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Abstract

The use of visuals is a key component in scientific communication. Decisions about the design
of a data visualization should be informed by what design elements best support the audi-
ence’s ability to perceive and understand the components of the data visualization. We build
on the foundations of Cleveland and McGill’s work in graphical perception, employing a large,
nationally-representative, probability-based panel of survey respondents to test perception in
stacked bar charts. Our findings provide actionable guidance for data visualization practitioners
to employ in their work.
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1 Introduction
What do viewers see when we show them a data chart? A data chart – at its core – maps
values to graphical elements: quantitative elements are represented as measurable features, such
as position, size, or shade. Modern data visualizations are much more than a simple, objective
mapping of values to a plane; they contain contextual and design elements, and are often struc-
tured to support the viewer in understanding a particular view of a set of data or specific pattern
underlying the values. Structural choices, such as the choice of a graphical element (e.g., bar or
pie), orientation of the chart, and sizing and relative positioning of elements within the chart, are
determined by the data visualization practitioner. The design of a data visualization impacts a
viewer’s ability to achieve the intended understanding; a poorly designed data visualization may
leave viewers struggling to understand the content or context, or make it difficult to complete
accurate and useful comparisons of values across groups or time points. More broadly, the design
of a data visualization can change how viewers interact with the chart.

The comparisons of components is a crucial step in the process of interacting with and
understanding the chart. Cleveland and McGill (1984) observed as such, and in their seminal
study defined the better visual among a pair as the one that allows viewers to make more accu-
rate comparisons. Based on mappings of quantitative variables to different graphical elements,
Cleveland and McGill’s study resulted in a ranking of perceptual tasks (such as identifying the
larger of two lengths or areas) from most accurate to least accurate, which was then extended
by Mackinlay (1986) to a theoretical framework ranking tasks’ order along their ordinal and
nominal scales.

Cleveland and McGill’s work – while a foundational user study in graphical perception –
utilized a small convenience sample, consisting of only a few individuals recruited from among
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the authors’ coworkers and their spouses. Heer and Bostock (2010) reproduced Cleveland and
McGill’s rankings using a larger sample from a crowd sourcing platform, employing a total of 82
Amazon Mechanical Turk (mTurk) workers for the study. Crowd sourced samples were shown
by Borgo et al. (2017) to be biased towards more male, younger, and relatively well-educated
individuals compared to the general adult U.S. population. Presumably, individuals with a higher
education are more likely to have prior exposure to data visualization and might be more familiar
with quantitative statements than less well-educated groups within the population; other pre-
existing differences between population groups may also drive differences in understanding or
interpreting charts. This raises the question of whether conclusions drawn from these studies
hold for the general population – a common target audience for data visualization and scientific
communication work. Results of polls, surveys, and scientific work are presented visually in
the news, shared on social media, posted online or in print materials. It is imperative that
data visualizations used to communicate quantitative information are designed with the goal of
reaching the entire population. To that end, an inclusive, representative approach to studying
how viewers perceive information presented in charts is critical to understand how best to
communicate with the general public.

In this work, we seek to answer whether it is possible to reproduce some of the previous
findings in the context of a survey with a large, nationally-representative set of respondents.
Specifically, we present viewers with structural variations of bar charts and ask them to answer
questions comparing the size of elements within those charts. We employ a probability-based
survey panel and run a series of perception tests with nationally-representative samples of re-
spondents from that panel. The advantage of using a probability-based approach is two-fold:
First, the relatively larger sample of survey participants provides greater statistical power in
drawing inference about graphical perceptional abilities. Second, the sample is representative of
the general adult public in the U.S., permitting an assessment inhowfar prior results from con-
venience samples hold with a nationally representative sample and whether there are differences
in those results across demographic subgroups. Within that context we focus on the following
research questions:

1. How do structural design choices in a data visualization impact viewers’ ability to identify
the larger of two elements?

2. How is viewer interaction with the task impacted by structural design choices in a data
visualization?

3. Are there differences in perception and interaction with the tasks across demographic groups?

To address these questions, we present a series of completed tests and the resulting findings.
The remainder of the paper is organized as follows: first, we describe the design of the visual
stimuli used in the perception tests. We then describe the population of study respondents and
obtained survey sample. Subsequently, we share a summary of the resulting survey responses
across each of the tests, including analyses on accuracy of responses and response behavior.
Finally, we discuss implications of this work and next steps.

