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Abstract

Our contribution is to widen the scope of extreme value analysis applied to discrete-valued
data. Extreme values of a random variable are commonly modeled using the generalized Pareto
distribution, a peak-over-threshold method that often gives good results in practice. When data
is discrete, we propose two other methods using a discrete generalized Pareto and a generalized
Zipf distribution respectively. Both are theoretically motivated and we show that they perform
well in estimating rare events in several simulated and real data cases such as word frequency,
tornado outbreaks and multiple births.
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1 Introduction
Extreme quantile estimation is an important but difficult problem in statistics, especially when
the quantile is beyond the range of the data. In the univariate case, an approach that often works
well in practice is to model observations above a large threshold with a parametric family of
distributions, the generalized Pareto distribution. We will illustrate however that this approach
can be problematic when data takes discrete values. In the context of discrete data, quantifying
uncertainty may be crucial, as exemplified by hospital bed occupancy, discussed in Ranjbar et al.
(2022).

Let X be a random variable (continuous or discrete) taking values in [0, xF ) for xF ∈ (0, ∞],
and suppose that there exists a strictly positive sequence au such that

a−1
u (X − u) | X � u → Z, (1)

in distribution as u → xF , for some Z following a non-degenerate probability distribution on
[0, ∞). Then, Z follows a generalized Pareto distribution, defined by its survival function

F̄GPD(x; σ, ξ) =
(

1 + ξ
x

σ

)−1/ξ

+
, x � 0,

with σ > 0 and (1 + ξx)1/ξ = ex if ξ = 0 (Pickands, 1975). For ξ < 0, F̄GPD has support
on [0, σ/|ξ |]. Condition (1), written as X ∈ MDAξ , means that X is in the maximum domain
of attraction of an extreme value distribution with shape parameter ξ (see Resnick, 1987). In
this case, the sequence of cumulative distribution functions of a−1

u (X − u) | X � u converges
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uniformly to 1 − F̄GPD on [0, ∞). Thus, the distribution of exceedances above a large threshold
u (also called “peaks-over-threshold”) can be approximated in the following manner:

pr(X − u > x | X � u) = pr
{
a−1

u (X − u) > a−1
u x | X � u

} ≈ F̄GPD(x; σau, ξ), (2)

(Davison and Smith, 1990). This approximation, called the generalized Pareto approximation,
is convenient in practice because it does not rely on a specific distributional assumption; X is
only required to belong to some maximum domain of attraction, which holds for most common
continuous distributions.

If the observations are discrete, however, one may want to preserve and utilize the dis-
creteness in the extreme estimation. It is not, however, clear how discrete exceedances over high
threshold should be modeled. The generalized Pareto approximation is often applied ignoring
the discrete nature of the data. This poses two issues: first, a necessary condition for a discrete
random variable X to be in some maximum domain of attraction in the case xF = ∞ is that
X is long-tailed, i.e., F̄X(u + 1)/F̄X(u) → 1 as u → ∞ (Shimura, 2012), and many common
discrete distributions, including geometric, Poisson and negative binomial distributions, are not
long-tailed. (All long-tailed distributions are heavy-tailed, but the converse is false.) Specific con-
vergence results for maxima of discrete observations have thus been derived (Anderson, 1970,
1980; Dkengne et al., 2016), but the limit is always a continuous distribution, which leads to the
second issue: treating discrete data as continuous introduces a bias in the likelihood function.
Since the shape and location parameters ξ and σ of the generalized Pareto approximation are
unknown in practice, they must be estimated from the exceedance data. We will see that the
bias may render the approximation inadequate — even when X is long-tailed, that is, when (2)
is valid in theory.

Our contribution is to overcome these limitations by proposing two peaks-over-threshold
methods, each relying on a parametric family of discrete distributions: the discrete generalized
Pareto and the generalized Zipf distribution. The latter distributions exist in the literature but
have not been justified for modeling extremes. As we will show, these new approximations can
be theoretically motivated for X belonging to a broad class of discrete distributions, and they
match or outperform the generalized Pareto approximation. They deliver similar results but it
is still unclear if one of them should be preferred.

