by Aitchison (2003). In a 

manner analogous to Equations (3-4) they defined the 𝛼-transformation to be 

𝐳𝛼 = (
𝐷𝐮𝛼

𝛼
−

1

𝛼
) 𝐇𝑇 . (6) 

The 𝛼-transformation (6) converges to the isometric log-ratio transformation (4) as 𝛼 

tends to zero (Tsagris et al., 2011). 

2.2 𝜶-Principal components regression 

Hron et al. (2012) studied the case of compositional data being predictor variables by using 

(4). Tsagris (2015b) has already covered this case and we are interested in generalizing this 

idea to cover the case of multicollinearity as well. 
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Principal components regression (PCR) is based on principal component analysis (Jolliffe, 

2005) and hence we will briefly describe the algorithm for PCR using the 𝛼-transformation 

(Tsagris, 2015b): 

1. Choose a value of 𝛼, apply the 𝛼-transformation (6) onto the compositional data 

(independent variables) X and obtain 𝐙𝛼. 

2. Perform eigen analysis on 𝐙𝛼
𝑇𝐙𝛼 and calculate the matrix of the eigenvectors V and 

the scores 𝐒𝐂 = 𝐙𝛼𝐕. 

3. Perform regression analysis using the scores (SC) as predictor variables. 

We will term the above procedure 𝛼-PCR. The value of 𝛼 and the number of principal 

components which lead to the optimal results are chosen via cross validation (CV) described 

in detail in Section 3. 

We can use any number of eigenvectors (or principal component). If we use all of them, 

then we end up with the fitted values as if we implemented a regression model with all the 

components of the independent composition. However, our focus is to use a subset of them in 

order to reduce noise. We do not perform feature selection, nor do we perform any statistical 

inference regarding the coefficients of the principal components. From the perspective of an 

applied scientist or a researcher from another field (e.g. ecologist), statistical inference is 

important. They would be interested in the significance of the predictor variables. But the way 

we have formulated our approach, the significance of the predictor variables is not feasible. 

In addition, we are more interested in estimating the dependent compositions as accurately as 

possible. That is we are more interested in the predictive performance of the model. 

2.3 Multinomial logit regression 

When compositional data are in the response variables side (the usual and most studied 

case), Murteira and Ramalho (2016) mentioned the use of the Kullback-Leibler divergence of 

the observed from the fitted compositional vectors 

min
𝜷

∑ 𝑦𝑖

𝑛

𝑖=1

log
𝑦𝑖

𝐟𝐢(𝜷; 𝑥)
= max

𝜷
∑ 𝑦𝑖

𝑛

𝑖=1

log𝐟𝐢(𝜷; 𝑥), (7) 

where 

𝐟𝐢(𝜷; 𝑥) = (
1

∑ 𝑒𝑥𝑖
𝑇𝜷𝑗𝐷

𝑗=1

,
𝑒𝑥𝑖

𝑇𝜷2

∑ 𝑒𝑥𝑖
𝑇𝜷𝑗𝐷

𝑗=1

, … ,
𝑒𝑥𝑖

𝑇𝜷𝑑

∑ 𝑒𝑥𝑖
𝑇𝜷𝑗𝐷

𝑗=1

)  

and y and x are the compositional response variables and the set of predictor variables 

respectively. 

Closed form solution for the minimization of (7) does not exist, but the use of the Newton 

-Raphson algorithm (Böhning, 1992) can speed up the minimization process. The advantage 

of using (7) instead of the classical multivariate regression after the additive (2) or the 
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isometric (4) log-ratio transformation, is that zeros can be treated naturally and require no 

further changes or modifications. 

 

3 Compositional-compositional regression 

Compositional-compositional regression refers to the case of both the response and the 

predictor variables consisting of compositional data. We will denote the response or dependent 

variables by response or dependent composition and the independent variables by independent 

composition or predictor composition. We have defined all the prerequisites necessary to 

construct our proposed methodology. All we need to do is couple the 𝛼-PCR with the MLR. 

