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Abstract

A/B testing is widely used for comparing two versions of a product and evaluating new proposed
product features. It is of great importance for decision-making and has been applied as a golden
standard in the IT industry. It is essentially a form of two-sample statistical hypothesis testing.
Average treatment effect (ATE) and the corresponding p-value can be obtained under certain
assumptions. One key assumption in traditional A/B testing is the stable-unit-treatment-value
assumption (SUTVA): there is no interference among different units. It means that the obser-
vation on one unit is unaffected by the particular assignment of treatments to the other units.
Nonetheless, interference is very common in social network settings where people communicate
and spread information to their neighbors. Therefore, the SUTVA assumption is violated. Anal-
ysis ignoring this network effect will lead to biased estimation of ATE. Most existing works focus
mainly on the design of experiment and data analysis in order to produce estimators with good
performance in regards to bias and variance. Little attention has been paid to the calculation
of p-value. We work on the calculation of p-value for the ATE estimator in network A/B tests.
After a brief review of existing research methods on design of experiment based on graph clus-
ter randomization and different ATE estimation methods, we propose a permutation method
for calculating p-value based on permutation test at the cluster level. The effectiveness of the
method against that based on individual-level permutation is validated in a simulation study
mimicking realistic settings.

Keywords design of experiments; graph cluster randomization; p-value

1 Introduction
A/B testing is conducted when two variants of a product, A and B, need to be compared
against each other (e.g., Kohavi et al., 2013). It is widely used for evaluating new proposed
product features. It is important for decision-making and has been applied as a golden standard
in the IT industry. Before releasing a new version of features to the entire users of a product, a
sample are randomly selected for an online experiment for A/B testing. The experimental units
are randomly assigned to two variants of the test — version A (the control group) and version
B (the treatment group). Then each experimental unit is exposed to the assigned variants of
the experiment for some period of time. User identifier, such as cookie, is commonly used as an
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experimental unit on the web, and in this paper we will use user as our experimental unit for
illustration purpose.

In order to see which version of the variants is better, an overall evaluation criterion (OEC)
is defined as a quantitative measure of the experiment’s objective, which is also called the
response variable in statistics (Kohavi et al., 2012). The difference between the response values for
two groups is the treatment effect, sometimes also called total treatment effect. To estimate the
treatment effect, the response values are averaged across all users for each group; the difference
between the averaged response values for two groups is the estimated treatment effect. This
treatment effect is statistically significant if the test rejects the null hypothesis that the response
values are not different. The null hypothesis is rejected at a pre-chosen significance level α

when the p-value p < α and not rejected when p > α. As a convenient standard statistical
measurement, p-value has been widely used in industry for helping decision makers to evaluate
online bucket performance and make reliable product decisions.

One key assumption in traditional A/B testing comparing two treatments is that there is no
interference between different units, which means that the observation on one unit is unaffected
by the particular assignment of treatments to the other units. This is called the stable-unit-
treatment-value assumption, or SUTVA (Rubin, 1986). For example, assuming we are conducting
an A/B testing for font size of search queries in a search engine, a sample of users are randomly
assigned to control group (who see default font size) and treatment group (who see new font
size). Since there is no interference among users, a user i’s response when assigned to control
group under current experimental design is the same as what would be observed under global
control; likewise, a user’s response when assigned to treatment group is the same as what would
be observed under global treatment.

Interference is unfortunately a common occurrence in social network settings where people
communicate and share information with their connections. In the context of A/B testing on
social networks, the SUTVA assumption is violated. Let us consider a scenario where we are
testing a feature in a social network, and a user’s response is heavily influenced by the behavior
of their neighbors. If a user i is assigned to the treatment group, there will be a significant
difference in user i’s expected outcome depending on whether their neighbors are assigned to
the control group or if they are all included in the treatment group. In other words, the response
of user i is not only affected by their own assignment but also by their neighbors’ assignments.

