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Abstract

In randomized controlled trials, individual subjects experiencing recurrent events may display
heterogeneous treatment effects. That is, certain subjects might experience beneficial effects,
while others might observe negligible improvements or even encounter detrimental effects. To
identify subgroups with heterogeneous treatment effects, an interaction survival tree approach is
developed in this paper. The Classification and Regression Tree (CART) methodology (Breiman
et al., 1984) is inherited to recursively partition the data into subsets that show the greatest
interaction with the treatment. The heterogeneity of treatment effects is assessed through Cox’s
proportional hazards model, with a frailty term to account for the correlation among recurrent
events on each subject. A simulation study is conducted for evaluating the performance of the
proposed method. Additionally, the method is applied to identify subgroups from a randomized,
double-blind, placebo-controlled study for chronic granulomatous disease. R implementation
code is publicly available on GitHub at the following URL: https://github.com/xgsu/IT-Frailty.
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1 Introduction
In many biomedical studies, a participant might experience recurring instances of the event of
interest. These recurrent events can include, for example, recurrent infections, cancer relapses,
and repeated hospitalizations. A characteristic shared by these recurrent events is the inherent
correlation between the events occurring within the same individual (Amorim and Cai, 2015).
Nonetheless, many studies tend to focus solely on the analysis of the initial occurrence of these
events (Yang et al., 2017), disregarding the correlation intrinsic to the recurrent events within an
individual, which could lead to decreased statistical power and biased estimates. Consequently, it
is essential to incorporate the within-individual correlation when modeling these events (Amorim
and Cai, 2015).

To fully exploit the recurrent event data, numerous extensions to the original Cox model
have been suggested to take subsequent events into account, including Andersen-Gill (Andersen
and Gill, 1982), Prentice, Williams, and Peterson (total and gap times) (Prentice et al., 1981),
Wei, Lin, and Weissfeld (Wei et al., 1989), and frailty models (e.g., Therneau and Grambsch,
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2000). Other related works include (Pepe and Cai, 1993; Kennedy et al., 2001; Kelly and Lim,
2000)

On the other hand, there is growing importance of detecting heterogeneous treatment ef-
fects in the realm of precision medicine. Many tree-based approaches have been proposed (Su
et al., 2008, 2009, 2011; Foster et al., 2011; Hao and Zhang, 2014; Kong et al., 2017) for sub-
group identification, a key aspect of comparative analysis that focuses on evaluating the impact
of treatment on responses. The aim is to understand the heterogeneity of the treatment effect
across different subpopulations. Techniques such as the Interaction Tree (IT) procedure utilize
recursive partitioning to conduct subgroup identification and can autonomously discover several
objectively defined subgroups (Su et al., 2009). Within some of these subgroups, individual sub-
jects may experience beneficial effects, while subjects in other subgroups may observe negligible
or even detrimental effects. However, it is noted that these interaction tree methodologies have
yet to be adapted for the analysis of recurrent event data.

Our study is motivated by a randomized, double-blind, placebo-controlled study (The In-
ternational Chronic Granulomatous Disease Cooperative Study Group, 1991) on chronic gran-
ulomatous disease (CGD), an uncommon inherited disorder typically initiating early in life and
potentially leading to childhood mortality. This trial was designed to assessed the overall efficacy
of interferon gamma in treating serious infections among patients with CGD. The primary end-
point is the recurrence of infections tracked for approximately one year. The results of the trial
established a significant efficacy of interferon compared to placebo, both in preventing the first
serious infection and in reducing the frequency of recurrent serious infections. The study also
reported that subgroups with age less than 10, X-linked disease, or autosomal recessive disease,
showed more beneficial effects. However, the study only considered one variable at a time and
did not provide the rationale for selecting subgroups, e.g., an age cutoff of 10. Our method aims
to seek objectively and optimally defined subgroups and explore differential treatment effects
on recurrent events by fully leveraging all the characteristics in the dataset. Understanding the
potential heterogeneity of treatment effects can provide valuable insights for tailoring treatment
strategies to individual patients, thereby optimizing the treatment of CGD.

The primary goal of this paper is to extend the interaction tree approach to recurrent event
data, enabling the identification of subgroups characterized by heterogeneous treatment effects.
While various approaches are available to model recurrent event data, our focus is on the frailty
Cox model (Clayton, 1978), where a log-normal frailty term is employed to account for the
correlation among recurrent events in the same individual. We implement the proposed method
with R (R Core Team, 2024), a widely used statistical software.

The rest of the paper is organized as follows. In Section 2, we introduce the model and
method proposed in this study. Section 3 presents the results of the simulation studies. In Sec-
tion 4, we apply our method to the data from the randomized clinical trial on chronic granulo-
matous disease. Finally, Section 5 concludes the paper, summarizing our findings and discussing
the implications of this work.

