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Abstract

One crucial aspect of precision medicine is to allow physicians to recommend the most suitable
treatment for their patients. This requires understanding the treatment heterogeneity from a
patient-centric view, quantified by estimating the individualized treatment effect (ITE). With a
large amount of genetics data and medical factors being collected, a complete picture of individ-
uals’ characteristics is forming, which provides more opportunities to accurately estimate ITE.
Recent development using machine learning methods within the counterfactual outcome frame-
work shows excellent potential in analyzing such data. In this research, we propose to extend
meta-learning approaches to estimate individualized treatment effects with survival outcomes.
Two meta-learning algorithms are considered, T-learner and X-learner, each combined with three
types of machine learning methods: random survival forest, Bayesian accelerated failure time
model and survival neural network. We examine the performance of the proposed methods and
provide practical guidelines for their application in randomized clinical trials (RCTs). Moreover,
we propose to use the Boruta algorithm to identify risk factors that contribute to treatment
heterogeneity based on ITE estimates. The finite sample performances of these methods are
compared through extensive simulations under different randomization designs. The proposed
approach is applied to a large RCT of eye disease, namely, age-related macular degeneration
(AMD), to estimate the ITE on delaying time-to-AMD progression and to make individualized
treatment recommendations.
Keywords age-related macular degeneration; individualized treatment effect; precision
medicine; randomized clinical trials; survival outcomes

1 Introduction
Traditional clinical studies often prioritize estimating the average treatment effect across the
study population. While this provides valuable insights, it can overlook a crucial aspect of
patient care: treatment heterogeneity based on individual patient’s characteristics. Treatment
heterogeneity refers to the variations in treatment effects among patients due to their unique
genetic makeup, medical history, and other individual factors. Failing to consider this can have
significant implications for patient care. Precision medicine aims to provide patients with the
most suitable treatment option, considering their unique genetic and clinical characteristics.
This requires a deep understanding of estimating the treatment effect given individual patient’s
covariates, referred to as estimating the individualized treatment effect (ITE).
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Recent advancements in statistical methodologies for estimating ITE have primarily focused
on continuous or binary outcomes. For example, leveraging the benefits of tree structures to in-
terpret outcome estimations based on individual characteristics, Hill (2011) proposed a Bayesian
Additive Regression Trees (BART) approach to estimate ITE. Wager and Athey (2018) intro-
duced a causal forest (CF) method by modifying the splitting rule in standard random forest
algorithms to directly maximize the treatment effect within each node. More recently, Koch
et al. (2023) reviewed four approaches that estimate ITE through neural network architectures:
TARNet learns ITE by balancing covariates between treatment and control groups through rep-
resentation learning (Shalit et al., 2017); CFRNet, an extension of TARNet that incorporates
an integral probability metric (Johansson et al., 2022); Dragonnet, another extension of TAR-
Net with the inclusion of inverse probability weighting (Shi et al., 2019); and GANITE, which
learns ITE through adversarial training (Yoon et al., 2018). Nevertheless, these approaches are
formulated through a specific algorithm (e.g., trees or neural networks), lacking the flexibility to
choose any desired parametric or nonparametric models for estimating ITE. On the other hand,
meta-learning algorithms, another popular framework, provide flexible choices of parametric or
nonparametric methods (e.g., linear regression, Lasso, random forests, neural networks, etc.) to
estimate ITE. For example, S-learner and T-learner were developed from the “virtual twins”
(VT) approach (Foster et al., 2011) to model the ITE by predicting response probabilities for
treatment and control “twins” for each subject and identify individuals who can benefit from the
treatment over a control therapy. Kunzel et al. (2018) extended it to X-learner which provides
a more accurate ITE estimation when sample sizes are (very) different in two treatment arms.
Theoretical properties of meta-learner methods have also been studied (Kunzel et al., 2018;
Curth and van der Schaar, 2021; Kennedy, 2023).

While methods and their properties for estimating ITEs with continuous or binary outcomes
have been extensively examined, fewer studies exist for survival outcomes. Survival outcomes are
of primary interest in clinical trials for cancer and progressive diseases. One challenge specific
to analyzing survival outcomes is the presence of censoring. Several recent publications have
introduced novel methods of estimating ITE with survival outcomes. For example, Zhu and
Gallego (2020) introduced a new framework to estimate individualized hazard function through
targeted maximum likelihood estimation (TMLE) and then used a scoring system to identify
features that contribute to heterogeneous ITEs. However, their approach requires converting the
original survival data into discretized times. In a different approach, Cui et al. (2023) leveraged
the interpretation of ITEs from tree structures to develop a causal survival forest (CSF) method,
extending the original causal forests to handle right-censored data. On the other hand, Tabib and
Larocque (2020) proposed a special splitting rule in the traditional random forests to maximize
the distance between the ITE of the left and right node populations. In their method, the
treatment effect is measured as the difference between the mean survival time of a treated
subject and that of a control subject. While these methods can accommodate right-censored
data, they either estimate ITE using discretized times or rely on a specific algorithm such as
the tree-based methods. Such limitations restrict the flexibility in applying any desired model
to estimate ITE, especially when dealing with large-scale data such as genetics data.

In this study, we present a novel extension of two existing meta-learning ideas, namely T-
learner and X-learner, to estimate ITE in randomized clinical trials (RCTs) with right-censored
survival outcomes. The motivation behind this project stems from investigating the treatment ef-
fects on delaying the progression of a serious eye disease called age-related macular degeneration
(AMD). AMD is a polygenic and progressive neurodegenerative disorder that can result in blind-
ness among the elderly population. Advancements in genotyping technologies have facilitated
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the collection and analysis of single nucleotide polymorphisms (SNP) data to identify potential
genetic risk factors associated with time-to-AMD progression (Yan et al., 2018; Sun and Ding,
2019). The antioxidants plus zinc treatment (AREDS formula) is considered a potential treat-
ment in delaying AMD progression and its average treatment effect on time-to-AMD-progression
has been studied through the Age-Related Eye Disease Study (AREDS) (, 1999), a large multi-
center RCT. Although some studies have attempted to examine genetic risk factors associated
with treatment heterogeneity, the findings are controversial (Cascella et al., 2018). For instance,
while Klein et al. (2008) and Seddon et al. (2016) reported differential responses in the CFH
and ARMS2 gene regions to AREDS formula, Chew et al. (2015) found no such differential
responses after controlling for multiple testing. To our best knowledge, there is no existing work
that quantified the ITE of AREDS formula on time-to-AMD progression. In this paper, we define
the ITE to be the difference in progression-free probabilities if receiving the AREDS formula
vs if receiving a placebo, given individual patient’s characteristics. We implement and evaluate
the performance of three different types of machine learning methods accompanied with two
meta-learning algorithms in estimating ITEs under various randomization designs and compare
them with an existing method, causal survival forests. Based on the ITE estimates, we provide
treatment recommendations for each individual and identify genetic risk factors contributing to
treatment heterogeneity.