Next let us illustrate why SUTVA is an important assumption in A/B testing. For N

experiment units (i = 1, . . . , N), let z = {z1, . . . , zN } be the treatment assignment vector with
zi ∈ {0, 1} (i = 1, . . . , N), where zi = 0 means the user i is in the control group and zi = 1 means
the user i is in the treatment group. Let Y (z) = {Y1(z), . . . , YN(z)} be the potential response
values vector under the treatment assignment vector z, where Yi(z) be the potential response
value for user i under the treatment assignment vector z. The key quantity in A/B testing is
the average treatment effect (ATE) of applying all users in global treatment (z = �1) compared
to applying all users in global control (z = �0):

τ(z = �1, z = �0) = 1

N

N∑
i=1

[
Yi(z = �1) − Yi(z = �0)

]
. (1)

In reality, we are not able to observe each unit under both treatment and control case. Under
SUTVA, the value of Y for unit i when exposed to treatment zi will be the same no matter what
treatments other units receive, which holds for all experiment units and both groups. Thus, for
each user i, the possible response values can be represented by Yi,zi

(i = 1, . . . , N; j = 0, 1),
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depending only on the user’s own treatment assignment. Thus, in the traditional A/B testing
framework, the ATE in (1) can be simplified to

τ(z = �1, z = �0) =
( N∑

i=1

Yi,1 −
N∑

i=1

Yi,0

)
/N (2)

The common solution for classic A/B testing is to randomly assign users to two groups. Assume
N1 and N0 users are assigned to treatment and control group respectively, then we can use

τ̂ = 1

N1

∑
{i:zi=1}

Yi,zi
− 1

N0

∑
{i:zi=0}

Yi,zi

to estimate the ATE. This is a reasonable approximation under SUTVA assumption. However,
in social network setting, SUTVA is not valid due to interference among users. The same analysis
ignoring this interference will bring bias for ATE estimators.

There has been a lot of research on A/B testing in recent years based on practical lessons
learned from industry experience (see, e.g., Kohavi et al., 2020, 2014, 2012, 2010). In contrast to
traditional A/B testing analysis which is pretty mature, network A/B testing gained sharpened
focus only relatively recently (see, e.g., Gui et al., 2015; Saveski et al., 2017). Most research
work focuses on restricting assumptions of network exposure, sampling techniques, experimen-
tal design and estimator performance. Various sampling techniques have been developed to
produce internally well-connected but also approximately uniformly distributed nodes over the
population (see, e.g., Backstrom and Kleinberg, 2011; Katzir et al., 2012). Different clustering
methodologies were proposed for experimental design based on graph cluster randomization, and
different estimators were proposed and evaluated compared based on bias and variance (Eckles
et al., 2014; Karrer et al., 2021; Liu et al., 2022; Ugander and Yin, 2023). However, there is little
work on the statistical significance test. If a closed-form distribution for the ATE estimator un-
der the null hypothesis exists, p-value for the tests can be obtained theoretically. For example,
in classical A/B testing, for a two sample t-test or binomial test, the sampling distribution is ap-
proximately normal when sample size is large enough. For network A/B testing, such parametric
forms do not exist due to interference among users.

A promising alternative approach to network A/B testing is to use nonparametric permu-
tation methods. The advantages of nonparametric tests based on permutation for network A/B
testing were first proposed by Jiang et al. (2016) who applied the permutation test for test
statistics computed from the Ising model. Yet this permutation test at the individual level has
caveats under experimental design based on graph cluster randomization; we will go through
this definition in the paper. We circumvented this issue by proposing a permutation test at
the cluster level. Starting from the fact that users are assigned to treatment/control group at
the cluster level from the design of experiment, it is natural to base permutation tests under
consideration on clustering. More specifically, given clustering under experimental design, per-
mutation conducted at cluster level ensures that users in the same cluster will always be assigned
to the same variant in each permutation. To the best of our knowledge, this is the first study
to propose a nonparametric permutation test considering the graph structure in network A/B
testing framework. It also represents the first comparative appraisal of permutation tests at the
cluster level vs at the individual level in network A/B testing via intensive simulation study for
different types of test statistics.