2 Study Design

2.1 Stimulus

Our use of a survey format guides the format and design of the questions asked and how they are
presented to respondents. First, participant instructions must be delivered in a very short and
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easily understandable format, because participants cannot ask clarifying questions about the
task as they might be able to in a cognitive lab setting. Our tasks are presented as a short series
of questions within a larger survey on a variety of topics. Second, we want to utilize content
within the stimulus which is not socially or politically charged for the average U.S. adult; this
risks participants reacting to the subject matter within the chart rather than focusing on the
task. For this reason, we utilize data on living arrangements of older U.S. adults – a topic which
most U.S. adults will have some familiarity with, but is not inherently polarizing. Finally, to
prevent viewers from being exposed to slight variations of the same stimulus in a row (and risk
unforeseen order effects or respondents using prior questions to inform their responses), we either
split a survey sample in two and show each subsample a distinct structural version of the chart
or test variations of a chart across distinct rounds of the survey. Survey rounds are fielded once
a month, so distinct rounds are separated by approximately one month.

Each task is made up of two elements: a visual stimulus and a question about the stimulus.
In our study, each visual stimulus is an image of a data visualization, while each question prompts
viewers to identify which of two marked pieces in the data visualization is larger.

The comparison between sets of marked pairs is intentionally designed to be a difficult task,
with the difference between the values represented in the two marked pieces being chosen close
to their just-noticeable difference. The Just-Noticeable Difference (JND) is defined as the
smallest difference that will be detected 50% of the time. Prior results from studies on bar charts
and pie charts (Lu et al. 2022) inform the differences in charts shown to survey panelists.

We employ comparisons at the JND in our tasks in order to maximize our ability to identify
the impact of design changes on viewer accuracy and behavior. Asking perception tasks in a
survey differs from the controlled environment of a cognitive lab, where these kind of questions
may usually be assessed. Rather than asking the same (or similar) type of question with varied
signal strength dozens or hundreds of times, we are limited to only a few questions at a time. With
a small set of tasks, we need to present tasks that are perceptually hard, and thus ask questions
about stimuli that are close to our perceptual threshold. Therefore, we focus on questions which
vary the structure of the presented image, but ask viewers to compare the same underlying data
values across those varied images.

We ask participants to determine which of two just-noticeably different marked pieces (tiles)
is larger within each chart, and focus on three main sets of structural variation in the design of
that chart. First, we vary the alignment of the pieces in question. Viewers are presented with
two marked pieces in a chart that do not share a common baseline (unaligned pieces), then two
pieces that do share a common baseline (aligned pieces). We present the unaligned comparison
first to reduce the likelihood that participants recognize that the tasks are identical excepting
the alignment and carry over an answer from the aligned task to the unaligned task. Second,
we vary the orientation of the chart – we rotate the vertical stacked bar chart, and present a
horizontally oriented version of the same chart, with identically sized marked pieces. Finally,
we change the aspect ratio of the chart and present a wider version of the horizontally oriented
chart which has longer, but thinner, marked pieces.

2.1.1 Task 1: Vertical Stacked Bar

Figure 1(a,d) shows the two stacked bar charts shown to participants in the first task. The
marked tiles in each plot are 155 pixels apart, which leads to a JND of 3.5 pixels based on Lu et
al. (2022)’s model. The heights of the bars are 205 (left) and 213 pixels (right), corresponding
to about twice the JND. This difference should lead to a relatively high accuracy rate for
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Figure 1: Overview of all of the visual stimuli presented to viewers. In each bar chart, two pieces
are marked. The larger piece in each chart are pieces B and D. Please refer to the appendix for
a full size image of stimulus (a).

participants and simultaneously limit the amount of frustration resulting from a task that is
perceived as ‘too hard’.

Both charts show the same data with slight modifications to the order of the levels – the first
and second level in each of the bars are reversed between the chart in (a) and the chart in (d).
Both charts are displayed at the same size, i.e. in both cases both the difference in size between
the bars and the horizontal distance between the bars is the exact same amount. This leaves
the vertical positioning of the bars as the only difference between the charts. Any differences in
observed responses can therefore be attributed to this difference in presentation.