2 Methods
Recurrent event data, often encountered in medical and epidemiological studies, capture the
occurrences of repeated events over time, while accounting for the influence of covariates on the
event processes. Consider a typical study involving n subjects, each of whom may experience
multiple recurrent events. The resultant dataset can be presented as D = {(Yik, δik, trti , xik) :
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i = 1, . . . , n; k = 1, . . . , ni}, where subject i has ni recurrent events. Yik = min(Vik, Ci) is the k-th
observed recurrent time before censoring time Ci , and Vik denotes the k-th true recurrence time
from baseline. δik = I (Vik � Ci) is an indicator of recurrent or censoring status, where I (·) is the
indicator function. trti is a binary treatment indicator with 1 for treated and 0 for untreated,
xik ∈ R

p is the associated covariate vector.
In subgroup identification, it is interesting to see how baseline covariates contribute to the

heterogeneity of treatment effects. Therefore, we assume all covariates are measured at baseline
only, i.e., xik ≡ xi .

2.1 Frailty Model

Numerous approaches are available for modeling recurrent event time data, with three major
types being conditional models, marginal models, and frailty models. The outcome under consid-
eration for modeling can be either the time since study entry, also known as the total time (TT),
or the gap time (GT) since the previous event. For an in-depth exploration, readers are referred
to Cook and Lawless (2007), Therneau and Grambsch (2000), and Amorim and Cai (2015).
Among these approaches, the frailty model extends the Cox’s proportional hazards model by
introducing a random effect to account for dependence among the recurrent event times (Clay-
ton, 1978; Kelly and Lim, 2000). This random effect represents additional risk or frailty for
individual subjects, capturing unmeasured characteristics that cannot be explained by observed
covariates alone. The frailty model assumes that the correlated event times become independent
when conditioning on the covariates and random effects.

In this study, we consider frailty models of the form as follows

λi(t) = λ0(t) exp(βT xi + ηi), (1)

where λi(t) is the hazard (intensity) function for the recurrent time at time t (measured from
baseline) of subject i, λ0(t) is the baseline hazard function, β is the vector of coefficients for
the covariate xi , and ηi is the frailty or random effect terms for subject i. The frailty term ηi is
often assumed to follow either a Gaussian or log-gamma distribution. As recommended by the R
package coxme (Therneau, 2024), the Gaussian distribution aligns naturally with (generalized)
linear mixed models, enabling the incorporation of more complex variance-covariance structures
for random effects (Ripatti and Palmgren, 2000). In this study, we adhere to coxme and assume
a normal distribution N (0, σ 2) for ηi .

2.2 Interaction Tree (IT)

Interaction Tree (IT) (Su et al., 2008; Hou et al., 2015) is a tree-based method specifically
designed for subgroup identification. Its strength lies in its ability to handle non-linear covari-
ate effects and complex interactions. IT recursively partitions the data by identifying the best
split that captures the highest heterogeneity in treatment effects, resulting in a hierarchical tree
structure. Consequently, subjects in the terminal nodes with the highest beneficial treatment
effects are regarded as the most responsive to the treatment. The graphical tree representation
enhances the interpretability of IT analysis. With its capability to discover meaningful sub-
groups characterized by distinct treatment responses, IT becomes a valuable tool for improving
treatment effectiveness and advancing precision medicine.
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2.3 IT for Recurrent Event Data

Following a CART convention, IT analysis consists of three major steps: growing a large tree,
pruning, and tree size selection. Details will be given below.

2.3.1 Growing a Large Tree

In the first stage of IT analysis, a large preliminary tree is developed by continuously dividing
data into two subsets that show the greatest variation in treatment effects. For subject i, denote
the variables of interest as {Xij , j = 1, . . . , J }. The heterogeneity of treatment effects is assessed
through the following frailty model with an interaction term:

λi(t) = λ0(t) exp(β1trti + β2Zi + β3 Zi × trti + ηi), (2)

where the frailty term ηi follows N (0, σ 2) and Zi = I (Xij � a) is the indicator variable associated
with the binary split s for an ordinal or continuous covariate Xij . If Xij is nominal with levels
L = {l1, . . . , lr}, then Zi = I

(
Xij ∈ A

)
for a subset A ⊂ L is considered.

To evaluate the split s, it is natural to consider testing hypotheses: H0 : β3 = 0 versus
H1 : β3 �= 0. For Cox frailty models, three standard tests are available: the likelihood ratio test
(LRT), the score test, and the Wald test, all being asymptotically equivalent. The score test
is often deemed more computationally efficient in tree modeling. However, this is generally not
the case for interaction trees since the main effect term of the split indicator Zi is necessarily
included in the model. While all these choices are included in our implementation, we have
primarily used the Wald statistic as the splitting statistic, denoted as G(s), to assess the split
s. In addition, it is important to note that a splitting statistic can be similarly developed from
any of conditional or marginal models (Prentice et al., 1981; Andersen and Gill, 1982; Wei et al.,
1989). Nonetheless, our exposition is mainly focused on the frailty model-based approach.