From now on, we assume that X is a discrete random variable with non-negative values, and
ξ � 0. The first method adapts the condition X ∈ MDAξ to the discrete case as follows. Suppose
that there exists a random variable Y ∈ MDAξ with survival function F̄Y on [0, ∞) such that
pr(X � k) = pr(Y � k) for k = 0, 1, 2, . . . , that is, the equality in distribution, X = �Y �, holds.
In this case, we say that X is in the discrete maximum domain of attraction, which we write as
X ∈ D-MDAξ . We call Y an extension of X and such an extension is not unique. Shimura (2012)
proved that X ∈ MDAξ if and only if X ∈ D-MDAξ and X is long-tailed. (When X is long-tailed,
an extension of X, which takes values in N, can be X itself, if seen as taking values in R.) It
was also shown by Shimura (2012) that geometric, Poisson and negative binomial distributions
belong to the discrete maximum domain of attraction. Therefore, MDAξ � D-MDAξ for discrete
distributions. If X ∈ D-MDAξ and Y ∈ MDAξ is a corresponding extension satisfying X = �Y �
in distribution, then, for large integers u, we use (2) to obtain

pr(X − u = k | X � u) = pr(Y − u � k | Y � u) − pr(Y − u � k + 1 | Y � u)

≈ pD-GPD(k; σau, ξ), (3)

where pD-GPD is the probability mass function of the discrete generalized Pareto distribution
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defined by
pD-GPD(k; σ, ξ) = F̄GPD(k; σ, ξ) − F̄GPD(k + 1; σ, ξ),

for k = 0, 1, 2, . . . . Equation (3) provides a method for modeling discrete exceedances over
threshold that we call the discrete generalized Pareto approximation. The latter distribution
has been applied in the context of discrete extremes to model road accidents (Prieto et al.,
2014), network data (Charpentier and Flachaire, 2019), avalanche occurrences (Evin et al.,
2021), hospital cases for flu (Ranjbar et al., 2022) and wildfire counts (Koh, 2023). Ahmad et al.
(2022) proposed smooth extensions to avoid threshold selection, and various aspects of discrete
Pareto-type distributions were studied in Krishna and Pundir (2009), Buddana and Kozubowski
(2014) and Kozubowski et al. (2015),

Whereas the first method is based on an extension of F̄X by a survival function in the
maximum domain of attraction, the second method assumes instead an extension of pX, the
probability mass function of X. Suppose that there exists a non-negative random variable Y ∈
MDAξ/(1+ξ) with survival function F̄Y on [0, ∞) such that pX(k) = c F̄Y (k) for k = d, d + 1, d +
2, . . . , for some c > 0 and d ∈ N0 = {0, 1, . . .}. In this case, we say that pX is in the discrete
maximum domain of attraction which is denoted by pX ∈ D-MDAξ/(1+ξ), and call F̄Y an extension
of pX. We will show that pX ∈ D-MDAξ/(1+ξ) implies X ∈ MDAξ (under a mild condition in the
case ξ = 0), and that geometric, Poisson and negative binomial satisfy pX ∈ D-MDA0. It follows
from (2) that, for large integers u,

pr(X − u = k | X � u) = pr(Y > u + k)/pr(Y > u)∑∞
i=0 pr(Y > u + i)/pr(Y > u)

≈ pGZD
{
k; (1 + ξ)σau, ξ

}
, (4)

where

pGZD(k; σ, ξ) = (1 + ξ k
σ
)−1/ξ−1∑∞

i=0(1 + ξ i
σ
)−1/ξ−1

, k = 0, 1, 2, . . . , (5)

is the probability function of a distribution that we call the generalized Zipf distribution. In
the case ξ = 0, the latter is a geometric distribution (and so is the discrete generalized Pareto
distribution), and in the case ξ > 0, it is a Zipf–Mandelbrot distribution (Mandelbrot, 1953).
Zipf-type families have been fitted to various discrete datasets such as word frequencies (Booth,
1967), city sizes (Gabaix, 1999), company sizes (Axtell, 2001), website visits (Clauset et al.,
2009) and insurgency casualties (Patel et al., 2021). The Zipf law, arising in the case ξ = σ , is
sometimes presented as the discrete counterpart of the Pareto distribution (Arnold, 1983). We
refer to the approximation procedure in (4) as the generalized Zipf approximation.