2.1.2 Task 2: Horizontal Stacked Bar

The visual mappings in the second task, shown in Figure 1(b,e), are identical to the first task, but
the axes of the chart are rotated so that the stacked bars are represented in a horizontal format.
This represents a structural change in how the data are presented to the viewer while preserving
the pixel size of the elements viewers must compare. Differences in participant accuracy across
Tasks 1 and 2 can thus be assumed to be due to the orientation or layout of the chart rather
than the comparison task itself. Tasks 2 and 3 were asked within the same survey round (Round
3) and the full sample was randomly split among respondents, with 50% of participants seeing
the Task 2 stimuli and 50% of participants seeing the Task 3 stimuli.

2.1.3 Task 3: Horizontal Wide Stacked Bar

The images utilized in the third task, Figure 1(c,f), again represent the same data as in the first
two tasks, and the overall image has dimensions which are identical to the images in the first
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Figure 2: Comparisons made in charts within the Cleveland and McGill ranking (left) and their
corresponding representations in our study tasks (right).

two tasks, displaying at the same size during the survey. However, the aspect ratio is adjusted
to make the plotting area match that of Task 1, with the mapping area being wider rather than
taller. The length of bars is increased to fit the new dimensions. This increases the difference
in the length of bars to 13 pixels (previously 8 pixels). This increase in width allows us to
test whether participant accuracy is higher when the elements in the comparison task have a
larger visual difference in length relative to Tasks 1 and 2. The widths of the tiles are adjusted
accordingly (from 50 to 30 pixels) to keep the overall area of the tiles approximately constant.

2.1.4 Question Text

When viewing each chart, participants were asked to compare the relative sizes of marked ele-
ments within the chart:

“There are many charts used in the news media to portray data visually. Looking at the
chart below, which of the marked dark blue pieces is bigger, A or B? Just your best guess is
fine. [] A is bigger; [] B is bigger; [] They are the same.”

When presented with the aligned version of each chart, pieces were marked with a C and
D and the question text is updated accordingly. In all scenarios, the second option (B [D] is
bigger) is the correct response.

For a given task, viewers are first presented with the unaligned version of the task, followed
by the aligned version of the task. The time in seconds that each respondent spent on each task
was recorded, as well as whether the participant zoomed in on each chart while answering the
question. Respondents were also asked to rate their certainty in their response to each question
on a five-point scale.

2.1.5 Alignment

What we call ‘aligned’ and ‘unaligned’, here, is similar to Cleveland and McGill’s positions along
aligned and unaligned scales, but with some modifications. Figure 2 gives an overview of the
comparisons of tasks 1 through 3 and the closest corresponding tasks in Cleveland and McGill.
In this paper, both ‘aligned’ and ‘unaligned’ bars share the same axis.

Aligned tiles are additionally anchored in the same position along the axis, i.e. the difference
between their sizes can be reduced to a positional assessment, which in the absence of three-
dimensional cues seems to be the general strategy viewers use when evaluating bar charts (Zacks
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et al. 1998). Unaligned tiles do not share this anchor of position, i.e. the difference between their
sizes needs at least two comparisons of positions. However, unaligned bars in a stacked bar chart
are not just assessments of the lengths of bars – the other tiles in the chart provide a reference
frame of the shared axis, which should help with an assessment of the tiles’ sizes. As shown in
the sketch of Figure 2, this framing leads to a stimulus that is between Cleveland and McGill’s
task of ‘position along the same but unaligned axis’ and an assessment of length.

We would expect that comparing unaligned tiles is a harder task (with correspondingly
lower levels of accuracy) than a comparison of aligned tiles, with the framing given by the other
tiles in the same column mitigating some of this difficulty. In particular, the additional context
of the other tiles should help rather than hurt the comparison, unlike other situations, where
additional information besides the pieces involved in the comparison were found to be distractors
(Talbot, Setlur, and Anand 2014). Participants first saw the chart with the unaligned comparison,
followed by the chart with the aligned comparison, but could not return to the first comparison
after completing it. While there is some risk of participants recognizing the subsequent tasks
to be the same value comparisons, the unaligned (harder) task was shown first to reduce the
likelihood of participants carrying over an answer from the aligned (easier) task.

2.2 Participants

Participants were recruited as part of NORC’s AmeriSpeak panel,1 which utilizes a probability-
based sampling methodology and samples U.S. households from NORC’s National Sample Frame
that provides coverage of over 97% of U.S. households. The current panel size is 54,001 panel
members aged 13 and over residing in over 43,000 households (Dennis 2019, updated 2022). Each
test was conducted using the AmeriSpeak Omnibus survey, which runs biweekly and samples
around 1,000 U.S. adults to answer questions on a variety of topics. Our tests require visual
inspection of an image; for this reason, our survey questions were only presented to web-based
panelists and not panelists who respond via phone interviews. The panel has 45,565 web-based
panelists, representing 93.3% of the total panel and 96.3% of the total panel weights.