The paper is organized as follows. Section 2 includes an overview of the phases in network
A/B testing. Section 3 presents our proposed procedures for testing the null hypothesis of no



526 Shang, H. et al.

treatment effect. Section 4 reports the results of simulation study with data generated based on
small world graph under different rewiring probabilities. The last section concludes.

2 Network A/B Testing

2.1 Network Exposure

In social network setting where interference exists, a user’s potential response value is determined
not only by his own treatment assignment zi , but also other users’ treatment assignment z. At
the worst scenario, each specification of z will produce a unique potential response value Yi for
user i, bringing 2N possible potential values. This so-called “arbitrary exposure” (Aronow and
Samii, 2012) makes it impossible for estimating ATE, since none of users can be assumed to
produce approximately the same potential response value as if the entire sample is in the same
group as him/her. Thus further assumptions need to be made in order to describe users whose
response under the particular treatment assignment vector is approximately the same as what
would be observed under global treatment of interest.

First, the notion of network exposure was introduced by Ugander et al. (2013). A user
i in the treatment group is defined as network exposed to the treatment under a particular
assignment z if user i’s response under z is the same as user i’s response under z = �1; a user i in
the control group is defined as network exposed to the control under a particular assignment z if
user i’s response under z is the same as user i’s response under z = �0. Different scenarios could
be investigated for network exposure. One basic scenario is that a user i is network exposed to
the treatment if user i and all his/her neighbors are in the treatment group; user i is network
exposed to control group if user i and all his/her neighbors are in the control group. Another
scenario is to fix a threshold q ∈ {0, 1} and define that user i is network exposed to the treatment
if user i and at least 100q% of i’s neighbors are in the treatment group; user i is network exposed
to the control if user i and at least 100q% of i’s neighbors are in the control group. Given a
treatment assignment vector z, each scenario of exposure conditions specifies users who are
network exposed to treatment as if the entire sample is in treatment and users who are network
exposed to control as if the entire sample is in control group.

Next, the restriction of “arbitrary exposure” is relaxed by letting multiple treatment as-
signment vectors z produce the same Yi for a user i. More specifically, for user i with zi = 1,
we are interested in those assignment vectors producing the same Yi as z = �1; for user i with
zi = 0, we are interested in those assignment vectors producing the same Yi as z = �0. Thus, for
user i, the particular exposure conditions �1

i and �0
i are defined by

�1
i = {

z̃|Yi(z = z̃) = Yi(z = �1)
}

�0
i = {

z̃|Yi(z = z̃) = Yi(z = �0)
}
.

(3)

The general exposure conditions assume that a user i’s behavior depends on his/her own treat-
ment assignment zi and his/her adjacent users only. Further, absolute and fractional conditions
on the number of neighbors in the treatment group are considered (Ugander et al., 2013). In this
work we focus on the latter condition fractional q-neighborhood exposure, due to its robustness
to the heterogeneity of users’ degrees (Gui et al., 2015).

A user i is fractional q-neighborhood exposed to treatment if user i is in treatment and at
least 100q% of user i’s neighbors are also in treatment; a user i is fractional q-neighborhood
exposed to control if user i is in control and at least 100q% of user i’s neighbors are also in
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control. Let σi be the percent of user i’s neighbors in treatment group. Under this exposure
model, given threshold q, �1

i and �0
i in (3) can be expressed specifically by

�1
i,q = {z|zi = 1, σi > q}

�0
i,q = {

z|zi = 0, σi < (1 − q)
}
.

(4)

Given neighborhood exposure assumptions about interference, existing research work focuses
on design of experiment based on graph cluster randomization and ATE estimation methods in
order to reduce bias for the ATE.

Some network notations are needed to proceed. Let G(V, E) denote graph structure, where
V = {v1, v2, . . . , vN } is a set of all vertices and E is a set of all edges in graph G, (vi, vj ) ∈ E if
node vi and vj are connected. Let A denote the corresponding adjacency matrix A, and vector
Ai, is the i-th row in A. Let Z = {Z1, . . . , ZN } denote the assignment vector for all vertices;
Y = {Y1, . . . , YN } denote response vector given Z. Thus the triplet {G, Z, Y } denotes a sampling
process: selecting a sub-network G from the entire social network, assigning treatment/control
to all vertices to obtain Z, and collecting their response values Y .