Hence, we will substitute x in (7) with 𝐒𝐂 = 𝐙𝛂𝐕, the scores of the PCA after applying 

the 𝛼-transformation to the independent composition, and (7) will become 

𝑚𝑎𝑥
𝜷

∑ 𝑦𝑖log𝐟𝐢

𝑛

𝑖−1

(𝜷; 𝐒𝐂), 

where 

𝐟𝐢(𝜷; 𝐒𝐂) = (
1

∑ 𝑒SC𝑖
𝑇𝜷𝑗𝐷

𝑗=1

,
𝑒SC𝑖

𝑇𝜷2

∑ 𝑒SC𝑖
𝑇𝜷𝑗𝐷

𝑗=1

, … ,
𝑒SC𝑖

𝑇𝜷𝑑

∑ 𝑒SC𝑖
𝑇𝜷𝑗𝐷

𝑗=1

). 

Similarly to Tsagris (2015b) we will use the K-fold CV protocol to choose the optimal 

values of 𝛼 and 𝑠, the number of principal components. According to the K-fold CV protocol 

we split the data into K distinct sets, and each time remove one fold and use K−1 sets to build 

the compositional-compositional regression. The fold remained outside the model 

construction is used as a test set to validate the model. The performance or predictability of 

the model is measured by the Kullback-Leibler divergence of the true from the fitted 

compositional vectors. The optimal results in our case, chosen values of 𝛼 and 𝑠, the number 

of Principal Components (PCs), will refer to minimization of the mean Kullback-Leibler 

divergence of the observed from the predicted compositional data.  

The response and the predictor compositions need not be of the same dimensions and the 

use of the MLR is by no means restrictive. One could also use the usual multivariate linear 

regression model (Mardia et al., 1979) on the log-ratio transformed data, Dirichlet regression 

(Gueorguieva et al., 2008) and its adjusted version for zero values (Tsagris and Stewart, 2018), 

the ordinary least squares (Murteira and Ramalho, 2016), the ES-OV regression (Tsagris, 

2015a) or any other regression model for compositional response variables. We propose the 

MLR model though because not only it handles zero values naturally, but also because it is 

very fast to fit. 
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4 Simulation studies 

We conducted simulation studies to assess the performance of the proposed algorithm. We 

examined our algorithm’s capability of recovering the true values of 𝛼 and the true number 

𝑠. We used the open software R (R Core Team, 2017) for all our simulation studies an data 

analysis. 

We used the fgl dataset available in the MASS library in R (Ripley, 2002). The data concern 

measurements of forensic glass fragments and consist of 214 observations on 8 chemical 

elements. The dataset contains a huge amount of zeros and suits excellent for our purpose. We 

chose a value of 𝛼  and applied the 𝛼 -transformation (6). In the transformed data, we 

calculated the 7 PCs. We took the scores from the first PC and multiplied it with some 

generated beta coefficients. We then generated data from a multivariate normal and added 

some white noise to them. The data were then mapped onto the simplex using the inverse of 

the additive log-ratio transformation (2). Keeping the value of 𝛼 constant we repeated this 

procedure using all 7 PCs, one by one. We then chose another value of 𝛼 and repeated this 

process. 

In all cases, positive values of 𝛼 were used only and specifically we used 10 values, 

ranging from 0.1 up to 1 equally spaced. The above process was repeated 200 times for each 

combination of 𝛼 and number of PCs. For each combination we computed the difference 

between the true and the estimated value of 𝛼, and the percentage the times the algorithm 

chose the correct value of 𝑠. Tables 1 and 2 summarize our findings and Figure 1 illustrates 

them. 

Table 1 contains the average bias of 𝛼 when the dependent composition was generated 

from one, two or three PCs. The estimated bias of 𝛼 is always small, and is not really affected 

by the true value of 𝛼. When 4 or more PCs were used, the bias increases. 