Our contributions are in three folds. First, we extend the meta-learning algorithms to right-
censored data by appropriately addressing the challenges unique to survival outcomes. Secondly,
we extensively study the performance of meta-learning algorithms when implemented with dif-
ferent types of machine-learning methods and provide practical guidelines for their applications
in RCTs. Finally, we apply the top performed methods on the motivating study, and success-
fully identify and validate the genetic risk factors that are predictive of ITEs in time-to-AMD
progression, which is the first analysis to quantify ITEs of the AREDS formula.

The paper is organized as follows. The settings, assumptions, and proposed methods are
described in Section 2. In Section 3, we present comprehensive simulations to compare the
performance of different methods in estimating ITEs and providing treatment recommendations
under various scenarios. The results of the application of the proposed methods in analyzing
the AREDS study are reported in Section 4. Finally, we discuss the potential limitations of the
proposed methods and future research directions in Section 5.

2 Method

2.1 Notation

The methods we consider are applicable to either a simple RCT or a stratified RCT in which
randomization depends on baseline covariates. We consider a two-treatment arm comparison,
denoted by Z = 1 for treatment and Z = 0 for control. X is a d-dimensional vector of covari-
ates. T and C denote the survival time and censoring time, respectively. Then the observed
time is Y = min(T , C), with the event indicator δ = I (T � C). Let (T (0), T (1)) denote the
potential survival times under Neyman-Rubin’s potential outcome framework (Rubin, 1974;
Splawa-Neyman et al., 1990), indicating the survival times if the patient receives control and
treatment, respectively. Similarly, (δ(0), δ(1)) indicates the event indicator, and (C(0), C(1))

indicates the censoring time under control and treatment. We assume the non-informative cen-
soring assumption under which the censoring time is independent of the survival time given
covariates and treatment assignment: C(z) ⊥⊥ T (z)|(X, Z). Before defining ITE, we first define
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the conditional average treatment effect (CATE) function given patient characteristics following
Neyman-Rubin’s potential outcome framework:

θ(t, x) = E
{
I
(
T (1) > t |X = x

)} − E
{
I
(
T (0) > t |X = x

)}

= E
{
I (T > t |Z = 1, X = x)

} − E
{
I (T > t |Z = 0, X = x)

}

= S1(t |x) − S0(t |x), (1)

where Sz(t |x) = S(t |Z = z, X = x) = P(T > t |Z = z, X = x) with z = 1 or 0 denotes the
conditional survival function given covariates X = x for treatment arm z. The time t in the
CATE function is pre-chosen. For example, one can use the median or mean survival time as
this t . For a specific patient i with characteristics xi , we plug xi into the CATE function and
define their ITE on the survival probability scale as:

θi(t) = S1(t |xi) − S0(t |xi ). (2)

Note that the second line of definition (1) is guaranteed by the commonly assumed three
assumptions in causal inference: consistency, unconfoundedness, and positivity. Consistency
assumption guarantees the counterfactual model applied to the observed outcomes as Y =
ZY(1) + (1 − Z)Y (0) and δ = Zδ(1) + (1 − Z)δ(0). The unconfoundedness assumption rules out
the existence of unobserved factors that affect treatment choice and correlate with the outcome,
which is Z⊥⊥ (T (0), T (1))|X. The positivity assumption requires that for each value of covariates,
there is a positive probability of being assigned to both treatments: P(Z = 1|X = x) ∈ (0, 1).
Equivalently, this assumes that there is sufficient overlap in the characteristics of treated and
control patients.

2.2 Estimating ITE with Meta-Learning Algorithms
In this study, inspired by Kunzel et al. (2018), we propose to extend two meta-algorithms to
estimate ITEs with survival outcomes by estimating the CATE function in (1).

T-learner (plug-in estimator (Curth and van der Schaar, 2021)) T-learner fits two
separate prediction models of conditional survival function using patients under each treatment
arm, denoted by Ŝ1(t |X) and Ŝ0(t |X). They are also called “base learners”. Besides fitting para-
metric models for the survival functions, machine learning methods can be used to build the
base learners, which are typically preferred especially with large-scale X. In the T-learner, the
treatment indicator is no longer a covariate in the prediction model. The ITE estimate for a
specific patient i with characteristics X = xi is given by

θ̂i(t) = θ̂ (t |X = xi ) = Ŝ1(t |xi) − Ŝ0(t |xi). (3)

X-learner X-learner is a two-step approach. The first step is to perform T-learner, that is,
to construct a T-learner type of estimated ITE for each patient. In the second step, we further
regress these T-learner estimated ITEs on the covariates using patients in the treatment arm or
control arm separately. The final ITE is a weighted average of the two ITE estimates from these
separate regressions in step 2. The detailed implementation steps are provided below.

Step 1. Compute the T-learner type of ITE estimates D̃i(t) for each patient by taking the
difference of the predicted conditional survival probabilities under treatment and under con-
trol:

D̃i(t) = Ŝ1(t |xi) − Ŝ0(t |xi),
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where “base learners” Ŝ1(t |x) and Ŝ0(t |x) are built using patients in the treatment arm and
control arm respectively. Note that D̃i(t) is essentially the same as θ̂i(t) from equation (3).
Step 2. Regress D̃i(t) on covariates xi using patients in treatment and control arm separately,
to estimate two CATE functions θ̂z(t, x):

θ̂z=1(t, x) : M(
D̃(t) ∼ x; z = 1

)
, θ̂z=0(t, x) : M(

D̃(t) ∼ x; z = 0
)
,

where M denotes a fitted model using data (D̃i(t), xi).
For each patient, we estimate their ITE twice, one based on the estimated CATE function
using treated patients (i.e., θ̂z=1(t, xi)), and the other based on the estimated CATE function
using control patients (i.e., θ̂z=0(t, xi)). The final ITE estimate is given by a weighted average
of these two estimates:

θ̂i(t) = g(xi )θ̂z=0(t, xi) + {
1 − g(xi )

}
θ̂z=1(t, xi ), (4)

where g(x) ∈ (0, 1) is a weight function. Following the recommendation of Kunzel et al.
(2018), one may use the known randomization probability p as the weight (g(x) = p) if
it is a RCT with p probability to be randomized to the treatment arm or the estimated
propensity score as the weight g(x) = P̂ (Z = 1|X = x) if the randomization scheme is more
complex (depends on covariates) with propensity score function unknown.
Here, we explain the difference between the original X-learner for continuous or binary

data and the proposed extension to survival data. In the first step of the original X-learner,
it constructs the ITE by the difference between the observed outcome (factual outcome) the
predicted survival probability (counterfactual outcome) for each patient, denoted by D̃i(t) =
I (Ti > t) − Ŝ0(t |xi ) if patient i is in the treatment arm and D̃i(t) = Ŝ1(t |xi) − I (Ti > t) if
patient i is in the control arm. However, this original construction cannot be directly applied to
censored data as I (Ti > t) is unknown for those patients who are censored before the pre-specified
time t . Thus, we propose to use both predicted conditional survival probabilities to calculate this
quantity D̃i(t) for each subject, which means that both factual and counterfactual outcomes are
estimated. As demonstrated in the original paper (Kunzel et al., 2018), X-learner has advantages
when sample sizes are (very) different between two arms and/or when randomization depends
on baseline covariates. This is achieved through the weight function g(x). The performance of
both T- and X-learners on survival data will be examined through simulations in Section 3.