2.2 Graph Cluster Randomization
Researchers on network A/B testing consider clustering the graph then randomly and inde-
pendently assigning treatment/control group at the cluster level instead of at the individual
level, to analyze average treatment effects under network A/B testing. Then users connected to
each other are more likely to be assigned to the same treatment/control group than if they are
assigned independently. This generic graph cluster randomization scheme based on graph clus-
tering was introduced by Ugander et al. (2013) for designing experiment of A/B testing when
network effect are anticipated. Their work was motivated by producing an estimator of ATE
with asymptotically small variance. Ugander et al. (2013) used r-net clustering method for the
shortest-path metric of graph (Gupta et al., 2003). To build a r-net clustering, vertices v1, v2,
. . . are identified such that any two identified vertices are at least r steps from each other. Then
for each w belonging to the remaining unidentified vertices, assign w to closest v in v1, v2, . . ..
Then clusters C1, C2, . . . are formed by v1, v2, . . . respectively. In this clustering method, since
the size of each cluster depends heavily on the degree of center nodes, the cluster sizes vary with
the extent depending on how the degrees of central nodes vary.

Further works investigated the properties of the graph cluster randomization. Gui et al.
(2015) pointed out that this will introduce bias in the ATE estimator, and further proposed
balanced graph partitioning clustering method. Saveski et al. (2017) also pointed out two main
practical reasons for partitioning the graph into clusters of equal size: variance reduction and
balance on pre-treatment covariates. Saveski et al. (2017) evaluated multiple balanced clustering
algorithms, including METIS (Karypis and Kumar, 1998), Balanced Label Propagation (BLP)
(Ugander and Backstrom, 2013), Restreaming Linear Deterministic Greedy (reLDG), and Re-
streaming FUNNEL (reFUNNEL) (Nishimura and Ugander, 2013). These balanced clustering
algorithms were applied on the subgraph of the full LinkedIn graph, and reLDG performs the
best among these balanced clustering algorithms (Saveski et al., 2017). In this paper, we also
use reLDG for graph partitioning at our experiments.

Clustering randomized sampling tends to assign a user and his/her neighbors in the same
treatment/control group, and is able to control for “contamination” across clusters. Under frac-
tional q-neighbor exposure condition, graph cluster randomization puts users closer to the con-
dition of global treatment of interest. Thus graph cluster randomization can reduce bias in
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ATE estimators dramatically compared against randomization performed at individual user
level without increasing variance very much; the benefit is even larger when there is strong
social interactions and more local clustering in the network (Eckles et al., 2014).

2.3 Estimation
For estimating ATE, a naive estimator is a simple difference in the sample means between users
in treatment group and in control group

τ̂naive = 1

|{i|Zi = 1}|
∑

i:Zi=1

Yi − 1

|{i|Zi = 0}|
∑

i:Zi=0

Yi,

where | · | denotes cardinality. Estimator τ̂naive is unbiased under SUTVA assumption if no
network effect exists. In social network settings, bias arises when users’ responses are affected
by his/her neighbors. The magnitude of the bias depends on how strong the network effect is.

The bias can be reduced by comparing only users who behave similarly as if they were
placed in global treatment of interest. Under the fractional q-neighbor exposure model, a user
i behaves as if he/she is in global treatment/control group given that user i is fractional q-
neighborhood exposed to treatment/control. For users who are not q-neighborhood exposed to
treatment/control, their responses are ineffective and hence removed from estimation. Thus,
given the assignment vector Z, ATE can be estimated by

τ̂neighbor = 1

N1
q

∑
i:Z∈�1

i,q

Yi − 1

N0
q

∑
i:Z∈�0

i,q

Yi,

where N1
q and N0

q denote the number of users that q-neighborhood exposed to control, treatment
respectively. From Gui et al. (2015)’s observation, the choice of q denotes a tradeoff between
bias and variance. A large q close to 1 means that only users with most of neighbors in the same
group as his/hers can be regarded as effective users, which leads to a small bias. Yet, the variance
will be large due to the fact that few number of effective users can be used for estimation. On
the contrary, a small q will lead to smaller variance but larger bias.