Table 2 contains the proportion of correct identification of the number of PCs. Whether 

our methodology selected the true number of PCs used does not depend so much on the true 

value of 𝛼, but rather on the number of PCs. By examining the table in column-wise manner, 

we see that as we move from left to right, the percentage of correct identification of the true 

number of PCs decreases. 
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Table 1: Estimated bias ∑ (�̂�𝑖 − 𝛼)200
𝑖=1 /200 of the 10-fold CV for a range of values of 𝛼 and 

number of PCs. 

 PCs=1 PCs=2 PCs=3 PCs=4 PCs=5 PCs=6 PCs=7 

𝛼 = 0.1 0.001 0.027 0.049 0.076 0.084 0.093 0.072 

𝛼 = 0.2 0.001 0.026 0.033 0.017 0.03 0.061 0.079 

𝛼 = 0.3 -0.001 0.002 0.01 0.016 -0.004 0.008 -0.014 

𝛼 = 0.4 0.002 0.006 -0.024 0.041 -0.078 -0.021 -0.047 

𝛼 = 0.5 0.006 0.005 0.018 0.017 -0.079 -0.098 -0.070 

𝛼 = 0.6 0.001 -0.002 0.021 -0.021 -0.07 -0.091 -0.128 

𝛼 = 0.7 -0.001 -0.028 0.004 -0.070 -0.09 -0.127 -0.131 

𝛼 = 0.8 -0.001 -0.012 -0.043 -0.023 -0.128 -0.083 0.012 

𝛼 = 0.9 0.002 0.001 -0.005 -0.003 -0.055 -0.027 0.008 

𝛼 =  1 0.001 0.001 -0.02 -0.057 -0.072 -0.087 -0.097 

 

Table 2: Proportion of times the correct number of PCs was selected by the 10-fold CV for a 

range of values of 𝛼 and number of PCs. 

 PCs=1 PCs=2 PCs=3 PCs=4 PCs=5 PCs=6 PCs=7 

𝛼 = 0.1 0.86 0.82 0.4 0.54 0.38 0.36 0.60 

𝛼 = 0.2 0.92 0.84 0.22 0.46 0.44 0.42 0.44 

𝛼 = 0.3 0.82 0.86 0.34 0.62 0.54 0.46 0.58 

𝛼 = 0.4 0.92 0.86 0.34 0.46 0.42 0.5 0.50 

𝛼 = 0.5 0.86 0.76 0.2 0.52 0.1 0.46 0.64 

𝛼 = 0.6 0.84 0.84 0.32 0.6 0.14 0.08 0.60 

𝛼 = 0.7 0.8 0.78 0.66 0.74 0.1 0.24 0.64 

𝛼 = 0.8 0.96 0.67 0.63 0.73 0.23 0.37 0.47 

𝛼 = 0.9 0.8 0.97 0.87 0.73 0.27 0.47 0.30 

𝛼 =  1 0.93 0.8 0.77 0.67 0.17 0.27 0.53 

 

5 Examples with real data 

5.1 Example datasets 

We will now introduce four datasets, taken from Aitchison (2003), to illustrate the 

performance of our proposed approach described in Section 3. The sample sizes (see Table 3) 

are rather small. Hence, we will not perform a 10-fold CV, but a leave-one-out CV 
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(a) (b) 

Figure 1: Graphical representation (heatmap plots) of Tables 1 and 2. (a) Estimated bias 

∑ (�̂�𝑖 − 𝛼)200
𝑖=1 /200 for a range of values of 𝑠. (b) Proportion of correct choice number of PCs. 

 

(LOOCV) protocol and we will report the optimal pairs of parameters (values of 𝛼 and 𝑠) 

found. 