Note that the estimation of ITE heavily relies on the performance of the base learners. In this
paper, we investigate three types of machine learning methods to build base learners for survival
data: random survival forest (RSF) (Ishwaran and Kogalur, 2007), Bayesian accelerated failure
time model (BAFT) (Henderson et al., 2020), and deep survival neural network (DNNSurv)
(Sun et al., 2020).

2.3 Identification of Important Variables
As ITE estimates characterize the treatment heterogeneity, they can be used to guide treatment
recommendations for each individual. From equation (2), a positive value of θi(t) indicates that
the survival probability under Z = 1 is larger than that under Z = 0 for a patient i with X = xi .
Therefore, a possible approach is to use 0 as the threshold value to recommend treatment choices
based on the estimated ITE: RTCi = 1{θ̂i(t) > 0} (‘RTC’ stands for recommended treatment
choice). That is, the treatment (Z = 1) is recommended for individuals whose estimated ITE is
positive; and on the contrary, the control (Z = 0) is recommended for individuals whose esti-
mated ITE is non-positive. In this situation with only two treatments to consider, the treatment
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recommendation becomes a binary classification problem. The important features are defined as
those that contribute most to reducing the classification error. We will use the Boruta algorithm
(Kursa and Rudnicki, 2010) to identify these important features.

The Boruta algorithm first generates “shadow variables” by shuffling the values of each
original feature to remove any potential correlation with the target binary outcome. These
“shadow variables” are then added to the original dataset so that the total number of features
is doubled. A random forest classifier is used on the new dataset, and z-scores are computed
for all features, including real and shadow ones. The maximum score for all “shadow variables”
serves as a threshold to assign a “Hit” to the original features (i.e., if the z-score of original
features is greater than the threshold, a “Hit” is marked). For variables with undetermined
importance, a two-sided test of equality with the max z-score in the shadow features is conducted.
Those with significantly lower z-score are permanently removed from the dataset. After removing
unimportant features and all shadow variables, repeat the procedure until the importance is
assigned for all features or the pre-specified number of iterations is reached. This algorithm
identifies variables that significantly contribute to the treatment recommendation rule. We can
better understand the heterogeneity in the treatment efficacy from these important features,
which can guide future trial designs.

3 Simulations
We conducted comprehensive simulations to evaluate the finite sample performance of the pro-
posed methods for estimating ITE under various RCT settings.

3.1 Simulation Design

We simulated true survival times from parametric regression models with two types of error
distributions: Weibull distribution and Log-logistic distribution with nonzero treatment effect
(i.e., the CATE function θ(t, x) �= 0). We simulated data from Weibull regression because Weibull
satisfies both proportional hazards (PH) and accelerated failure model (AFT) assumptions,
which allows us to have more flexibility in choosing machine learning methods for base learners;
while Log-logistic distribution only belongs to the AFT model family, which will be used to
examine the robustness of the proposed methods when some modeling assumptions of base
learners are not met. Among the base learners we evaluated, RSF and DNNSurv assume the PH
property in their models, while BAFT assumes the AFT property.

Ten covariates X1, . . . , X10 were simulated independently from N(0, 0.352) and then three
binary covariates were generated by X̃j = 1{Xj > 0} for j = 8, 9, and 10. The treatment indicator
Z was generated from Bernoulli(p). We considered three randomization designs: (1) a balanced
design where p = 0.5; (2) an extremely unbalanced design where p = 0.05; and (3) a dependent
design with logit(p|X) = β0 + 1.3X1 − 0.8X5. β0 was selected to have a 1:1 treatment-control
ratio.

For the Weibull case, the true survival model is: Sz(t |X) = S(t |X = x, Z = z) =
exp{−ehz(x)( t

λz
)η}. Then by inverse-transforming the survival function, the survival time T was

simulated from: T = λz{− log(U)/ehz(x)} 1
η , where U ∼ Unif[0, 1]. We set the common shape

parameter η = 2 and two separate scale parameters λ0 = 18 and λ1 = 20 for control and treat-
ment, respectively. The censoring time was simulated from an exponential distribution to have
an overall censoring rate of 30%. Three types of heterogeneous treatment effects were generated
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through the following functions for hz(x):

S1: h0(x) = 0.2X1 + 0.7X2 + 0.4X̃9,

h1(x) = −0.5X1 − 2X2 − 0.25X̃9.

S2: h0(x) = −0.5X1 + 0.7X2 + 0.2X̃9 + 0.9X2X̃9,

h1(x) = −0.05eX1 − 0.2X2
2 + 0.35X̃9.

S3: h0(x) = −0.5X1 + 0.7X2 + 0.2X̃9 + 0.9X2X̃9 + 0.6X3 − 0.5X2
4 + 0.6X̃8,

h1(x) = −0.05eX1 − 0.2X2
2 + 0.2X̃9 − 0.1eX5 + 0.7 sin (X6) + 0.5X̃10.

In Scenario 1, three common covariates are associated with the outcome through linear relation-
ships in both treatment groups. In contrast, in Scenario 2, the same covariates are associated
with the outcome through nonlinear relationships. In Scenario 3, different (with overlap) covari-
ates are associated with the outcome through a complex nonlinear relationship in each treatment
group.

For the Log-logistic case, the true survival model is: Sz(t |X) = S(t |X = x, Z = z) =
1

1+exp{ log(t)−hz(x)
σz

} . The scale parameter σz was set to different values for different scenarios (σ0 = 2

and σ1 = 1 for Scenario 1 and σ0 = 1 and σ1 = 0.5 for Scenarios 2 and 3) to allow more than 50%
individuals benefit from the treatment over control. The censoring time was also simulated from
an exponential distribution to have an overall censoring rate of 30%. The covariates, treatment
indicator, three randomization scenarios, and three types of heterogeneous treatment effects are
the same as in the Weibull case.