We also note a few recent work in discrete extremes. Valiquette et al. (2023) studied the
tail behavior of Poisson mixtures distributions and derived maximum domain of attractions
results for this class. Koutsoyiannis (2023) proposed using K-moments to estimate distributions
when one is interested in their tail distributions, which is applicable in the discrete case as
well. Ghosh et al. (2023) analyzed a discretization of the Gamma-Lomax distribution, providing
characterization and estimation results in the context of discrete extremes.

2 Theoretical Results
We start by showing that the probability density and mass functions of the generalized Pareto,
discrete generalized Pareto and Zipf distributions are asymptotically equivalent as σ tends to
infinity. Proofs are given in the Appendix.
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Proposition 1. For σ > 0, ξ � 0 and q, q̃ ∈ {fGPD, pD-GPD, pGZD}, it holds

lim
σ→∞ sup

k=0,1,2,...

∣∣∣∣q(k; σ, ξ)

q̃(k; σ, ξ)
− 1

∣∣∣∣ = 0.

This suggests that modeling a sample from X − u | X � u by maximum likelihood using
either fGPD, pD-GPD or pGZD should not differ too much if the estimated scale parameter σ̂ is
sufficiently large. When the sample size and u grow, σ̂ only goes to infinity if the sequence au

defined in (1) satisfies au → ∞, which occurs if and only if X is long-tailed. Even in this case, au

might grow too slowly for the three methods to be similar in practice, as we will see in Section 3.
The results below formally justify the approximation procedures we have introduced. We

start with a convergence result for the discrete generalized Pareto approximation.

Proposition 2. If X ∈ D-MDAξ for ξ � 0, then there exists a positive sequence (au, u =
1, 2, . . .) such that

lim
u∈N0, u→∞

sup
k=0,1,2,...

∣∣pr(X = u + k | X � u) − pD-GPD(k; au, ξ)
∣∣ = 0. (6)

We remark that (6) is not informative if au → ∞ because the two terms converge to 0.
Next, we consider the case pX ∈ D-MDA. Recall that a distribution F is in MDA0 if and only
if the survival function has a representation

F̄ (x) = c(x) exp

{
−

∫ x

0

1

a(y)
dy

}
, x ∈ R, (7)

where a(·), called the auxiliary function, is positive and differentiable with a′(x) → 0 as x → ∞;
and c(·) is a positive function with limit c > 0 (Embrechts et al., 2013). If c(x) = c on (d, ∞)

for some d ∈ R, then we say that the distribution F satisfies the von Mises condition.

Theorem 1. If pX ∈ D-MDAξ/(1+ξ) and ξ > 0, then X ∈ MDAξ and, for any sequence of
nonnegative integers (ku)u∈N0 such that supu ku/u < ∞,

lim
u∈N, u→∞

pr(X = ku + u | X � u)

q(ku; ξu, ξ)
= 1, (8)

where q ≡ fGPD, pD-GPD and pGZD.
If pX ∈D-MDA0 and if the auxiliary function of an extension F̄ of pX satisfies limx→∞ a(x)=

σ > 0, then X ∈ D-MDA0 and

lim
u∈N, u→∞

pr(X = k + u | X � u) = pD-GPD(k; σ, 0) = pGZD(k; σ, 0), k = 0, 1, 2, . . . . (9)

The condition pX ∈ D-MDA is satisfied, among others, by the Zipf–Mandelbrot, geometric,
Poisson and negative binomial distributions as shown below and in the Appendix.