⚫ Clam ecology. From the many colonies of clams in East Bay, 20 colonies from the 

East Bay were selected at random and from each a sample of clams was taken. For each colony 

the proportions of clams in each colour-size combination was estimated and the corresponding 

compositions, consisting of 6 components, were recorded. A similar study was conducted in 

West Bay and the resulting 20 colour-size compositions. The task of interest is to quantify the 

relationship between the two compositions. 

⚫ Hair and eye colours. For each of the 33 counties of Scotland the percentages of 

boys in five hair-colour categories and four eye-colour categories are available. The question 

of interest is to predict the composition of the hair colours from the eye colour compositions 

and vice versa. 

⚫ White-cells. A cytologist is interested in the possibility of introducing into his 

laboratory a new method of determining the white-cell composition of a blood sample, that is 

the proportions of the three kinds of white cells, among the total of white cells observed. The 

current method involves time-consuming, microscopic inspection and is known to be accurate, 

whereas the proposed method is a quick automatic image analysis whose accuracy is still 

largely undetermined. In an experiment to assess the effectiveness of the proposed method, 

each of 30 blood samples was halved, one half being assigned randomly to one method, the 

other half to the other method. It is fairly obvious that the two methods produce different 

compositions and we are interested in predicting the microscopic inspection compositions 

from the compositions produced by the new method. 

⚫ Fruit evaluation. The yatquat tree produces each season a single large fruit whose 

quality is assessed in terms of the relative proportions by volume of flesh, skin and stone. In 

an experiment to investigate whether a certain hormone influences quality, an agricultural 
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scientist uses 40 yatquat trees, randomly allocates 20 trees to the hormone treatment and leaves 

untreated the remaining 20 trees. The fruit compositions of the 40 trees in the present and the 

preceding season are available. The task is to examine the relationship between the 

compositions in the two seasons. 

In the Clam ecology and Hair and eye colours datasets there is no dependent and 

independent variables. Hence, we will perform regression on both ways. In the White-cells 

dataset, the response composition is the microscopic inspection and the independent 

composition is the new method of image analysis. For the Fruit evaluation dataset, the current 

season is the response composition and the past season will play the role of the predictor 

composition. 

 

Table 3: Information about the example pairs of datasets used. The sample size and the number 

of components for each composition is given. 

Dataset Sample size 
No of components 

of the one composition 

No of components 

of the other composition 

Clam ecology 20 6 6 

Hair and eye colour 33 5 4 

White-cells 30 3 3 

Fruit evaluation 40 3 3 

 

5.2 Results 

Figure 2 contains the heatmap plots of LOOCV using the first two datasets (Clam ecology 

and Hair and eye colours), whereas Figure 3 contains the heatmap plots of LOOCV using the 

other two datasets (White-cells and Fruit evaluation). Table 4 contains the optimal values of 

𝛼 and 𝑠, along with their corresponding minimum Kullback-Leibler divergence. We see that 

in most cases a value of 𝛼 other than zero is the optimal for transforming the predictor 

compositions. 

For the clam ecology dataset, only one PC is necessary to reach the optimal predictive 

performance for both cases. The chosen value of 𝛼 is not the same whatsoever, whereas for 

the hair and eye colour dataset the combination of 𝛼 and 𝑠 is similar in both cases. In these 

two datasets, there was no distinction between response and predictor composition, but for the 

white cells and fruit evaluation dataset there is. For the white-cells, the 𝛼 = 0.2 and 𝑠 = 2 

PCs lead to the optimal predictive performance, while for the fruit evaluation the optimal 

transformation was the 𝛼-transformation with 𝛼 = 1 using 𝑠 = 1 PC. This means, that the 

data were not 𝛼-transformed, but centered and multiplied by a constant, prior to the Helmert 

multiplication. 

Let us now make an observation for the Clam-ecology II example dataset, where the 
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optimal value of 𝛼 was −1. We remind the reader, that if zero values are present in the 

independent composition, only positive values of 𝛼 are allowed. 