The Omnibus sample is not longitudinal in nature, i.e. we do not have any information
about whether the same panelists were included in multiple rounds. While there is a (small)
chance that panelists are included in multiple rounds of our data, there was at least a one
month gap between viewing each visual stimulus, and for the purposes of the analysis we will
consider data from these viewings as independent.

2.3 Survey Weighting

The sample used for each Omnibus study is selected from the AmeriSpeak Panel using 48
sampling strata, split by age, race/Hispanic ethnicity, education, and gender, with the size of
each sample per sampling stratum determined by the population distribution for each stratum.
In addition, sample selection takes into account expected differential survey completion rates
by demographic groups in order to achieve a representative sample of the target population.
Collected data are weighted to the latest Current Population Survey (CPS) benchmarks from the
U.S. Census Bureau. They are balanced by gender, age, education, race/ethnicity, and geographic
region. All calculations in this paper are done in R (R Core Team 2022), and weights are applied

1NORC is a non-partisan organization that collects data for government and non-government clients.
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Table 1: Survey rounds: dates, number of panelists (nominal sample size), effective sample size,
sum of weights, and factors for the combining of surveys.

Name Date # Panelists
Effective

Sample Size
Sum of

weights
∑

i wi λi

Round 1 April 2022 933 521.1 934.9 λ1 = 0.343
Round 2 May 2022 953 485.7 953.4 λ2 = 0.320
Round 3 June 2022 921 513.5 923.1 λ3 = 0.338
Combined — 2807 1520.8

in analyses using the survey package (Lumley 2004) version 4.0 (Lumley 2020) based on Lumley
(2010).

When combining responses from different surveys, weights are rescaled with respect to the
total population, so that their order after combining still reflects their relative importance. We
combine (rather than cumulate) a set of � surveys S1, S2, . . . S� (with � � 2) as described in
O’Muircheartaigh and Pedlow (2002), by multiplying weights in Si by λi , for 1 � i � �. λi ∈ [0, 1]
with

∑
i λi = 1 is given as

λi = ni/di∑�
j=1 nj/dj

, (1)

where ni is the nominal sample of survey Si and di are the design effects for the estimators.
Here, di are estimated as

di = 1 + CV (w ∈ Si)
2, (2)

where CV is the coefficient of variation of the weights w within each survey sample Si , and is
estimated as in Kish (1965):

CV (w ∈ S) = ̂V ar(w)

w̄2
, (3)

and where w̄ and ̂V ar(w) are sample mean and sample variance of the weights w of survey
sample S, respectively.

The data for this paper were collected in several rounds. The resulting number of panelists,
effective sample sizes, and λ values are shown in Table 1.

3 Results

3.1 Respondents

A total of 2807 panelists participated across the three rounds. The number of responses and
corresponding effective sample sizes in each round are shown in Table 1. All responses were
combined into one set of survey responses, with adjusted combined sample weights and indicators
for which task each respondent was exposed to. The resulting sample sizes corresponding to each
task are shown in Table 2.

Distributions of demographic characteristics across each task are shown in Figure 3, the
black points and error bars show percentages for US adults based on the 5 year estimates of
the American Community Survey 2021. The distribution of demographics are all quite similar
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Table 2: Survey tasks: number of participants (nominal sample size) and effective sample size
for each task.

Name Description # Participants Effective Sample Size

Task 1 Vertical 1886 1007.1
Task 2 Horizontal 459 266.5
Task 3 Horizontal wide 462 249.1

Figure 3: Overview of participants’ demographics in each of the tasks: the colored dots show
marginal percentages (with 90% margins of error as vertical lines in the same color) for de-
mographics across the three tasks. In comparison, the dark lines show upper and lower 95%
confidence of these demographics as estimated by the American Community Survery (ACS)
2021. Note that for a lot of these intervals the estimates are so close together that they appear
as a single line.

across tasks and their 90% margin of errors (vertical lines) for the most part cover the Census
estimates.