We examined the following six combinations of two meta-algorithms and three base learners:
RSF with T-learner (R-T), RSF with X-learner (R-X), BAFT with T-learner (B-T), BAFT
with X-learner (B-X), DNNSurv with T-learner (D-T) and DNNSurv with X-learner (D-X).
The true Weibull and Log-logistic regressions were also included to serve as the optimal case
for the ITE estimate in two simulation designs. Under the scenarios when the true ITE was
simulated from the Weibull regressions, we compared the proposed method with CSF (Cui
et al., 2023), which is a “non-meta” type of method. CSF estimates CATE through orthogonal
estimating equations. We trained each method on the training data of n = 1,000 individuals
and evaluated its performance on a large independent test data of N = 105 individuals. In
the second step of X-learner, any machine learning methods for continuous outcomes can be
applied. We applied Gradient Boosting Machines (GBM) (Greenwell et al., 2020) in the second
step to model D̃(t) ∼ x for each treatment arm separately. We built 1,000 boosting trees on
each treatment arm using the following tuning parameters: the depth of each tree is 6, the
minimum number of observations in the terminal nodes is 10, and the fraction of the training
set observations randomly selected to propose the next tree in the expansion is 0.8. The weight
function g(x) was estimated through the standard random forests (Liaw and Wiener, 2002). We
chose the median survival time as our time of interest for constructing ITE. We also conducted
a sensitivity analysis by choosing the 75% percentile of survival time as the time of interest for
the Weibull case. We repeated the simulations for B = 100 times for each setting and used the
following metrics to evaluate the model performance.

3.2 Evaluation Metrics
To assess the ability of each method to uncover treatment heterogeneity, we evaluate their
performance in estimating ITE within subgroups. We divided individuals into G = {G1, . . . , GQ}
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groups based on the Q quantiles of the true ITE values, and calculated bias and quantile-binned
root mean squared error (RMSE), defined as:

Bias = 1

n

n∑
i=1

(
θ̂i(t) − θi(t)

)
, RMSE = 1

Q

Q∑
q=1

√√√√ 1

nq

nq∑
i=1

(
θ̂i(t) − θi(t)

)2
,

where θi(t) denotes the true ITE and θ̂i(t) denotes estimated ITE for individual i. We set Q = 50
in all the simulations.

Since ITE estimates are used to make treatment recommendations, besides bias and RMSE,
we further evaluate the ITE estimates from each method by overall accuracy (ACC), positive
predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and F-score, as
illustrated next. We assume that the treatment recommendation label based on the true ITE
value is the gold standard: individuals with θi(t) > 0 should be recommended for treatment,
whereas individuals with θi(t) � 0 should be recommended for control. Individuals with positive
estimated ITE (θ̂i(t) > 0) were labeled as recommended for treatment (RT) and individuals with
non-positive estimated ITE (θ̂i(t) � 0) were labeled as recommended for control (RC). Thus, we
define true positive (TP) as the number of individuals whose estimated and true best treatments
are both “treatment” (Z = 1); true negative (TN) as the number of individuals whose treatment
recommendation and true best treatment are both “control” (Z = 0); false positive (FP) as
the number of individuals whose estimated best treatment is “treatment” while the true best
treatment is “control”; and false negative (FN) as the number of individuals whose estimated best
treatment is “control” while the true best treatment is “treatment”. The following measurements
were considered: accuracy (ACC = TP+TN

N ), positive predictive value (PPV = TP
TP+FP), negative

predictive value (NPV = TN
TN+FN), sensitivity (= TP

TP+FN), specificity (= TN
TN+FP), and F-score

(= 2
PPV−1+sensitivity−1 ).

3.3 Simulation Results
3.3.1 Balanced Design

Figure 1 presents the bias and binned RMSE for the ITE estimates from each method under
the balanced design when the true survival time was simulated from the Weibull model. The
ITE estimate from the correctly specified Weibull model demonstrates the best performance
one can get. Generally, the methods with BAFT as the base learner (i.e., B-T and B-X) have
relatively larger biases and RMSEs than other methods. The RSF-, DNNSurv-based methods
and CSF have comparable biases under all scenarios, but DNNSurv-based methods provide
smaller RMSEs in all three scenarios. The X-learner shows a slightly better performance in
terms of RMSE than the T-learner with all three base learners. In general, CSF does not show
better RMSE than the proposed methods. The prediction accuracy metrics are summarized in
Table 1. Although CSF shows the best NPV and sensitivity across all three scenarios, it tends
to predict more positive ITEs especially when scenarios get complicated (e.g. Scenarios 2 and 3)
and yields low specificity. CSF predicts more than 90% positive ITEs while we only simulated
70% positive ITEs. Particularly, when scenarios get complicated, all predicted ITE values from
CSF are positive in more than 50% runs of simulations. For the linear scenario (S1), X-learner
with DNNSurv shows the best performance across all six metrics compared to the other five
learners. For Scenarios 2 and 3, X-learner with DNNSurv demonstrates the best or the second-
best performance for all metrics compared to the other five learners, except that X-learner with
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Figure 1: Simulation results when truths are generated from a Weibull model: box plots of
biases (upper panel) and binned RMSEs (lower panel) to compare the performance of ITE es-
timates under the balanced design at the median failure time. The ITE estimates from the
following combinations of the meta-algorithms and base learners were examined: RSF with T-
learner (R-T), RSF with X-learner (R-X), BAFT with T-learner (B-T), BAFT with X-learner
(B-X), DNNSurv with T-learner (D-T) and DNNSurv with X-learner (D-X). ‘CSF’ represents
causal survival forests. ‘Weib’ represents the true Weibull model as the best case for ITE esti-
mates.

RSF has a higher sensitivity than DNNsurv-based learners in Scenario 3. Although R-X or
D-T slightly outperforms D-X at some metrics under more complicated Scenarios 2 and 3, D-X
provides the best prediction accuracy overall.

Figure 2 presents the bias and binned RMSE for the ITE estimates from each method
under the balanced design when the true survival time was simulated from the Log-logistic
model. Although only BAFT satisfies the AFT assumption (the log-logistic model is an AFT
model), RSF- and DNNSurv-based methods still perform well and even outperform BAFT in
most cases. RSF-based methods show minimal biases in all three scenarios; BAFT-based methods
show bias in Scenario 1, but the magnitudes are small; DNNSurv-based methods also show some
small biases in Scenarios 2 and 3. For the binned RMSE, DNNSurv-based methods have smaller
RMSEs than RSF- and BAFT-based methods in all three scenarios. The differences between T-
and X-learners are small (except for BAFT methods), with X-learner showing smaller RMSEs
in all three scenarios. Similar to Table 1, the prediction accuracy metrics under this Log-logistic
setting are summarized in Table 2. D-X shows the best performance across all six metrics in all
three scenarios.
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Table 1: Simulation results when truths are generated from a Weibull model: prediction accu-
racy under the balanced design at the median failure time. Six metrics are summarized with
mean (SD) for each method under each scenario: overall accuracy (ACC), positive predictive
value (PPV), negative predictive value (NPV), sensitivity, specificity, and F-score.