For a given split s, the splitting statistic G(s) follows the chi-square χ2(1) distribution
with one degree of freedom under the null hypothesis H0. At node h, all permissible splits are
considered. The greedy search step constitutes the primary source of computational burden in
the entire interaction tree analysis. For a continuous Xj (hereafter we use Xj instead of Xij

for simplicity of notation), permissible splits involve all its distinct observed values that satisfy
additional stopping criteria. For a categorical Xj , examining all the subsets of its levels can
be computationally intensive. One remedy is to sort these levels according to the estimated
treatment effect within each level and then treat Xj as an ordinal covariate. The split s� with
the maximum splitting statistic, denoted as G(h),

G(h) = G(s�) = max
s

G(s),

which is associated with the most significant interaction with treatment, is selected as the best
split to bisect node h into two child nodes.

A large initial tree T0 is obtained by recursively applying the same procedure on child nodes
until some loosely defined stopping rules are met. Common stopping criteria in interaction trees
include maximum tree size, maximum tree depth, and minimum node size. The minimum node
size refers to the minimum number of subjects in either the treated or untreated group, separately
defined for node h and its subsequent child nodes. For recurrent event times, additional stopping
rules for the minimum number of events should also be enforced.
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2.3.2 Pruning

The large initial tree T0 contains both the important true model structure as well as superfluous
splits. A subtree of T0 will be selected as the final model. Nevertheless, T0 has a massive number
of subtrees, which make it unfeasible to consider all possible subtrees. Therefore, branches of T0

are iteratively trimmed, one at a time, until we reach the null tree model, which consists solely
of the root node. This results in a much smaller subset of subtrees for the subsequent assessment
and selection.

Variants of pruning have been proposed. Because IT splits by maximizing the between-
node difference, the maximized score statistic G(s) is an innate measure of goodness-of-split
for each internal node. Consequently, a split-complexity pruning algorithm for trees grown by
goodness-of-split (LeBlanc and Crowley, 1993) is naturally well-suited for IT.

The algorithm is based on the following split-complexity measure:

Gα(T ) = G(T ) + α|T ′| =
∑
h∈T ′

G(h) + α|T ′|, (3)

where T ′ denotes all the internal nodes of tree T and | · | means cardinality; the goodness-of-
split measure G(T ) = ∑

h∈T ′ G(h) represents the amount of heterogeneity in treatment effects
represented by tree T . The total number of internal nodes of tree T , |T ′|, is a measure of tree
complexity; and the complexity parameter α > 0 penalizes G(T ) for each added split. With fixed
α, the larger Gα(T ), the better tree model T .

As α increases from 0, there will be an internal node h of T0 that first becomes ineffective,
in the sense that the subtree after trimming the branch rooting from node h is more effective
than the subtree including that branch. This link h is then identified as the weakest link and
its associated branch is trimmed, yielding a subtree T1 � T0. Next, keep increasing α to find the
weakest link of T1 and trim it. Repeating this procedure leads to a limited number of subtrees,
T0 	 T1 	 T2 	 ... 	 TM , which forms a nested sequence of optimally pruned subtrees.

2.3.3 Tree Size Selection

From the sequence, one subtree will be chosen to serve as the final tree model. The same split-
complexity measure Gα(T ) serves as the criterion for model assessment comparison. To this end,
the goodness-of-split measure G(T ) can be overoptimistic (biased upwards) due to the adaptive
nature of the greedy search used in constructing the tree. As a result, a more ‘honest’ estimate of
G(T ) is needed. To do so, a test sample approach can be employed if the sample size is sufficiently
large. In cases with moderate or small sample sizes, a bootstrap method for bias correction can
be applied. In this method, the bias of G(T ) is first estimated through repeated resampling.
Subsequently, this estimated bias is applied to adjust G(T ), resulting in a new estimate of G(T )

with reduced bias. One is referred to LeBlanc and Crowley (1993) or Su et al. (2009) for details.
Furthermore, the complexity parameter α is fixed for tree size selection purposes. A value

within the range 2 � α � 4 is suggested in LeBlanc and Crowley (1993), where α = 2 aligns
with the Akaike information criterion (AIC) (Akaike, 1973) and α = 4 corresponds roughly
to the 0.05 significance level on the χ2(1) curve. Another viable choice is the logarithm of the
effective sample size in spirit of BIC (Schwarz, 1978). It is worth noting that the ‘effective sample
size’ in the context of recurrent events lacks a well-defined definition, with various options such
as the number of subjects (n), the number of recurrent or censoring events in total (N), the
number of recurrent events (

∑n
i=1

∑ni

k=1 δik), and the number of subjects with at least one event
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(∑n
i=1 I

(∑ni

k=1 δik > 0
))

. On the other hand, these choices typically do not differ much from each
other on the logarithmic scale unless in extreme scenarios. We have chosen to experiment with
log(n) and log(N) in simulation studies presented in Section 3. The final interaction tree T � is
selected as the one with maximum Gα(T ).