Example 1. The probability mass function of a Zipf–Mandelbrot distribution is proportional to
(k + q)−1−1/ξ for k = 0, 1, 2, . . . , q > 0, ξ > 0, and satisfies pX ∈ D-MDAξ/(1+ξ) because it can
be extended by F̄Y (y) = c(y + q)−1−1/ξ for y � 0 and some c > 0 with Y ∈ MDAξ/(1+ξ). The
probability mass function of a geometric distribution belongs to D-MDA0 as it coincides up to a
constant with the survival function of an exponential distribution. The latter distribution clearly
satisfies the von Mises condition and thus is a member of MDA0. The auxiliary function is, in
fact, equal (eventually) to 1/λ, where λ is the rate of the exponential distribution.
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To summarize, for a discrete random variable X and ξ � 0, it holds X ∈ MDAξ if and only
if X ∈ D-MDAξ and X is long-tailed. If ξ > 0, then pX ∈ D-MDAξ/(1+ξ) implies X ∈ D-MDAξ ;
the same implication holds in the case ξ = 0 if the auxiliary function of the extension of pX

satisfies a(x) → σ ∈ (0, ∞) as x → ∞.

3 Simulation Study
We assess the performance of the discrete generalized Pareto and the generalized Zipf approx-
imations for estimating the probability of a rare event from discrete data, and illustrate why
they should be preferred to the generalized Pareto approximation, whether X is long-tailed or
not. Let α = 2, β = 0.75 and

X = �Y �, Y ∼ Inverse-gamma(α, β), (10)

where the inverse-gamma distribution has density function f (x) = �(α)−1βαx−α−1 exp(−β/x),
x > 0. The experiment described below is repeated 500 times. An independent and identically
distributed sample of size 8000 is drawn from the distribution of X. The goal is to estimate the
probability of the extreme region

pe = pr
(
X � �qe�

)
, �qe� = 52, (11)

where qe is the 99.99 percentile of Y , i.e., the value exceeded once every 10 000 times on average.
The strategy pursued is to select an integer threshold u as the 95th empirical percentile of
the sample, fit parametric distributions to the exceedances X − u | X � u, and use them
to extrapolate the tail and estimate pe. (Selecting an appropriate threshold is crucial when
estimating high quantiles and can be based on techniques such as mean residual plots, see e.g.
Davison and Smith, 1990.) It clearly holds pX ∈ D-MDAξ/(1+ξ) for ξ = 1/α = 1/2, thus the three
approximations are justified. The generalized Pareto distribution is fitted to the observations
shifted by continuity correction δ = 0 or δ = 1

2 . As a benchmark, we will also estimate pe from
a sample of the continuous variable Y (as opposed to its discretization X) using the generalized
Pareto approximation.

A frequency plot of the exceedances of a sample of X above u is displayed on the left-hand
side in Figure 1. For each model, we compute the maximum likelihood estimators σ̂ and ξ̂

by performing a two dimensional maximization using the function optim of R (R Core Team,
2024) with starting values (1, 1). We then compute p̂e and approximate 90% confidence inter-
vals from the Fisher information matrix under asymptotic normality of the estimators. Table 1
displays: the average estimates p̂e, ξ̂ and σ̂ over the 500 replications of the experiment, the cov-
erage of the confidence intervals, their average length and their true length. (Coverage indicates
the proportion of time the truth lies in the confidence interval, true length is here defined as
	
 = q0.05(p̂e) − q0.95(p̂e), where p̂e is the vector of maximum likelihood estimates in the 500
replicated experiments, and q(·) is the quantile function.) The discrete generalized Pareto and
Zipf approximations provide relatively accurate estimates of pe from the discretized data with
a coverage close to the correct one of 90%, and their performance is good relative to the situ-
ation of full information where the continuous data are available — notice how the estimates
are very similar to one another. On the other hand, the two versions of the generalized Pareto
approximation perform poorly, the worst being the case δ = 0.

The ability of the discrete generalized Pareto and Zipf approximations to accurately estimate
the probability of rare events is supported by complementary simulated cases covering ξ = 0
and ξ < 0 (Hitz, 2016, Chapter 2).
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Figure 1: On the left: frequency plot of 462 exceedances of X over the 95th empirical quantile
u = 2 simulated from (10). On the right: frequency plot of the length of the 2875 longest French
words.