R-T R-X B-T B-X D-T D-X CSF Weib
Scenario 1

ACC 90.11 (1.81) 90.58 (1.85) 85.99 (2.03) 88.55 (1.91) 92.39 (1.71) 93.44 (1.67) 82.02 (7.15) 96.37 (1.62)
PPV 91.78 (3.21) 92.33 (3.30) 90.67 (2.32) 92.18 (2.50) 94.96 (3.02) 95.52 (2.94) 81.18 (7.56) 97.36 (2.33)
NPV 87.17 (5.99) 87.56 (6.19) 76.13 (4.54) 80.93 (4.81) 87.62 (5.77) 89.63 (5.43) 95.55 (6.05) 94.68 (4.90)
Sensitivity 94.56 (3.24) 94.62 (3.38) 89.26 (2.96) 91.51 (2.94) 94.30 (3.25) 95.25 (3.04) 98.38 (2.67) 97.55 (2.44)
Specificity 79.74 (9.21) 81.16 (9.29) 78.36 (6.22) 81.64 (6.66) 87.92 (8.00) 89.20 (7.63) 43.86 (27.72) 93.62 (5.89)
F-score 93.05 (1.22) 93.36 (1.27) 89.90 (1.52) 91.79 (1.39) 94.54 (1.22) 95.31 (1.20) 88.67 (3.84) 97.41 (1.15)

Scenario 2
ACC 79.68 (4.01) 80.50 (4.15) 72.15 (3.78) 75.29 (3.91) 82.10 (4.50) 82.76 (4.68) 76.31 (5.49) 91.04 (3.53)
PPV 86.55 (4.87) 86.97 (5.11) 84.69 (3.50) 86.18 (4.01) 89.60 (5.28) 89.63 (5.78) 78.84 (8.21) 94.07 (4.47)
NPV 66.96 (9.64) 68.80 (10.19) 51.73 (5.27) 56.37 (6.08) 70.15 (11.31) 72.14 (11.67) 82.95 (14.92) 86.84 (10.55)
Sensitivity 85.31 (8.21) 86.15 (8.26) 74.42 (5.21) 78.00 (5.61) 85.38 (8.42) 86.57 (8.68) 94.02 (9.68) 93.69 (6.01)
Specificity 65.89 (16.12) 66.65 (16.80) 66.60 (9.65) 68.66 (11.45) 74.07 (16.28) 73.41 (18.48) 32.90 (31.65) 84.53 (12.63)
F-score 85.50 (3.47) 86.12 (3.51) 79.08 (3.20) 81.70 (3.19) 87.00 (3.74) 87.57 (3.78) 84.89 (4.15) 93.64 (2.65)

Scenario 3
ACC 83.47 (2.16) 83.74 (2.20) 79.21 (2.83) 81.30 (2.57) 86.73 (2.58) 86.77 (2.19) 74.33 (3.36) 92.12 (1.89)
PPV 86.61 (3.66) 86.42 (3.86) 87.52 (2.46) 88.06 (2.57) 91.22 (3.19) 90.34 (3.70) 74.18 (3.96) 94.86 (2.53)
NPV 76.62 (7.85) 78.17 (7.93) 62.53 (5.16) 66.87 (5.52) 77.89 (8.26) 79.66 (7.75) 94.78 (8.29) 86.67 (6.79)
Sensitivity 91.33 (4.92) 92.08 (4.77) 82.76 (4.15) 85.53 (4.31) 90.35 (5.21) 91.58 (4.73) 98.97 (3.09) 94.20 (3.63)
Specificity 63.91 (12.66) 62.95 (13.52) 70.37 (7.06) 70.77 (7.78) 77.73 (9.68) 74.77 (11.60) 13.00 (17.12) 86.96 (7.14)
F-score 88.72 (1.59) 88.97 (1.50) 84.99 (2.28) 86.67 (2.06) 90.62 (2.05) 90.78 (1.60) 84.66 (1.57) 94.45 (1.41)

Table 2: Simulation results when truths are generated from a Log-logistic model: prediction
accuracy under balanced design at the median failure time. Abbreviations of the metrics and
methods are the same as in Table 1.

R-T R-X B-T B-X D-T D-X Logistic
Scenario 1

ACC 79.04 (4.40) 79.75 (4.53) 78.63 (3.65) 80.65 (3.73) 83.23 (4.83) 83.75 (5.06) 91.56 (4.28)
PPV 84.06 (5.25) 84.67 (5.51) 85.21 (4.18) 86.58 (4.57) 87.62 (5.84) 87.72 (5.81) 94.32 (5.20)
NPV 72.20 (7.75) 73.24 (7.91) 69.28 (5.86) 72.34 (6.28) 78.02 (8.68) 79.26 (9.47) 88.74 (8.56)
Sensitivity 83.84 (7.56) 84.38 (7.68) 81.03 (5.81) 83.07 (5.98) 86.81 (7.58) 87.59 (7.71) 92.87 (6.22)
Specificity 70.49 (12.90) 71.51 (13.37) 74.34 (9.16) 76.33 (9.99) 76.85 (13.63) 76.91 (13.55) 89.22 (10.73)
F-score 83.58 (3.85) 84.13 (3.94) 82.87 (3.18) 84.56 (3.18) 86.83 (4.03) 87.28 (4.16) 93.34 (3.44)

Scenario 2
ACC 80.98(3.54) 82.05 (3.67) 79.21 (3.18) 81.97 (3.20) 83.13 (4.29) 83.99 (4.20) 91.90 (3.73)
PPV 81.45 (6.34) 82.54 (6.59) 78.84 (4.39) 81.66 (4.81) 83.31 (6.89) 84.34 (6.95) 92.68 (6.23)
NPV 82.19 (6.00) 83.39 (6.36) 80.12 (4.06) 82.99 (4.39) 84.71 (6.63) 85.70 (7.26) 92.41 (5.94)
Sensitivity 81.13 (8.74) 82.28 (9.04) 79.80 (5.53) 82.61 (5.83) 83.79 (9.05) 84.53 (9.83) 91.58 (7.47)
Specificity 80.84 (9.18) 81.83 (9.36) 78.64 (5.97) 81.35 (6.40) 82.48 (9.48) 83.46 (9.58) 92.21 (7.25)
F-score 80.74 (3.92) 81.83 (4.07) 79.13 (3.27) 81.91 (3.25) 83.00 (4.59) 83.79 (4.68) 91.75 (3.98)