3 Simulation Studies
In this section, simulation studies are designed to assess the performance of the proposed in-
teraction survival tree method in subgroup analysis of recurrent event data. Through these
simulation studies, we aim to evaluate the accuracy, robustness, and effectiveness of our method
in subgroup identification and variable selection.

Each data set includes four covariates X1 to X4, which are generated independently from
Uniform(0, 1). In addition, a binary treatment variable ‘trt’, is generated from a Bernoulli dis-
tribution with p = 0.5. Setting Z1 = I {X1 � 0.5} and Z2 = I {X2 � 0.5}, we then generate the
recurrent event times from the following Cox frailty model:

λi(t) = ωi λ0(t) exp (β1trti + β2Zi1 + β3Zi2 + β4Zi1Zi2trti ) , (4)

with (β1, β2, β3)
T = (−1, 1, 1)T , where the multiplicative frailties ωi = exp(ηi) are generated

either from log-normal or a Gamma distribution. In either case, ωi has mean 1 and variance
θ = 1. When the log-normal distribution is used for ωi , this amounts to simulating ηi from
N (0, σ = 0.6935). When ωi follows the Gamma distribution, its density function is given by

f (ω) = ω1/θ−1e−ω/θ

�(1/θ)θ1/θ
,

for ω > 0 and θ > 0. This enables us to assess the robustness of our method when faced with
potential misspecification of the frailty distribution. In addition, the coefficient β4 corresponds
to the moderating effect of covariates on the treatment effect. We will manipulate β4 to explore
different levels of signal strength.

For the baseline hazard function λ0(t), we examine two choices: the exponential baseline
hazard with λ0(t) = 0.25, and the Weibull baseline hazard with λ0(t) = 2t . To generate recurrent
event times with the Weibull baseline hazard, we essentially compute Vi(k+1) =

√
V 2

ik − log Uik/τ
2
i

for the i-th subject, where Vik is the k-th recurrent event time with Vi0 = 0, Uik ∼ Uniform(0, 1),
and τ 2

i = ωi exp (β1trti + β2Zi1 + β3Zi2 + β4Zi1Zi2trti). Finally, we simulate a censoring time Ci

from Uniform (0, 5) for subject i so that Yik = min(Vik, Ci). By simulating different scenarios and
varying key parameters, we can thoroughly examine the performance of the interaction survival
tree approach under various conditions and gain insights into its strengths and limitations.

Given the moderately small sample size in the colorectal cancer study data, we specifically
focus on investigating the bootstrap method for tree size selection. Due to the intensive compu-
tational nature of this approach, we are constrained to examine a limited number of scenarios.
Each model setting is examined for 100 simulation runs with sample size n = 300. For each gener-
ated dataset, the number of bootstrap samples is set to 20. Six choices, {1, 2, 3, 4, log(n), log(N)},
are used for the complexity parameter α in determining the final tree model. In addition, the
minimum number of events in each arm in each terminal node is 3 with minimum node size
20. Performance metrics include variable selection, the number of null final trees (# T0), and
summaries of final tree sizes. In terms of variable selection, we count the number of final trees
that contain X1, X2, X1 & X2, and X1 or X2. To summarize the final tree sizes, we report the
mean and SD.
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Table 1: Simulation study I: the null case with β4 = 0 in Model (4) with log-normal frailties.

# Trees with Variables # Tree Sizes

λ0(t) α X1 X2 X1 & X2 X1 or X2 T0 Mean SD

Exponential 1 46 52 22 76 14 3.12 0.977
2 31 34 13 52 40 2.42 1.232
3 16 21 6 31 63 1.85 1.175
4 8 14 4 18 78 1.45 0.892
log(n) 2 4 2 4 95 1.09 0.429
log(N) 0 0 0 0 100 1.00 0.000

Weibull 1 51 50 24 77 8 3.31 0.838
2 38 38 15 61 29 2.67 1.164
3 22 23 7 38 53 1.94 1.108
4 9 15 0 24 71 1.50 0.870
log(n) 1 3 0 4 95 1.07 0.326
log(N) 0 0 0 0 100 1.00 0.000

3.1 Study I: The Null Case

We begin by examining the null case where no treatment-by-covariate interaction is present. To
achieve this, we set β4 = 0 in Model (4) with log-normal frailties. Consequently, the covariates X1

and X2 are only involved with additive effects. This setup enables us to thoroughly investigate
the Type I error or false signal issue that may arise in subgroup analysis, which is of utmost
importance for all subgroup analysis approaches (Sleight, 2000).