 

Table 4: Results for each dataset. The optimal value of 𝛼 and number of PCs along with the 

minimum average Kullback-Leibler divergence. 

Dataset 𝛼 Number of PCS Average Kullback-Leibler divergence 

Clam ecology I 0.0 1 0.022 

Clam ecology II -1 1 0.023 

Hair and eye colour I 0.5 2 0.004 

Hair and eye colour II 0.4 3 0.005 

White-cells 0.2 2 0.005 

Fruit evaluation 1.0 1 0.0015 

 

6 Conclusions 

In this work we suggested a methodology for the case of both the response and the 

predictor variables consisting of compositional data. The approach is based upon combining 

prior work for regression with compositional data. Our simulation studies and examples 

illustrated the proposed methodology showing that it works satisfactorily. We should highlight 

also, that instead of PCA or partial least squares (Wang et al., 2010) other methods could be 

used as well. In any case, the 𝛼-transformation (6) should be applied to the independent 

composition as it gives more flexibility than the isometric log-ratio transformation (4) and 

allows for zero values. 

The multinomial logit regression is not the only available regression model. In the case of 

no zero values, the usual log-ratio methodology or any other regression model could be used 

as well. In addition, principal components is again not the only dimensionality reduction 

technique. Principal coordinate analysis, or kernel PCA (Schölkopf et al., 1997), more general, 

could be used to capture non-linear dependencies among the compositional data. 

Our simulation studies indicated that the bias in the estimated 𝛼 increases as the true 

number of PCs required increases. A similar pattern was observed when selecting the number 

of PCs. The higher the true number of PCs, the lower the probability of selecting their exact 

number. 
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The examples with real data analysis illustrated the performance of our proposed 

methodology. 

Our future research is oriented at exploring the performance of our proposed method-ology 

in higher dimensions, for either the response or the predictor composition. This 

 

Clam ecology 

  

(a) East Bay regressed upon West Bay. (b) West Bay regressed upon East Bay. 

 

Hair and eye colours 

  

(a) Hair colour regressed upon eye colour. (b) Eye colour regressed upon hair colour. 

Figure 2: Heatmap plots of the Clam ecology and Hair and eye colours datasets. The horizontal 

axis contains the 𝛼 values and the vertical axis the number of PCs used. The values of the Kullback-

Leibler divergence are plotted, with low values being desirable. 
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issue has been examined only recently by Li (2015); Fang et al. (2015) and Kaul et al. (2016). 

In addition, the robustness to outliers and the case of zero values is to be investigated as well. 

Outliers in the predictor composition can be addressed via robust PCA 

 

  

(a) White-cells. (b) Fruit evaluation. 

Figure 3: Heatmap plots of the White-cells and Fruit evaluation datasets. The horizontal axis 

contains the 𝛼 values and the vertical axis the number of PCs used. The values of the Kullback-

Leibler divergence are plotted, with low values being desirable. 

 

(Filzmoser et al., 2018), while outliers in the response composition can be addressed via 

substitution of the MLR with a robust multivariate regression model after applying the 𝛼-

transformation (6). 
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Appendix 

𝜶-transformation and MLR 

The package Compositional is required. 

kl.alfapcr ＜- function(y, x, covar = NULL, a, k, xnew = NULL, 

B = 1, ncores = 1, tol = 1e-07, maxiters = 50) { 

z ＜- Compositional::alfa(x, a)$aff  

n ＜- nrow(z) 

p ＜- ncol(z) 

if (k > p) { 

k ＜- p 

} 

eig ＜- Compositional::prcomp(z, center = FALSE, scale = FALSE) 

values ＜- eig$sdev^2 

per ＜- cumsum( values / sum(values) ) 

vec ＜- eig$rotation[, 1:k, drop=FALSE] 

sc ＜- eig$x[, 1:k, drop = FALSE] 

if ( !is.null(covar) ) { 

sc ＜- cbind(sc, covar) 