Scenario 3
ACC 82.12 (2.28) 82.15 (2.35) 83.39 (2.39) 84.16 (2.33) 85.63 (2.72) 85.68 (2.60) 92.60 (2.00)
PPV 83.61 (4.36) 83.48 (4.50) 85.86 (3.16) 86.11 (3.35) 86.64 (4.23) 86.76 (4.54) 93.98 (2.25)
NPV 81.37 (5.63) 81.83 (6.00) 80.45 (3.99) 82.00 (4.24) 85.25 (5.64) 85.37 (5.57) 91.26 (4.12)
Sensitivity 86.78 (6.08) 87.12 (6.41) 85.69 (4.05) 86.99 (4.29) 89.47 (5.24) 89.49 (5.36) 93.43 (3.65)
Specificity 75.66 (8.82) 75.26 (9.26) 80.19 (5.46) 80.22 (5.93) 80.32 (7.73) 80.40 (8.34) 91.44 (5.10)
F-score 84.89 (2.12) 84.95 (2.20) 85.68 (2.16) 86.42 (2.10) 87.83 (2.36) 87.87 (2.22) 93.61 (1.76)

Under both cases, although the propensity score was estimated, similar results were observed
(not presented in the paper) when using the true propensity score for the weight function g(x) =
0.5.
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Figure 2: Simulation results when truths are generated from a Log-logistic model: box plots of
bias (upper panel) and binned RMSE (lower panel) to compare the performance of ITE estimates
under the balanced design at the median failure time. The abbreviation of the six proposed
methods are the same as in Fig. 1. ‘Logistic’ represents the true Log-logistic model as the best
case for ITE estimates.

3.3.2 Unbalanced Design

In the (very) unbalanced design in which the population overlapping assumption is slightly
violated, with the original sample size for the training data being n = 1,000 and the probability of
getting treatment assignment being 0.05, the treatment arm only contains about 50 individuals,
around 15 of them (30%) are censored. Such a small sample size can cause unstable results for
machine-learning-based methods, especially the DNNSurv-based models. Based on our empirical
experience with DNNSurv, it requires at least 100 events in each treatment arm to perform well.
Therefore, we increased the sample size of the training dataset to n = 4,000, which made the
treatment arm contain about 200 individuals (∼ 140 events). The test dataset still has a sample
size of N = 105.

Under the unbalanced design, the X-learner is expected to perform better than the T-
learner since it accounts for the unbalanced allocation between the two treatment arms. BAFT
with X-learner demonstrates an obvious advantage in RMSEs compared to BAFT with T-
learner. In Scenarios 1 and 2, X-learner demonstrates smaller RMSE than T-learner under
RSF- and DNNSur-based methods (Web Figure 1). RSF and DNNSurv with X-learner perform
similarly to T-learner in Scenario 3. Overall, CSF does not show better performance in terms
of RMSE, especially in Scenarios 1 and 3, but it performs similarly to the proposed methods
in Scenario 2. Similar to the random design case, CSF predicts more than 90% positive ITE
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even though it shows the highest NPV and sensitivity. DNNSurv does not always demonstrate
the best performer (Web Table 1). Moreover, DNNSurv produces larger RMSEs than RSF
in complex scenarios (Scenarios 2 and 3), indicating that the neural network-based methods
typically require a larger sample size to achieve stable performance as compared to other machine
learning methods. Additional discussions are given in Section 5. Similar observations are found
under the Log-logistic data case (results are not shown).

3.3.3 Dependent Design

We further examine the performance under the case that confounders exist. The treatment
assignment depends on covariates (X1 and X5) with data simulated from the Weibull model.
The overall treatment allocation ratio was 1:1. The biases and RMSEs of the ITE estimates are
presented in Web Figure 2, which are similar to the balanced case, indicating the robustness of
the proposed methods when confounders exist. The DNNSurv-based methods still provide the
best estimates with minimal biases and small RMSEs, followed by RSF-based methods. CSF still
tends to predict more than 90% positive ITE values. Similar conclusions can be drawn from the
prediction accuracy metrics (Web Table 2). DNNSurv-based methods have comparable results
and tend to have the best or the second-best prediction accuracy in all six metrics.

Comparing across all scenarios and randomization designs, our simulations indicate that
using DNNSurv to estimate base learners leads to more accurate ITE estimation in both T-
learner and X-learner. Deep neural networks excel at capturing complex nonlinear trends, making
them perform particularly well in complicated scenarios. Notably, DNNSurv under the X-learner
framework (D-X) generally demonstrates the best performance in terms of accuracy for ITE
estimates and treatment rule recommendations.

3.3.4 Sensitivity Analysis

Since the ITE is defined at a pre-specified time t , we conducted sensitivity analysis with ITE
being defined at a different time point (i.e., 25% and 75% percentile of survival times) under the
Weibull case. Biases and binned RMSEs under each simulation design are shown in Web Figures
3, 4, and 5 for time = 25% percentile of survival times and in Web Figures 6, 7, and 8 for time
= 75% percentile of survival times. In general, we reach the same conclusions compared to when
median failure time was chosen as the time of interests. RSF- and DNNSurv-based methods
show similar and minimal biases in all three randomization designs. DNNSurv-based methods
show smaller RMSEs at both 25% and 75% percentile of survival times across all three scenarios
under balanced and dependent designs. They have relatively larger RMSEs in scenarios 2 and
3 under the unbalanced design, but similar to the RMSEs of RSF-based methods and smaller
than the RMSEs of BAFT-based methods. In all scenarios at these two different time points,
X-learner shows smaller RMSEs than T-learner. CSF does not show better performance in terms
of RMSEs and tends to predict more positive ITEs than the true positive ITEs.

3.3.5 Computational Time

In this section, we compared the time required for running each of the six methods under scenario
1 of the balanced design as an illustration example, where the training sample size is 1,000 and
test sample size is 10,000. The specific time costs for running each method once are listed in
Table 3. In general, T-learner takes longer time compared to X-learner. This is because T-
learner predicts Ŝ1(t |x) and Ŝ0(t |x) on the test data for each test sample (10,000 samples) before
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Table 3: Computational time for each method. Each method was run once under scenario 1 of
the balanced design, with training sample size 1,000 and test sample size 10,000. Time costs of
D-T and D-X were tracked through Python (Tensorflow1). Other methods were run in Rstudio.