Table 1 provides a summary of the results from 100 simulation runs under the null case.
It is evident that the choice of α plays a central role in preventing false positive or Type I
errors of subgroup identification. When α ∈ {1, 2}, the likelihood of obtaining the true null tree
structure is only 40% or less. With higher values of α, false signals are better controlled. While
this process differs from traditional statistical hypothesis testing, one may wish to maintain a
small probability of committing a Type I error, such as 0.05 or 0.10. In this regard, only BIC-
typed penalties, i.e., log(n) or log(N), appear to meet this requirement effectively. This result
generally aligns well with those reported in Su et al. (2009) and Su et al. (2011). In subgroup
identification, it is crucial to differentiate between prognostic and predictive covariates. With
a relatively larger penalty, the interaction tree approach proves effective in discerning between
additive effects and interactions (Loh et al., 2019). Despite the inclusion of X1 and X2 in the
true model, their effects remain additive, thus seldom selected by the interaction tree (IT).
These conclusions hold true for both scenarios with constant or linear baseline hazard functions.
This underscores the efficacy of our method in precisely identifying and capturing significant
treatment-covariate interactions while avoiding false detection of non-existent interactions in the
data.

3.2 Study II: A Tree Model

Next we investigate the case when the true model is a tree-structured model. To achieve this,
we set β4 = 3 in Model (4) with log-normal frailties. This results in an underlying model that
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Table 2: Simulation study II: Tree Model (4) with β4 = 3 and log-normal frailties. The true tree
model has 3 terminal nodes induced by splits X1 � 0.5 and X2 � 0.5.

# Trees with Variables # Tree Sizes

λ0(t) α X1 X2 X1 & X2 X1 or X2 T0 Mean SD

Exponential 1 93 90 83 100 0 4.50 1.030
2 93 90 83 100 0 3.94 1.003
3 92 89 81 100 0 3.56 0.957
4 91 88 79 100 0 3.20 0.865
log(n) 91 88 79 100 0 2.98 0.619
log(N) 91 88 79 100 0 2.88 0.518

Weibull 1 94 95 89 100 0 4.41 0.944
2 93 94 87 100 0 3.86 0.910
3 91 93 84 100 0 3.44 0.833
4 91 93 84 100 0 3.21 0.671
log(n) 91 93 84 100 0 3.00 0.569
log(N) 91 92 83 100 0 2.88 0.477

can be represented by a tree structure with three terminal nodes induced by two splits X1 � 0.5
and X2 � 0.5. Our primary interest is to examine whether the interaction tree (IT) method
can accurately identify the true tree model and correctly select both X1 and X2 as the splitting
variables.

Table 2 provides the summarized results from 100 simulation runs. The IT method demon-
strates a notable ability to recover the true structure in the majority of cases. Regardless of
the choice of penalty parameters, a reasonably averaged tree size is achieved. However, when
α ∈ {1, 2} is small, some overfitting may occur. Conversely, employing a larger α results in a
reduction in the final tree size, mitigating the overfitting effect. As anticipated, both X1 and X2

emerge as predominant splitting variables in the final trees, indicating their consistent impor-
tance in shaping the tree’s structure. The choice of α has a minimal impact on variable selection
results. Despite the added complexity introduced by the Weibull baseline, the IT method per-
forms quite comparably to the case with a constant baseline hazard. This demonstrates the
efficiency and robustness of IT, which can be attributed to the semi-parametric nature of the
Cox frailty model.

3.3 Study III: Misspecified Frailty Distribution

In this investigation, we assess the sensitivity of our method to potential misspecification of the
frailty distribution. For this purpose, we generate data from Model (4) with gamma frailty, but
utilize the log-normal frailty, as implemented in the R package coxme (Therneau, 2024), to
develop the interaction trees. We experiment with both the null model and the tree model, and
the outcomes are summarized in Table 3.

Compared to the results in Tables 1 and 2, it is evident that our method demonstrates
remarkable robustness against frailty distribution misspecification overall, with only a slight
drop in performance. When data are generated from the null model, a larger penalty, especially
the BIC-typed ones, well prevents false positive errors. In such instances, the null tree model is
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Table 3: Simulation study III: misspecified frailty distribution. The null case has β4 = 0 and the
tree model has β4 = 3 in Model (4) with gamma frailty.