Table 1: Performance of several methods in estimating the probability pe of the rare event defined
in (11) from about 460 exceedances in each experiment. The table displays average maximum
likelihood estimators for pe, ξ and σ across the 500 replicated experiments. Coverage c, average
length l and true length l
 of 90% confidence intervals are shown between brackets. The discrete
generalized Pareto and Zipf approximations are superior in this case.

p̂e · 104 (c, l, l
) ξ̂ (c, l) σ̂ (l)
Truth 1.03 0.50

Fitted to Y − u | Y � u

Generalized Pareto distribution 1.07 (85%, 1.84, 1.81) 0.49 (94%, 0.28) 1.14 (0.36)

Fitted to X − u | X � u, X = �Y �
Discrete generalized Pareto distribution 1.09 (87%, 1.92, 1.85) 0.49 (93%, 0.29) 1.13 (0.40)

Generalized Zipf distribution 1.11 (88%, 1.97, 1.88) 0.50 (94%, 0.30) 1.34 (0.35)

Generalized Pareto distribution, δ = 1
2 0.44 (31%, 0.86, 0.97) 0.36 (35%, 0.22) 1.38 (0.39)

Generalized Pareto distribution, δ = 0 50.42 (85%, 162.32, 71.45) 8.29 (0%, 1.58) 0.00 (0.00)

4 Real Data Examples
We now illustrate the methods discussed in this article on three real datasets. The first con-
sists of the frequency X of word length in the French lexicon (New et al., 2004); for instance,
“anticonstitutionnellement” is the only word of 25 letters in French. We focus on describing the
tail distribution and fit the usual models to X − u | X � u with u = 15, the 98th percentile of
the data. A frequency plot of the 2875 exceedances is shown on the right-hand side of Figure 1.
The discrete generalized Pareto and Zipf distributions deliver a good fit and similar estima-
tions to one another, and clearly outperform the generalized Pareto approximation as shown in
Table 2 by p-values of discrete Kolmogorov–Smirnov tests based on the difference between the
fitted distribution and the empirical distribution of bootstrapped data. Notice that the negative
binomial also fits well in this case. The procedure for computing p-values in Table 2 for the
word length data was the following: resample the data with replacement; compute the differ-
ence between the fitted and empirical distribution of this sample; get a p-value by Monte Carlo
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Table 2: Fit of several distributions to the length of the 2875 longest French words, and to
the number of extreme tornadoes per outbreak for the 435 outbreaks with 12 or more such
tornadoes in the United States between 1965 and 2015. The table displays p-value of discrete
Kolmogorov–Smirnov tests (of the discretized model in the case of continuous models), negative
log-likelihood −	 and maximum likelihood estimates with 90% confidence intervals and possible
temporal trend σ̂t in the scale parameter.

p-val. −	 ξ σ̂0 σ̂t

Word length
Discrete generalized Pareto dist. 0.40 3894.0 0.02[−0.01,0.06] 1.36[1.30,1.43]
Generalized Zipf distribution 0.40 3894.0 0.02[−0.01,0.06] 1.37[1.32,1.43]
Generalized Pareto dist., δ = 1

2 0.02 3951.2 −0.04[−0.06,−0.01] 1.51[1.45,1.57]
Negative binomial 0.37 3893.9

Tornado outbreak
Discrete generalized Pareto dist. 0.19 1439.92 0.27[0.16,0.37] 4.81[3.64,5.99] 6.11[3.74,8.48]
Generalized Pareto dist., δ = 1

2 0.18 1439.93 0.26[0.16,0.37] 4.86[3.68,6.04] 6.13[3.75,8.50]

simulation using R package dgof (Arnold and Emerson, 2011); repeat 200 times and take the
average.

The second dataset comes from Tippett et al. (2016) who report the number X of extreme
tornadoes per outbreak in the United States between 1965 and 2015, where an outbreak is a
sequence of tornadoes that are high on the Fujita scale and occur close to each other in time.
The authors found that the 435 observations from X − u | X � u for u = 12 were well modeled
by a generalized Pareto distribution with linear temporal trend in the scale parameter and
continuity correction δ = 1