Method Computational time (seconds)
R-T 25.68
R-X 5.80
B-T 409.68
B-X 79.46
D-T 398.61
D-X 407.10

constructing the differences between Ŝ1(t |x) and Ŝ0(t |x). Instead, X-learner predicts Ŝ1(t |x) and
Ŝ0(t |x) on each training sample (1,000 samples) to construct D̃(t) in the first step. Thus, although
X-learner has two steps, the gradient boosting in the second step is much faster than random
survival forests in the first step. When using DNNSurv as base learners, T-learner and X-learner
performs similarly. In terms of comparing different types of machine learning methods to estimate
Ŝ1(t |x) and Ŝ0(t |x), RSF requires the least time comparing to BAFT and DNNSurv in both T-
learner and X-learner. Although DNNSurv-based methods take relatively longer time, it is not
computationally expensive.

4 Application to AREDS Study

4.1 Data Description

In this study, we analyzed a total of 806 participants with AMD (i.e., patients with AREDS
AMD categories 2, 3, or 4) who were free of late-AMD in at least one eye at enrollment. The
study included 466 (57.82%) female participants; around half of the participants (56.70%) had
moderate AMD; 393 (48.76%) participants never smoked; the mean age of the participants was
68.77 (SD = 5.05), and the mean baseline AMD severity score was 4.09 (SD = 2.06). Participants
were randomized to two treatment arms with 391 (48.51%) participants in the control (placebo)
group and 415 (51.49%) participants in the AREDS formula group, and they did not differ in
baseline age, sex, smoking status, and baseline AMD severity score between the two treatment
arms. In our analysis, in addition to demographic and clinical variables, we also included 686
SNPs as covariates. These SNPs contain 46 SNPs identified to be associated with treatment
efficacy (in delaying AMD progression) from Wei et al. (2021) and 640 SNPs identified to be
associated with AMD progression (Yan et al., 2018) (with p < 10−5).

The standardized mean difference (SMD) is the most commonly used statistic to examine
the balance of covariates between two treatment groups, where an SMD value of < 0.25 is
considered indicative of balance (Belitser et al., 2011). In our study, SMD of all SNPs and
demographic covariates are balanced between the treatment group and control group. All of the
adjusted p-values from Fisher’s exact tests of SNPs versus treatment are greater than 0.05. Web
Table 3 provides detailed summaries of participant baseline characteristics.

We use year five as our primary time of interest in estimating the ITE (i.e., progression-free
probability at year five). We also performed a sensitivity analysis for estimating the ITE at year
three.
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Figure 3: The mean treatment effect (KM estimates) at year five of participants in the RT cohort
(recommended for taking the treatment) (upper panel) and in the RC cohort (recommended for
taking the control/placebo) (lower panel) from each method in one random split of data.

4.2 Estimate ITE

Like the simulation studies, we applied the following proposed methods to estimate ITE: R-T,
R-X, B-T, B-X, D-T, and D-X. We also compared these proposed methods with CSF. We
considered three random splits of data stratified on treatment. For each split, 4-fold cross-
validation was used to estimate ITE. For each method, participants with ITE estimate > 0 were
labeled as RT (recommended for taking AREDS formula); otherwise, they were labeled as RC
(recommended for taking control/placebo). Then within each cohort (RT or RC) recommended
by each method, we estimated the mean treatment effect by taking the difference of Kaplan-Meier
estimators (for the progression-free probabilities at five years) between the two treatment arms.
Zhao et al. (2013) proposed a similar metric for selecting a target subgroup. We also estimated
the overall treatment effect in the entire population using the same approach. Figure 3 shows
the result for one random split of data and similar results are observed under two other random
splits of data (Web Figure 7). From Figure 3, positive treatment effects are observed in the RT
cohort under recommendations from all methods. Notably, participants in the RT cohort show
the largest mean treatment effect under the recommendations based on D-T and D-X. Similarly,
participants in the RC cohort also show the largest absolute mean treatment effect under the
recommendations based on D-T and D-X. Note that the treatment effect in the RC cohort is
expected to be negative since these participants should benefit from taking the placebo than
the AREDS formula. CSF shows the smallest mean treatment effect across all three splits in
both RT and RC cohorts. Note that the overall treatment effect (in all participants) is around
0, which is also consistent with what has been reported in the literature.

We performed the same analysis at year three. Web Figure 8 shows the mean treatment
effect in RT and RC groups at year three for each method in three splits of data. Although D-X
does not always perform the best, D-T and D-X perform similarly and show the largest mean
treatment effects. CSF still shows the smallest mean treatment effects across three splits of data.
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Our analysis demonstrates that D-T and D-X perform the best among all methods we
applied. These two methods recommend about 40% to 50% participants for the AREDS formula.

4.3 Identify Important Features

Since D-X performs better than D-T in terms of the absolute treatment effect in the RC co-
hort (at year five), we used ITE estimates from D-X to make treatment recommendations for
participants. Then we applied the Boruta algorithm (within each data split) to identify impor-
tant features associated with the treatment recommendations. Top features identified by the
Boruta algorithm were extracted, 41, 22, and 22 features were identified from each split, respec-
tively, and all are SNPs. Note that 37 SNPs (out of 41) identified in split one and all of the
22 SNPs identified in split two and split three were previously reported in Wei et al. (2021),
where SNPs were analyzed one by one to infer and identify subgroups with enhanced treatment
efficacy using a multiple-testing-based approach. There are 17 common SNPs (from three gene
regions SPOCK2, C19orf44-CALR3, and ESRRB-VASH1, located on chromosome 10, 19, and
14, respectively) being identified in all three splits and they were all reported in Wei et al. (2021).

When using the progression-free probability at year three as the treatment efficacy, we
identified a similar amount of SNPs in three splits of data, and all of them were reported in Wei
et al. (2021).

Since the SNPs within the same gene region are highly correlated (i.e., in tight linkage
disequilibrium), we selected one SNP from each gene region and generated genotype distributions
for each RC and RT cohort (from split 1) separately, and presented the result in Table 4 (top
panel). Note that the participants recommended for control are less likely to be homozygous
with two minor alleles in all three SNPs (i.e., the prevalence of aa in the RC cohort is less than
that in the overall population). In contrast, participants recommended for the AREDS formula
are more likely to have one or two copies of the minor allele (i.e., the prevalence of Aa and aa in
the RT cohort is more than that in the overall population). Therefore, patients carrying minor
alleles of these SNPs are more responsive to the AREDS formula. The Chi-square tests for the
differences in genotype distributions between RC and RT are significant for all three SNPs. Note
that in the analysis of year three, we identified 15 important SNPs, in which 14 SNPs are in
common with the results of year five.