# Trees with Variables # Tree Sizes

Model λ0(t) α X1 X2 X1 & X2 X1 or X2 T0 Mean SD

Null Exponential 1 47 49 22 74 12 3.20 0.943
2 32 34 12 54 36 2.48 1.193
3 19 19 6 32 60 1.88 1.166
4 6 10 2 14 81 1.41 0.877
log(n) 2 6 0 8 88 1.20 0.586
log(N) 1 2 0 3 94 1.08 0.339

Weibull 1 54 42 21 75 4 3.36 0.704
2 39 28 12 55 28 2.67 1.146
3 24 16 6 34 51 2.03 1.150
4 14 6 3 17 73 1.50 0.893
log(n) 6 0 0 6 91 1.14 0.472
log(N) 2 0 0 2 96 1.05 0.261

Tree Exponential 1 91 95 86 100 0 4.53 0.904
2 91 95 86 100 0 4.00 0.943
3 89 95 84 100 0 3.51 0.937
4 89 95 84 100 0 3.18 0.702
log(n) 89 95 84 100 0 2.98 0.550
log(N) 89 95 84 100 0 2.91 0.452

Weibull 1 90 95 85 100 0 3.92 0.971
2 87 94 81 100 0 3.61 0.994
3 87 92 79 100 0 3.31 0.873
4 87 91 78 100 0 3.13 0.747
log(n) 86 89 75 100 0 2.87 0.544
log(N) 85 88 73 100 0 2.77 0.489

predominantly identified across 100 simulation runs. This outcome holds true irrespective of the
baseline hazard chosen. When data are generated from the tree structured model, our method
performs effectively in identifying the true tree structure in the majority of cases. As anticipated,
slight overfitting occurs when the penalty parameter α is too small. However, a larger α results
in a more parsimonious final tree, with the average tree size closely approximating its expected
value of 3. In terms of variable selection, either X1 or X2 is consistently chosen to split the
root node in the final tree. Moreover, over 70% of the final trees have both X1 and X2 as
splitting variables, effectively capturing the true tree structure induced by the splits X1 � 0.5
and X2 � 0.5.

3.4 Study IV: Weaker Signal with Unbalanced Cut

In this study, we change the definition of Z1 to Z1 = I {X1 � 0.2} and apply a weaker signal
for the interaction term by letting β4 = 1. This allows us to investigate how the proposed tree
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Table 4: Simulation study IV: weaker signal with unbalanced cut. The tree model has β4 = 1 in
Model (4) and splits induced by X1 � 0.2 and X2 � 0.5.

# Trees with Variables # Tree Sizes

λ0(t) α X1 X2 X1 & X2 X1 or X2 T0 Mean SD

Exponential 1 90 78 70 98 2 5.71 1.028
2 81 62 56 87 13 4.48 1.714
3 63 44 37 70 28 3.18 1.743
4 49 30 20 59 41 2.22 1.338
log(n) 30 15 8 37 63 1.59 0.911
log(N) 21 13 6 28 72 1.41 0.767

Weibull 1 88 63 56 95 1 4.88 0.998
2 75 47 39 83 12 3.94 1.455
3 59 32 23 68 28 2.87 1.488
4 42 18 13 47 47 2.04 1.214
log(n) 25 7 5 27 69 1.49 0.823
log(N) 22 6 3 25 72 1.38 0.678

method works under a different scenario with an unbalanced cutoff and a weaker signal. Table 4
presents the summarized results out of 100 simulation runs.

It can be seen that the complexity stemming from unbalanced cuts and weak signal strength
poses challenges in identifying the true tree structure. When using BIC-typed penalties, the weak
signal can scarcely be discerned due to the stringent penalty imposed. Conversely, employing
a smaller penalty, such as α = 2 or 3, proves advantageous. In these instances, a final tree
of average size around 3, induced by either X1 or X2, consistently emerges. Therefore, the
penalty parameter plays a crucial role in striking a balance between preventing Type I errors
and effectively identifying signals within the data. In practical data analysis, it is advisable to
experiment with various choices of α and examine the resulting tree models.

Overall, these results affirm the capability of our method to correctly identify significant
treatment-covariate interactions. The frailty IT also shows strong robustness and flexibility in
handling various scenarios arising from frailty distributions, baseline hazards, unbalanced cuts,
and signal strengths. These simulation studies provide valuable guidance for the application of
our method in real-world settings and contribute to its potential use in clinical and research
settings for analyzing recurrent event data.