} 

if ( !is.null(xnew) ) { 

xnew ＜- Compositional::alfa(xnew, a)$aff 

xnew ＜- cbind(xnew %*% vec, covar) 

} 

Compositional::kl.compreg(y, sc, xnew = xnew, B = B, ncores = ncores, 

tol = tol, maxiters = maxiters) 

} 

 

Tuning of the 𝜶-transformation and the number of PCs used in the MLR 

klalfapcr.tune ＜- function(y, x, covar = NULL, M = 10, maxk = 50,  

a = seq(-1, 1, by = 0.1), mat = NULL, graph = FALSE, 

tol = 1e-07, maxiters = 50) {  

n ＜- nrow(x) 

p ＜- nncol(x) – 1 

if ( min(x) = = 0 ) {  

a ＜- a [ a > 0 ] 
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} 

if ( maxk > p ) {  

maxk ＜- p 

} 

if ( !is.null(covar) ) {  

covar ＜- as.matrix(covar) 

} 

if ( is.null(mat) ) { 

nu ＜- sample(1:n, min( n, round(n / M) * M ) )  

options(warn = -1) 

mat ＜- matrix( nu, ncol = M ) 

} else {  

mat ＜- mat 

} 

M ＜- ncol(mat)  

rmat ＜- nrow(mat) 

mspe ＜- list() 

msp ＜- matrix( nrow = M, ncol = maxk )  

colnames(msp) ＜- paste("PC", 1:maxk, sep = " ") 

for ( i in 1:length(a) ) { 

xa ＜- Compositional::alfa(x, a[i])$aff  

for (vim in 1:M) { 

ytest ＜- y[ mat[, vim], , drop = FALSE ]  

ytrain ＜- y[ -mat[, vim], , drop = FALSE ]  

xtrain ＜- xa[ -mat[, vim],, drop = FALSE ]  

xtest ＜- xa[ mat[, vim], , drop = FALSE ]  

com ＜- sum(ytest * log(ytest), na.rm = TRUE) 

mod ＜- Compositional::prcomp(xtrain, center = FALSE) 

vec ＜- mod$rotation 

za ＜- mod$x 

zanew ＜- xtest %*% vec  

for ( j in 1:maxk ) { 

if ( !is.null(covar) ) { 

z ＜- cbind(za[, 1:j, drop = FALSE],  

covar[ -mat[, vim], drop = FALSE ] ) 

znew ＜- cbind(zanew[, 1:j, drop = FALSE], 

covar[ mat[, vim], drop = FALSE ] ) 
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} else { 

z ＜- za[, 1:j, drop = FALSE ] 

znew ＜- zanew[, 1:j, drop = FALSE] 

} 

est ＜- Compositional::kl.compreg(y = ytrain, x = z, xnew = znew,  

tol = 1e-07, maxiters = 50)$est 

res ＜- sum(ytest * log(est), na.rm = TRUE)  

msp[vim, j] ＜- com - res * is.finite(res) 

} 

} 

mspe[[ i ]] ＜- msp 

} 

names(mspe) ＜- paste("alpha=", a, sep = "")  

performance ＜- lapply(mspe, colMeans) 

performance ＜- matrix( unlist(performance), ncol = maxk, byrow = TRUE ) 

colnames(performance) <- paste("PC", 1:maxk, sep = " ")  

rownames(performance) <- paste("alpha", a, sep = " ") 

poia ＜- which(performance = = min(performance, na.rm = TRUE), arr.ind =TRUE) params 

＜- c( a[ poia[, 1] ], poia[, 2] ) 

names(params) <- c("best alpha", "best k")  

if ( graph ) { 

filled.contour(a, 1:maxk, performance, 

xlab = expression(paste(alpha, " values")),  

ylab = "Number of PCs", cex.lab = 1.3 ) 

} 

list(mspe = mspe, performance = performance,  

best.perf = min(performance), params = params) 

} 
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