3.2 Accuracy of Responses

We first investigate respondent accuracy in selecting the correct response. Remember, that par-
ticipants were able to select the option ‘They are the same’ as response. This leads us to several
ways to model accuracy and response. For the purposes of practical interpretation, the argu-
ment could be made that ‘they are the same’ is a correct choice, as the options are visually very
similar and not substantially different values within the context of the data shown in the chart.
However, we are interested in understanding whether viewers can perceive the difference and
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Figure 4: Participants’ response pattern to both questions. The coloring reflects the number of
correct responses (two in full green, zero in grey, and one correct answer in grey-green). When
tiles are aligned along the same axis, more than twice the number of respondents correctly
identifies the larger tile. The pattern in responses for participants who only answered one of the
questions correctly is asymmetric; that is, a much higher percentage of participants answered
the unaligned task incorrectly and the aligned task correctly than answered the unaligned task
correctly and the aligned task incorrectly.

correctly identify which piece is larger and thus consider multiple ways of modeling response to
investigate participant response patterns. We begin by defining a measure of binary ‘correctness’,
for which all answers that are not the correct option (B [D] is bigger) are ‘incorrect’, including
the selection of ‘they are the same’.

Figure 4 displays all responses along the binary correctness measure, separated by whether
the stimulus was an aligned task or unaligned task. We can see that levels of accuracy for
all responses are significantly higher for the ‘easier’ (aligned) task, with about twice as many
respondents correctly selecting the larger of the two marked elements.

Because each participant was shown both the aligned and unaligned versions of the chart,
we can use a paired t-test to compare mean accuracy between the two charts. The resulting
t-statistic is highly significant (t statistic: 21.2, df: 2265, p-value: � 0.0001).

Next, we consider an ordinal model to investigate response behavior across all three options
– ‘A [C] is bigger’, ‘B [D] is bigger’, and ‘They are the same’, and consider these response
patterns across each of the stimuli.

Figure 5 shows the results of a cell-means model with ordinal response Yk, where Yk is
the kth response, 1 � k � N for N number of (nominal) responses. We use an encoding of
Yk ∈ {1, 2, 3} for ‘correct’ (� = 1), ‘they are the same’ (� = 2), and ‘wrong’ (� = 3):

logit P(Yk � �) = μij�(k), (4)

where i ∈ {1, 2} is the comparison type (1 = Aligned, 2 = Unaligned), and j ∈ {1, 2, 3} is the
chart design, with 1 = Vertical, 2 = Horizontal, and 3 = Horizontal wide. Note that we are using
the notation ij�(k) to emphasize the functional relationship between the kth response and the
model parameters while avoiding double-subscripts, i.e. ij�(k) signifies the index combination of
i, j , and � of the kth response, i.e. ij�(k) is 123, if the kth response was a wrong response (� =
3) for an aligned comparison (i = 1) in a horizontal (j = 2) barchart.
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Figure 5: Responses by task across the designs. The overlaid rectangles represent 95% confi-
dence intervals. The letters in blue and orange encode significances between pairwise proportions
(Piepho 2004): two bars have a significantly different proportion (at a 5% significance level) if
they do not have a letter in common. There is no significant difference between the designs for
wrong responses.

The letters in the figures and tables allow us to assess whether differences between two
means are significant: in the tables, two estimates within the same column are significantly
different (at the 5% level) if they do not have any letter in common. The same is true for letters
along the top and bottom of the figures. This method is called connected letters and has been
introduced by Piepho (2004). In Figure 5, we see, that the proportions of wrong responses are
significantly different between tasks, but designs within each task are not significantly different.
For correct responses, all proportions are significantly different except for the proportion of
correctly assessing the difference between unaligned rectangles in the wide horizontal design:
their label of ab shows us that assessing the differences between unaligned rectangles in the
wide horizontal design is not significantly better than in the horizontal design (labelled a), but
also not significantly worse than in the vertical design (labelled b). The estimated values and
95% confidence intervals are shown in Table 3.

One pattern in accuracy holds across each of the three structural variations: the aligned
task has a higher level of accuracy than its unaligned counterpart. Interestingly, while
we expect an improvement in accuracy when shifting from the horizontal to the horizontal wide
design given the larger difference in pixel length between the two pieces, the resulting effects
on the accuracy of the responses are not completely straightforward: the shift from a vertical
to the (tall) horizontal design is detrimental to an accurate perception for both aligned and
unaligned comparisons. The re-scaled design of the wide horizontal bars reclaims some of the
loss for unaligned bars and outperforms the vertical design by a similar margin in aligned bars,
but does not out-perform the vertical design when comparing unaligned tiles.