4 Application to Chronic Granulomatous Disease Data
To illustrate our proposed method, we consider the CGD dataset, which consists of 128 patients
enrolled in a randomized, double-blind, placebo-controlled study (The International Chronic
Granulomatous Disease Cooperative Study Group, 1991). The primary outcome, the times of
infection recurrence, is subject to censorship. The dataset also includes nine baseline character-
istics measured at study entry: enrolling center (center, 13 centers in total), sex (sex), age in
years (age), height in cm (height), weight in kg (weight), mode of inheritance (inherit), use
of steroids (steroids), use of prophylactic antibiotics (propylac), categorization of the centers
into 4 groups (hos.cat).
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The mean age of the entire dataset is 14.64, with a median of 12 and a maximum value of 44.
Consequently, the patients in this dataset are predominantly children or adolescents. Height and
weight are pivotal variables in the context of CGD, and it is documented that patients with CGD
typically exhibit reduced heights and weights (Pietro Bortoletto et al., 2015). Body Mass Index
(BMI) provides a more meaningful interpretation than considering height and weight separately.
However, it is inappropriate to directly compare the BMI of adults with that of children, as the
interpretation of BMI differs significantly between these two groups due to differences in body
composition, growth patterns, and developmental stages. Therefore, our analysis focuses solely
on patients aged 19 or under, encompassing a total of 90 subjects. Instead of the standard BMI
measurement, we compute the BMI-for-age z-scores, which is a standardized measure indicating
how a child’s BMI compares to the distribution of BMIs among children of the same age and sex
in a reference population (Must and Anderson, 2006; WHO Multicentre Growth Reference Study
Group, 2006). The BMI-for-age z-score represents the number of standard deviations (SD) from
the mean. For example, a z-score of +1 indicates that the child’s BMI is one standard deviation
above the mean in the reference population (Martinez-Millana et al., 2018).

Table 5 furnishes a summary of baseline characteristics for patients aged 19 or under. The
dataset comprises 90 patients, among whom 32 experienced at least one recurrent event, with

Table 5: Characteristics for patients in chronic granulomatous disease data.

Characteristic Overall
(N=90)

Placebo
(N=43)

Treatment
(interferon gamma)

(N=47)

Age at baseline
Mean(SD) 9.24 (5.10) 9.16 (5.58) 9.32 (4.68)
Median(Range) 8.50 (1.00, 19.00) 8.00 (1.00, 19.00) 9.00 (1.00, 19.00)
Sex
Male 77 (86%) 35 (81%) 42 (89%)
Female 13 (14%) 8 (19%) 5 (11%)
Inherit
X-linked 66 (73%) 28 (65%) 38 (80%)
Autosomal 24 (27%) 15 (35%) 9 (20%)
Steroids
Yes 1 (1%) 0 (0%) 1 (2%)
No 89 (99%) 43 (100%) 46 (98%)
Proplylac
Yes 82 (91%) 38 (89%) 44 (96%)
No 8 (9%) 5 (11%) 3 (4%)
Hos.cat
US:other 47 (52%) 24 (56%) 23 (49%)
Europe:other 14 (16%) 9 (21%) 5 (11%)
US:NIH 18 (20%) 6 (14%) 12 (25%)
Europe:Amsterdam 11 (12%) 4 (9%) 7 (15%)
BMI z-score
Mean(SD) -0.07 (1.30) -0.24 (1.20) 0.07 (1.38)
Median(Range) -0.02 (-3.38, 3.76) -0.10 (-3.30, 1.83) 0.06 (-3.38, 3.76)
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1.443
I: n = 30

bmi.zscore � −0.502

0.207
II: n = 60

Figure 1: The final interaction tree structure for the chronic granulomatous disease (CGD)
recurrent event data. The treatment effect, quantified by hazard ratio, is specified within each
terminal node. The sample size (number of subjects) is also indicated beneath each terminal
node.

one patient encountering as many as seven recurrent events. This results in a total of 60 recurrent
events. Censoring occurred at the last observation.

We apply the IT method to the dataset with the following default constraints: a minimum
of 2 subjects with at least one recurrent event in either child node of a split, a minimum node size
for further split set at 10, and a maximum tree depth of 6. The final tree is determined with the
bootstrap method, using B = 30 bootstrap samples. The IT approach involves growing a large
initial tree to capture essential structures. At the same time, a sufficient number of observations,
particularly uncensored event times, at each split and in each child node are required to estimate
the frailty model and avoid numerical difficulties. These specified constraints are designed to
address these considerations.

The final tree structure, selected with α = log(n), where n is the number of subjects, is
depicted in Figure 1. This choice of the final tree ensures a strict control of false signals, as
indicated by our earlier simulation studies. The tree consists of two terminal nodes (labeled as
I, II) determined by the split: bmi.zscore � −0.5. A BMI z-score of −0.5 indicates that the
patient’s BMI is 0.5 standard deviations below the mean BMI for their age and sex group in the
reference population. Group I comprises patients with a relatively lower body mass than Group
II.