4.4 Validation on AREDS2

We validated the treatment recommendations generated from analyzing AREDS based on D-X
on an independent dataset AREDS2, which is another large RCT of AMD (Chew et al., 2012).
The study contained four treatment arms with different formulations of supplements (no placebo
arm). One formulation is the same as the AREDS formula (from the AREDS study). The
participants in AREDS2 were more severe than those in AREDS. Therefore, to ensure a similar
participant population as AREDS, we included 110 participants who were randomized to the
AREDS formula and had mild-to-moderate AMD (baseline AMD severity score: 2 to 6). The
baseline characteristics of these validation participants are similar the AREDS participants:
mean baseline severity scale was 5.43 (SD = 0.96); mean age was 71.29 (SD = 7.25); 50 (44.64%)
participants were females, and 44 (39.29%) participants never smoked.

We applied D-X 5 times to estimate ITE at year five. Participants with averaged estimated
ITE > 0 (among five runs) were recommended for the AREDS formula (RT); otherwise, they were
not recommended for the AREDS formula (RC). In summary, D-X recommends 45% participants
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Table 4: Genotype distributions in the overall and each treatment recommendation group (RT
and RC) in two studies (AREDS and AREDS2) when time of interest is year five in estimating
ITE.

AREDS

Genotype Overall
(n = 806)

RC
(n = 436)

RT
(n = 370) p-value*

rs1245576
(SPOCK2, CHR10)

AA 266 (33.00%) 199 (45.64%) 67 (18.11%)
<.0001Aa 408 (50.62%) 205 (47.02%) 203 (54.86%)

aa 132 (16.38%) 32 (7.34%) 100 (27.03%)

rs8109218
(C19orf44-CALR3, CHR19)

AA 388 (48.14%) 254 (58.26%) 134 (36.22%)
<.0001Aa 333 (41.32%) 160 (36.70%) 173 (46.76%)

aa 85 (10.55%) 22 (5.05%) 63 (17.03%)

rs147106198
(ESRRB-VASH1, CHR14)

AA 387 (48.01%) 249 (57.11%) 138 (37.30%)
<.0001Aa 343 (42.56%) 168 (38.53%) 175 (47.30%)

aa 76 (9.43%) 19 (4.36%) 57 (15.41%)
AREDS2

Genotype Overall
(n = 110)

RC
(n = 60)

RT
(n = 50) p-value*

rs1245576
(SPOCK2, CHR10)

AA 37 (33.64%) 29 (48.33%) 8 (16.00%)
<.0001Aa 57 (51.82%) 29 (48.33%) 28 (56.00%)

aa 16 (14.55%) 2 (3.33%) 14 (28.00%)

rs8109218
(C19orf44-CALR3, CHR19)

AA 44 (40.00%) 33 (55.00%) 11 (22.00%)
0.0018Aa 54 (49.09%) 23 (38.33%) 31 (61.00%)

aa 12 (10.91%) 4 (6.67%) 8 (16.00%)

rs147106198
(ESRRB-VASH1, CHR14)

AA 49 (44.55%) 38 (63.33%) 11 (22.00%)
<.0001Aa 53 (48.18%) 19 (31.67%) 34 (68.00%)

aa 8 (7.27%) 3 (5.00%) 5 (10.00%)
∗Chi-squared or Fisher’s exact tests were performed to examine the differences between genotype groups and
treatment recommendation groups.

for the AREDS formula. Web Figure 9 shows that the overall 5-year progression-free probability
is significantly higher in the RT group than in the RC group (log-rank test p = 0.011). The
bottom panel of Table 4 shows genetic profiles of RT and RC groups from AREDS2. We found
consistent results as in AREDS, i.e., participants who were not recommended for the AREDS
formula are less likely to be homozygous with two copies of the minor allele for all three SNPs. In
contrast, participants recommended for the AREDS formula are more likely to have one or two
copies of the minor allele for all three SNPs. Fisher’s exact tests for the differences in genotype
distributions between RC and RT are also significant for all three SNPs. We observed similar
results at year three.

5 Conclusion and Discussion
In this work, we developed two meta-algorithms (T-learner and X-learner) on survival outcomes
using RSF, BAFT, and DNNSurv as base learners to estimate ITE and to provide treatment rule
recommendations. The performance of these methods has been evaluated through comprehensive
simulations. We found that the DNNSurv-based learners generally outperform other methods
in terms of biases and RMSEs in estimating ITEs. RSF-based methods have comparable biases
with DNNSurv-based methods but larger RMSEs. As a comparison method, CSF shows the
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least favorable performance in all scenarios and tends to predict more positive ITE. X-learner
demonstrates advantages in balancing sample sizes under the unbalanced treatment allocation
setting.

We applied these meta-learners to AREDS data to identify individuals who could benefit
from the AREDS formula. We found that the T- and X-learners with the DNNSurv model identi-
fied the group of participants with the greatest enhanced treatment effects. The Boruta algorithm
was applied to identify important features contributing to the treatment recommendation rule.
SNPs from gene regions reported in the previous study to be associated with differential treat-
ment efficacy were successfully identified as important variables predicting ITEs in our study.
The treatment recommendation rule was further validated on participants from an independent
study AREDS2.

We also conducted a sensitivity analysis in both simulations and real data analysis in
estimating ITEs at different time points. We reach to the same conclusions showing that our
proposed meta-learners are relatively robust to different time points.

One limitation of the DNNSurv-based methods is that they require a sizable cohort to train
multiple tuning hyperparameters. The performance could be unstable if the sample size is not
large enough. We also observe that the X-learner does not demonstrate substantially improved
performance over the T-learner, except for the unbalanced design with no average treatment
effect. One plausible explanation is that we use the estimated survival probability for both
factual and counterfactual parts in the first step of X-learner to compute the T-learner type of
ITE, where the original X-learner for continuous or binary outcomes uses the observed outcome
in the factual part, which is more trustful. Other imputation approaches, such as the inverse
probability weighted method (e.g., based on the observed progression status for the factual part),
may be considered for the survival outcome X-learner. Furthermore, we assumed non-informative
censoring assumption and did not discuss the situation when this assumption is violated, as our
focus in this paper is RCTs and this assumption typically holds in RCTs. We might model the
censoring mechanism under the informative censoring case and extend the current approaches
to incorporate informative censoring. Finally, in this paper, we did not perform sample splitting
when performing X-learner (i.e., split the dataset into two subsets and use each dataset for each
step) since the performance has been observed similar between splitting the data or not. This
has also been demonstrated in Curth and van der Schaar (2021).

Supplementary Material
1. We provide codes and data in GitHub https://github.com/nab1779321/HTEsurv that can

be used to reproduce the simulation and real data analysis in this paper.
2. We provide an additional pdf file that includes a) additional simulation results and b) addi-

tional real data analysis results.
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