Rates of selecting the response ‘wrong’ are low across all three structural variations and the
aligned and unaligned tasks; while viewers select the response ‘wrong’ at significantly higher rates
for all three unaligned tasks relative to the aligned tasks, those rates do not differ significantly
across the three structural variations. Most of the observed differences in response patterns
across structural variations are attributed to respondents’ selection between the correct option
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Table 3: Estimated odds from the cell-means model for response patterns. Letters behind num-
bers indicate pairwise significances. Within the same column, values are significantly different
(at a 5% level of significance) if they do not share the same letter.

Odds of selecting responses by task and chart type
correct vs. same or wrong correct or same vs. wrong

Est. [95% CI] Est. [95% CI]

Unaligned

Horizontal 0.22 [0.15, 0.32] a 5.54 [4.04, 7.59] a
Horizontal wide 0.26 [0.19, 0.37] ab 6.20 [4.46, 8.61] a
Vertical 0.41 [0.36, 0.47] b 6.90 [5.75, 8.28] a

Aligned

Horizontal 0.63 [0.49, 0.81] c 14.02 [9.23, 21.30] b
Horizontal wide 2.67 [2.04, 3.48] d 17.12 [10.49, 27.95] b
Vertical 1.51 [1.33, 1.71] e 11.33 [8.99, 14.28] b

or the ‘they are the same’ option.
To better comprehend these observed patterns, we investigate viewer interaction with the

tasks more broadly as well as differences in response selection across demographic groups.

3.3 Respondent Behavior

One contributing factor to the observed patterns in response accuracy might be the way that
participants interact with the different designs. Across all tasks, about half of all participants
make use of the option to zoom into charts. We observe that while zooming does help with the
overall accuracy (which is in agreement with the findings by Lu et al. (2022) about the physical
size of stimuli), the increase is not significant. However, different designs lead to different rates
of zooming: we observe in Figure 6 that a significantly lower rate of respondents chose to make
use of zooming when answering the horizontal designs compared to the vertical design.

To formalize this pattern in a model, let Yk describe the zooming behavior on the kth
response. We model zooming behavior (no = 0, yes = 1) as a logistic regression by correctness
of response (ρ), task (τ ), and design (δ) of the chart:

logit P(Yk � 1) = μ + ρ�(k) + τi(k) + δj (k). (5)

The resulting model estimates and confidence intervals are displayed in Table 4. We observe
that zooming behavior only differs significantly by structural design; rates do not differ signif-
icantly between the aligned and unaligned tasks, nor do they differ significantly by the chosen
response. This higher rate of zooming does not necessarily lead to higher accuracy; although
rates of accuracy are significantly higher for the vertical orientation relative to the horizontal
orientation, they are not significantly higher – and in fact, are significantly lower on the aligned
task – than the accuracy for the horizontal wide orientation. Using linear scores for the response
of certainty, with ‘not certain at all’ assigned a score of 1 and ‘extremely certain’ assigned a
score of 5, we can estimate the effects of task, chart design, and correctness on certainty by using
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Figure 6: Rates of zooming by task, chart design, and correctness. The overlaid rectangles repre-
sent 95% confidence intervals. There are significantly higher rates of zooming by respondents for
the vertical task compared to both horizontal tasks; rates of zooming do not differ by correctness
of response or alignment in the stimulus.

Table 4: Coefficients for logistic regression of zooming by task.

Estimates for logistic regression on zooming behavior
term estimate SE t-statistic p-value

μ̂ −0.35 0.15 −2.4 0.0155

Response

They are the same ρ̂2 −0.17 0.09 −1.9 0.0578
Wrong ρ̂3 −0.06 0.13 −0.5 0.6466

Task

Aligned τ̂2 0.00 0.06 −0.1 0.9435

Chart design

Horizontal wide δ̂2 0.27 0.15 1.8 0.0752
Vertical δ̂3 0.98 0.13 7.7 < 0.0001

a cell-means model of the form:
Yk = μij�(k) + εk, (6)

where 1 � k � N for N responses, μij�(k) is average certainty (measured on a scale from 1
to 5) of the four combinations of task and correctness by each of the three designs, for task
i = 1, 2 (unaligned/aligned), design j = 1, 2, 3 encoded as horizontal, wide horizontal, and
vertical stacked bar charts, and participant’s decision � = 1, 2, encoded as correct or wrong,
respectively. We also assume that errors are normally distributed, i.e. εk