2 . The scale parameter is modeled as σ(t) = σ0 + σ1t, where t is
the time covariate rescaled between [0, 1]. The p-values in Table 2 for the tornado data were
computed as follows: split the dataset into 5 groups depending on which time covariates are
the nearest to ti = 0.1, 0.3, 0.5, 0.7, 0.9; for each group, assume σ(t) = σ0 + σ1ti and compute
the p-value of a discrete Kolmogorov–Smirnov test as explained previously; report the smallest
of these 5 p-values. Maximum likelihood estimates and discrete Kolmogorov–Smirnov tests in
Table 2 show that there is virtually no difference between the three approximations (only two
of them are presented). This is consistent with Proposition 1 since the location parameter σ̂

is larger in this case. Treating the tornado data as continuous is acceptable because there are
fewer tied observations: about 38% of the data consists of values shared with no more than 20
other observations, compared to 13% for the simulated data and 1% for the word length data.
Loosely, the data look less discrete (a frequency plot is displayed in the Appendix), thus the
generalized Pareto approximation is appropriate here.

The third dataset counts the number X of multiple births in the United States from 1995
to 2014 and is displayed on the left-hand side of Table 3 (Hamilton et al., 2015). The obser-
vations are censored from above and only take 5 distinct values, it is thus interesting to see
if the discrete generalized Pareto and Zipf distributions can still describe the tail of the data
in this non-standard estimation problem. We randomly select from the dataset a sample that
contains a thousand times fewer observations, and estimate from these the probability pe that
an American women delivers quintuplets or more by fitting a right-censored version of the usual
models to XC − u | XC � u for u = 2, where XC = min(X, 5). The experiment was repeated 500
times, and each sample contained on average 9 quatruplets and 1 quintuplet or more. In the case
of the generalized Zipf distribution, maximum likelihood estimates could not be computed nu-
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Table 3: On the left: frequency table of multiple births in the United States from 1995 to
2014. On the right: performance of several methods in estimating the probability pe of an
American women delivering quintuplets or more at birth using only one thousandth of the
dataset. In each experiment, the threshold was u = 1 and there were about 2600 exceedances
(see Table 1 for notation). The discrete generalized Pareto and Zipf provide useful techniques
for such extrapolations.

Multiple Births
Single 78 178 588
Twin 2 500 340
Triplet 1 17 603
Quadruplet 8 108
Quint. or more 1 353

p̂e · 105 (c, l, l
)
Truth 1.7
Discrete generalized Pareto distribution 1.4 (74%, 2.9, 2.9)

Generalized Zipf distribution 1.6 (87%, 3.3, 2.8); n/a
Negative Binomial 1.2 (65%, 2.3, 2.3)

Generalized Pareto distribution, δ = 1
2 n/a

merically in 52 out of 500 replicated experiments and the hessian matrix could not be computed
numerically in 70 experiments. In the case of the generalized Pareto distribution with δ = 1

2 ,
the log-likelihood function could not be maximized numerically. Table 3 shows that the discrete
generalized Pareto and Zipf distributions outperform common alternatives, and seem to be use-
ful techniques for inference from such limited data. The applicability of peaks-over-threshold
methods when u is a particularly small integer should be more rigorously studied.

5 Discussion
In summary, we have proposed two peaks-over-threshold methods for discrete random variables,
motivated by Proposition 1 and Theorem 1, and have shown that they provide accurate tail
probability estimates in simulated and real data. We conclude that there is no downside to fit a
discrete generalized Pareto for discrete data as opposed to a generalized Pareto distribution.

Future work could explore the use of the generalized Zipf and discrete Pareto distributions
in the case ξ < 0, and further investigate how they relate to each other as they seem to perform
similarly. The latter distribution benefits from its closed-form survival and probability mass
function, allowing for exact likelihood based inference.

Supplementary Material
The data and code supporting this article are available in the GitHub repository at https:
//github.com/adhi1000/discrete_extremes. This archive includes the file Simulated Data.R,
which details the simulation study discussed in Section 3, and the files Word Frequency.R,
Tornado.R and Multiple Birth.R, which replicate the real data analysis presented in Sec-
tion 4.

A Appendix
The following auxiliary lemma is elementary (as the sum can be sandwiched between two inte-
grals).