To assess the stability of the final tree size, we conducted a sensitivity analysis by varying the
minimum node size {5, 10, 15} and the minimum number of subjects with at least one recurrent
event in either child node of a split {1, 2, 3}. The penalty parameter α is set to log(n) to mitigate
the risk of false signals. The final tree sizes under different constraints are depicted in Figure 2.
It can be seen that when the minimum number of subjects with at least one recurrent event in
either child node of a split is set to 2, the final tree size remains stable across varying minimum
node sizes. Nevertheless, when the minimum number of subjects with at least one recurrent event
in each arm in each terminal node is set to 3 or greater, only the root node is present. This is
mainly attributed to the dataset’s relatively small size, resulting in a significant influence of this
constraint on the bootstrap samples. Adjusting these constraints provides increased flexibility
for the IT method, aiding in the identification of final tree models that are more interpretable
and robust.

Table 6 provides a brief summary of the two subgroups identified by the final IT tree, along
with the entire data. Among the child or adolescent patients with CGD under study, the overall
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Figure 2: Final tree sizes by varying the minimum node size {5, 10, 15} and the minimum number
of subjects with at least one recurrent event in either child node of a split {1, 2, 3}.

Table 6: Summary of subgroups for the chronic granulomatous disease data.

# Patients (n)

Trt Effect P-value Placebo Treatment Total

Group I 1.443 0.546 15 15 30
Group II 0.207 <0.001 28 32 60
All Group 0.361 0.003 43 47 90

treatment effect, as indicated by the estimated hazard ratio obtained from fitting a frailty Cox
model with coxme, is 0.36 (p-value < 0.01). Group I, consisting of 30 patients with a BMI z-score
equal to or less than −0.5, exhibits a treatment effect of 1.443 (p-value = 0.55). The remaining
subjects form Group II, comprising 60 patients with a treatment effect of 0.207 (p-value < 0.01).
The substantial heterogeneity in the treatment effects indicates that while interferon gamma was
found to be overall significantly efficacious among children or adolescent CGD patients, it might
not be helpful or could even have a detrimental effect for those who are relatively underweight
(with a BMI z-score equal to or less than -0.5). The findings underscore the importance of
considering BMI as a crucial factor when prescribing interferon gamma treatment.

As a cautionary note, extra care should be exercised in interpreting the p-values presented
in Table 6, as they should not be treated as those stemming from traditional hypothesis test-
ing. Given the highly adaptive nature of the tree method, inherent over-optimism may arise.
Therefore, validation with future independently collected new data is essential to strengthen
the robustness and generalizability of our findings. This will instill greater confidence in the
identified subgroups and enable a more accurate assessment of their corresponding treatment
effects.

Given that the IT method and the subsequent post-hoc analyses are all rooted in frailty
proportional hazards (PH) models, it is prudent to examine the assumption of the proportionality
of treatment effects. Following Therneau and Grambsch (2000), we initially fitted the frailty PH
model with treatment included, obtaining empirical Bayes frailty estimates. Subsequently, we
fitted a regular Cox proportional hazards model, including the logarithm of the empirical Bayes
frailty estimates as an offset term. Finally, the Schoenfeld (1982) test was conducted to assess
the proportional hazards assumption, resulting in a p-value of 0.22. Therefore, we conclude that
the proportional hazards assumption is not violated in our analysis.
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5 Discussion
In this paper, we extend the interaction tree (IT) method to identify subgroups with recurrent
event data. Subgroup analysis essentially involves treatment-by-covariates interactions while
tree models are well-suited for handling complex interactions. By introducing tree methods
into subgroup analysis, IT inherits the merits of ordinary tree models such as robustness to
distributional assumptions due to its nonparametric nature, highly interpretable results, and
invariance to monotone transformations on covariates. As a result, IT serves as a powerful tool
for post-hoc subgroup analysis.

Our method can be extended in several directions. First, we can consider scenarios where
the observation of recurrent events is terminated by informative dropouts or dependent death
events. To address this, we can apply the IT to shared frailty models of both recurrent and
terminal events (Liu et al., 2004). Second, alternative modeling approaches for recurrent event
data, such as models for between-event or gap times, can be integrated with interaction trees
for subgroup analysis. Although our main emphasis has been on frailty models specifically using
lognormal frailty in this paper, incorporating gamma frailty can be seamlessly achieved using
the R function coxph(). Moreover, other more flexible frailty distributions can be adopted,
leveraging methods like the probability integral transformation (Liu and Yu, 2008) or likelihood
reformulation (Nelson et al., 2006). Third, in the current method, we have assumed propor-
tionality. However, for future work, we are interested in exploring non-proportional hazards
models for recurrent events, such as the transformation models (Zeng and Lin, 2007). These
extensions would further enhance the versatility and applicability of our method in analyzing
recurrent event data. Finally, we have implemented our method on clinical trial data employing
double-blind randomization. Adapting this method for use in observational studies represents
an intriguing direction for future research.
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