i.i.d∼ N(0, σ 2) for all
1 � k � N . The results are shown in Figure 7. We find that the highest scores for certainty
are associated with the aligned task, but certainty scores are not significantly different between
correct and wrong responses. Scores are (mostly) significantly lower for the unaligned task.
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Figure 7: Certainty by task, chart design, and correctness. Correct answers in the unaligned task
have the lowest certainty scores associated with them. Incorrect responses to the unaligned task
when viewing the vertical stacked bar are associated with a significantly higher certainty score.
Error bars around the points show estimated scores (on a scale of 1 to 5) with corresponding
95% CI. The letters underneath the bars indicate significance at 5%. The scores for two bars are
significantly different if they do not share a letter.

Interestingly, the lowest certainty scores are associated with correct responses to the unaligned
task; although respondents successfully complete the task, they are less certain in their selection.

3.4 Differences Across Demographic Groups
Finally, we turn to investigating responses across demographic groups, a core benefit provided by
the large and representative nature of our survey samples. Figure 8 displays response patterns
across our three structural variations by gender, age (4 groups), educational attainment (5
groups), and income level (4 groups). Our pattern of higher accuracy in selecting the correct
response on the aligned task relative to the unaligned task holds across all demographic groups
and structural variations. However, we do observe different response patterns, particularly on
the unaligned task, across demographic groups.

Let Yk be the response of participant k, on a scale from 1 = ‘wrong’, 2 = ‘they are the same’
to 3 = ‘correct’. We use a generalized cumulative logistic regression, where μ� are intercepts
1 � � < 3, Xk are demographics of the kth participant (the kth row of the corresponding model
matrix), and β� is a vector of coefficients:

logit P(Yk � � | Xk) = μ� + Xkβ�. (7)

Note, that β� encompasses all estimable parameters of the demographic variables gender,
age category, education category and income category for a total of eleven parameters. The
resulting model estimates and confidence intervals are shown in Table 5.

When considering the easier (aligned) task, response patterns do not differ significantly
by age, gender, or education level. We do observe, however, a significantly higher log odds of
selecting the ‘correct’ or ‘they are the same’ response (or significantly lower log odds of selecting
‘incorrect’) among those with an income between $60,000 and $100,000. When we consider the



Testing Stacked Bar Charts in Surveys 293

Figure 8: Response patterns by alignment and demographic levels. For aligned tiles, age and
education are not significant factors. However, gender and income levels do have a (small) effect.
For the more difficult task of comparing unaligned tiles, higher levels of education and higher
levels of income are associated with a significant increase of panelists choosing a response of
‘they are the same’, resulting in significant decreases of wrong answers for higher education
attainment and higher income groups, and significant decreases in correct answers for higher
levels of education.

more difficult (unaligned) task, we see significant separation in response patterns across gender,
educational attainment, and income groups. We do not see significant differences in responses by
age for either task. Interestingly, we see lower log odds of selecting the ‘correct’ response among
those with higher educational attainment (those with a bachelor’s degree or post graduate study)
and lower log odds of selecting the ‘incorrect’ response; as income and educational attainment
increase, respondents are more likely to select the ‘they are the same’ option during the difficult
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Table 5: Demographics matter for perception, particularly when the tasks get harder.

Odds of accuracy by task and demographics of respondents
Aligned tiles Unaligned tiles

correct vs. same or wrong correct or same vs. wrong correct vs. same or wrong correct or same vs. wrong

Est. [95% CI] Est. [95% CI] Est. [95% CI] Est. [95% CI]

Intercept

1.51 [0.91, 2.50] 12.75 [5.59, 29.10] *** 0.60 [0.35, 1.03] . 3.24 [1.70, 6.19] ***

Gender

Female 0.82 [0.67, 1.01] . 1.19 [0.81, 1.74] 1.03 [0.82, 1.30] 1.42 [1.07, 1.90] *

Age

30-44 1.08 [0.78, 1.49] 0.87 [0.43, 1.75] 0.79 [0.55, 1.13] 0.94 [0.59, 1.49]
45-59 1.13 [0.80, 1.60] 0.95 [0.46, 1.95] 0.92 [0.62, 1.35] 0.76 [0.48, 1.22]
60+ 0.96 [0.69, 1.34] 0.70 [0.35, 1.40] 1.01 [0.70, 1.45] 0.73 [0.46, 1.15]