Lemma 1. If ξ > 0, then
u1/ξH1+1/ξ,u → ξ,

https://github.com/adhi1000/discrete_extremes
https://github.com/adhi1000/discrete_extremes
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as u → ∞, where Hs,q = ∑∞
i=0(q + i)−s is the Hurwitz-Zeta function.

Proof of Proposition 1. Suppose first that ξ > 0. Then

pD-GPD(k; σ, ξ)

fGPD(k; σ, ξ)
= (1 + ξ k

σ
)−1/ξ − (1 + ξ k+1

σ
)−1/ξ

1
σ
(1 + ξ k

σ
)−1/ξ−1

=
{

1 −
(

1 + ξ

σ + ξk

)−1/ξ}
(σ + ξk) → 1,

uniformly in k = 0, 1, 2, . . . as σ → ∞. Furthermore,

sup
k=0,1,2,...

fGPD(k; σ, ξ)

pGZD(k; σ, ξ)
= σ−1

∞∑
i=0

(1 + ξ i/σ )−1/ξ−1 → 1,

as σ → ∞ by Lemma 1. In the case ξ = 0,

pD-GPD(k; σ, 0)/fGPD(k; σ, 0) = pGZD(k; σ, 0)/fGPD(k; σ, 0) = σ
(
1 − e−1/σ

) → 1.

Proof of Proposition 2. By assumption, there exists a random variable Y ∈ MDAξ for ξ � 0 and
a positive function (ãu, u > 0) such that X = �Y � in distribution and the sequence of functions
pr{ã−1

u (Y −u) � x | Y � u}, x � 0, converges uniformly, as u → ∞, to the function F̄GPD(x; σ, ξ),
x � 0, for some σ > 0 and ξ � 0. For a positive integer u we let au = ãuσ . Then

sup
k=0,1,2,...

∣∣ pr(X = u + k | X � u) − pD-GPD(k; au, ξ)
∣∣

= sup
k=0,1,2,...

∣∣pr
{
ã−1

u (Y − u) � ã−1
u k | Y � u

} − pr
{
ã−1

u (Y − u) � ã−1
u (k + 1) | Y � u

}

− F̄GPD(k; au, ξ) + F̄GPD(k + 1; au, ξ)
∣∣

� 2 sup
x�0

∣∣pr
{
ã−1

u (Y − u) � x | Y � u
} − F̄GPD(x; σ, ξ)

∣∣ → 0

as u → ∞ over the integers.

The proof of Theorem 1 relies on properties of regularly varying functions. Recall that a
positive and measurable function f on [1, ∞) is regularly varying if there exists α ∈ R such that

lim
u→∞

f (ux)

f (u)
→ xα, x � 1,

and we write f ∈ RVα (see e.g. Bingham et al. (1989)). If f ∈ RV−α for α � 0, then

lim
u→∞ sup

x∈[1,b]

∣∣∣∣f (ux)

f (u)
− x−α

∣∣∣∣ → 0, (12)

for b = ∞ if α > 0, and for any b < ∞ if α = 0. If f ∈ RV−α for α > 0, then by Potter’s bounds
(see e.g. Resnick, 1987) for any ε > 0 there is uε ∈ (0, ∞) such that

e−εx−α−ε � f (ux)

f (u)
� eεx−α+ε, x � 1, (13)

for u � uε . We say that X is regularly varying if F̄X ∈ RV−α for some α > 0, a necessary and
sufficient condition for X ∈ MDA1/α.
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Proof of Theorem 1. We start by proving the first part of the theorem. By assumption, there
exists a survival function F̄ such that F̄ (k) = c pX(k) for c > 0, k large enough and F̄ ∈ RV−1/ξ−1.
The last condition is equivalent to F̄ (�·�) ∈ RV−1/ξ−1 (Shimura, 2012). It follows from results on
integrals of monotone regularly functions in Bingham et al. (1989) that F̄X ∈ RV−1/ξ , and thus
X ∈ MDAξ . We now show that (8) holds. Thanks to Proposition 1, it suffices to provide a proof
for q = pGZD. We have

pr(X = ku + u | X � u)

pGZD(ku; ξu, ξ)
= F̄ (u + ku)/F̄ (u)

(1 + ku/u)−1/ξ−1

∑∞
i=0(1 + i/u)−1/ξ−1∑∞
i=0 F̄ (u + i)/F̄ (u)

.