Education

HS or equivalent 0.77 [0.46, 1.30] 0.50 [0.20, 1.21] 0.81 [0.47, 1.40] 1.22 [0.66, 2.26]
Some college 0.91 [0.56, 1.49] 0.74 [0.32, 1.71] 0.63 [0.38, 1.06] . 1.17 [0.65, 2.12]
Bachelor 0.79 [0.48, 1.32] 1.12 [0.42, 2.97] 0.53 [0.31, 0.93] * 1.82 [0.91, 3.64] .
Post graduate 0.84 [0.49, 1.44] 1.16 [0.41, 3.30] 0.51 [0.28, 0.91] * 2.18 [1.04, 4.57] *

Income

$30k - $60k 1.19 [0.87, 1.63] 1.25 [0.77, 2.05] 1.00 [0.71, 1.41] 1.22 [0.82, 1.82]
$60k - $100k 1.23 [0.90, 1.68] 2.14 [1.18, 3.86] * 0.87 [0.60, 1.27] 1.88 [1.24, 2.87] **
more than $100k 1.36 [0.99, 1.88] . 1.57 [0.86, 2.86] 0.86 [0.59, 1.25] 2.18 [1.34, 3.56] **
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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task. This speaks to the difficulty of the task, and respondents’ interpretation of the task when
it is more difficult to perceive small differences.

4 Conclusions
Through this work, we have tested the use of probability-based survey panels to ask perception
questions; within a large survey covering a variety of topics, and with a limited number of
questions for our specific tasks, we are able to measure viewer perception and produce results
consistent with prior studies. Testing data visualization design structures and viewer behavior
on a nationally-representative sample is of broad interest and applicability to the scientific
communication community, and this study demonstrates a framework under which to complete
further work in this area.

With our survey framework, we have shown that we can rank structural variations on design
and tasks by their relative accuracy; we identified significantly different rates of respondent
accuracy under different designs presenting the same data. Our study sample is larger than prior
studies with a similar scope. That large sample size improves our power to identify this signal.

Further, we can also study respondent behavior and how viewers interact with the chart.
Paradata on viewer interaction with the chart (e.g., zooming and time spent on each task) can
be collected as well as directly asking respondents questions about their certainty. Not only
can we collect this information, but we can also identify significant differences in this behavior
across different designs. Understanding viewer interaction and engagement is a key component
to designing effective data visualizations. If a particular design leads viewers to zoom in more to
investigate it when determining a response, we might consider that design to be more frustrating
to viewers ‘in the wild’ when viewing it outside of the context of our tests.

Perhaps most salient among our results are the patterns in response behavior across de-
mographic groups. The large size of our sample, paired with the probability-based survey panel
approach, afford us the ability to dive into response patterns among demographics across tasks
and identify significant differences among them. In particular, the differences across educational
attainment groups and income groups underscore the importance of utilizing a representative
population when testing perception; prior results in this area may be absorbing bias in responses
due to the larger representation of individuals with higher education levels among those study
respondents. If studies using non-representative or crowd-sourced samples find non-significant
results when studying elements of design, those results may not actually be non-significant for
other populations, particularly lower education or lower income populations. Researchers should
not disregard non-significant findings in those survey studies but rather ask whether the lack of
significance would hold across population subgroups.

Our study results provide actionable insights that data visualization practitioners can utilize
in the design of stacked bar charts. Comparisons of interest should be lined up and share a
common baseline within a chart; in an interactive setting, it may be beneficial to give viewers the
possibility of re-ordering categories to support effective comparison across groupings. Allowing
users to zoom in on images may not impact perceptual accuracy, but it leads to higher certainty
in viewers’ comparisons. Considering the target audience for visualizations and what key findings
are most important to convey should be an important step in the process of designing a data
visualization.

While our results are limited to mapping in a stacked bar chart with a specific topic, they
demonstrate among them a wealth of insights about how respondents perceive and interact with
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data visualizations. More expansive work on this topic should be completed to understand how
the general public interacts with and understands charts, including expanding to a wider set of
structural variations, more aesthetic design variations, and considering differences in respondent
behavior across different data topic areas.

Supplementary Material
The source code and data used in this paper and an example stimulus image are available on a
GitHub repository at https://github.com/kiegan/testing-charts-jds.
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