First, by the uniform convergence (12) and the the fact that ku grows at most linearly fast, we
conclude that

F̄ (u + ku)/F̄ (u)

(1 + ku/u)−1/ξ−1
→ 1,

as u → ∞ over the integers. Second, Lemma 1 yields

u−1
∞∑
i=0

(1 + i/u)−1/ξ−1 → ξ.

Third, it follows from (13) that for ε ∈ (0, 1/ξ), there exists uε > 0 such that for u � uε ,

u−1
∞∑
i=0

F̄ (u + i)/F̄ (u) � u−1eε

∞∑
i=0

(
1 + i

u

)−1−1/ξ+ε

→ ξeε

1 − ξε
,

using Lemma 1 once again. A similar lower bound can be found in the same manner. Now letting
ε → 0, this completes the proof of (8).

Let us now prove the second part of the theorem. For large integers u,

pr(X = k + u | X � u) = F̄ (k + u)/F̄ (u)∑∞
i=0 F̄ (i + u)/F̄ (u)

.

We have for every i = 0, 1, 2, . . . ,

F̄ (i + u)/F̄ (u) = c(i + u)

c(u)
exp

{
−

∫ i

0
1/a(u + y)dy

}
→ e−i/σ

as u → ∞. Since σ > 0, the dominated convergence theorem gives us
∞∑
i=0

F̄ (i + u)/F̄ (u) →
∞∑
i=0

e−i/σ = 1/
(
1 − e−1/σ

)
,

showing (9). Finally, it follows from

pX(n) = c(n) exp

{
−

∫ n

0

1

a(y)
dy

}

for all n and a(y) → σ ∈ (0, ∞) that

lim
n→∞

pX(n)

pr(X � n)
= 1 − e−1/σ ∈ (0, ∞),

which immediately implies that X ∈ D-MDA0 as well.
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Figure 2: Frequency plot of the number of extreme tornadoes per outbreak for the 435 outbreaks
with 12 or more extreme tornadoes in the United States between 1965 and 2015.

Example 1. The probability mass function pX of a Poisson distribution with rate λ > 0 coincides
on k = 0, 1, 2, . . . with the function

g(x) = λxe−λ

�(x + 1)
,

a continuous function on R+ satisfying limx→∞ g(x) = 0. Moreover,
d

dx
log g(x) = −ψ0(x + 1) + log λ,

where ψ0 is the polygamma function of order 0. Since ψ0(x) → ∞ as x → ∞, we see that
g′(x) < 0 for x sufficiently large. Therefore, F̄Y (x) = g(x)/g(d) is a survival function on [d, ∞)

for some d � 0. Furthermore,

d

dx

(
− 1

g′(x)

)
= − ψ1(x + 1)

{ψ0(x + 1) − log λ}2
,

where ψ1 = ψ ′
0 is is the polygamma function of order 1. Since ψ1(x) → 0 as x → ∞, we

conclude that FY satisfies the von Mises condition, with the auxiliary function a(x) = {ψ0(x +
1) − log λ}−1 → 0 as x → ∞. Therefore, the Poisson probability mass function is in D-MDA0.

Similarly, the probability mass function of the negative binomial distribution with probability
of success p ∈ (0, 1) and number of successes r > 0 is also in D-MDA0 because it coincides on
{0, 1, 2, . . .} with the function

g(x) = pr

�(r)

�(x + r)

�(x + 1)
(1 − p)x,

a continuous function on R+. It is simple to check that limx→∞ g(x) = 0, and g′(x) < 0 for
x large enough, so that F̄Y (x) = g(x)/g(d) is a survival function on [d, ∞) for some d � 0.
Furthermore, g(x) ∼ cxr−1(1 − p)x for large x, where c is a positive constant. Therefore, F̄Y is
of the form (7) with the auxiliary function

a(x) = 1

− log(1 − p) − (r − 1)/x
, x large,

and so it converges to −1/ log(1 − p) as x → ∞.
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