Estimator τ̂neighbor will only be unbiased for ATE if we can assume that each effective user
has the same probability of being assigned to a chosen effective treatment (Eckles et al., 2014).
In this work, a user i is in effective treatment if he/she is fractional q-neighborhood exposed to
treatment/control. Ugander et al. (2013) observed that users with high degrees are less likely
to be in effective treatment, while users with low degree are more likely to be in such effective
treatment. For example, assuming q = 0.9, a user i with zi = 1 is much more likely to be exposed
to treatment if he/she has only one friend than if he/she has 100 friends. Given a clustering of all
users and the pre-specified threshold q, the probability of being network exposed to treatment
and to control for user i is Pr(Z ∈ �1

i,q) and Pr(Z ∈ �0
i,q). These two quantities can be computed

explicitly using a dynamic program (Ugander et al., 2013). Note that the procedure of clustering
users tend to put connected users in the same cluster, hence a user has higher chance to be
network exposed to a condition under randomization at cluster level.

Considering this exposure probability, the allocation bias can be corrected using the Hajek
estimator (Aronow and Samii, 2012) with the following form:

τ̂Hajek =
∑

i:Z∈�1
i,q

Yi

Pr(Z∈�1
i,q )∑

i:Z∈�1
i,q

1
Pr(Z∈�1

i,q )

−
∑

i:Z∈�0
i,q

Yi

Pr(Z∈�0
i,q )∑

i:Z∈�0
i,q

1
Pr(Z∈�0

i,q )

.
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Both τ̂neighbor and τ̂Hajek utilizes information from a subset of users depending the choice
of threshold q. Gui et al. (2015) proposed new estimators based on the fraction neighborhood
exposure model. In this model, a user i’s expected response function g(Zi, σi) depends on Zi

and σi ; ATE τ can then be denoted by

τ = g(1, 1) − g(0, 0) (5)

correspondingly. Here all observations are utilized regardless of whether they are network ex-
posed. Specifically, Gui et al. (2015) suggested using a linear model to estimate ATE:

g(Zi, σi) = β0 + β1Zi + β2σi + β3Ziσi, (6)

where the regression coefficients β0, β1, β2, and β3 are estimated as β̂0, β̂1, β̂2, β̂3 by regressing
g(Zi, σi) on Zi and σi . Their first model fixes β3 at β3 = 0, assuming no interaction between Zi

and σi , and the ATE can be estimated by τ̂lm1 = β̂1 + β̂2. Their second model includes interaction
between Zi and σi , and the estimated ATE is τ̂lm2 = β̂1 + β̂2 + β̂3.

3 Significance Tests Based on Cluster-Level Permutation
In Section 2, the process of experiments design based on graph cluster randomization and esti-
mation methods were described, both of which can reduce bias and error for estimating ATE.
Further, in order to make reliable product decisions for decision-makers, the two-sample statis-
tical hypothesis testing needs to be conducted. The specification of the null hypothesis H0 is:
H0: ATE = 0, vs. Ha: ATE > 0. Two important questions related to H0 are:
1. What measure of test statistics is likely to be most informative to detect the departure from

H0?
2. How can we infer the distribution of the selected test statistic under H0 and calculate the

corresponding p-value?
As for the first question, the test statistics is a value computed from sample data in hy-

pothesis testing; it refers to ATE estimate τ̂ in network A/B testing. Five test statistics were
discussed in Section 2.3, including τ̂naive, τ̂neighbor , τ̂Hajek, τ̂lm1 , and τ̂lm2 . These five test statistics
can be classified into three types. The first type is simply mean difference between two groups,
which is the naive estimator τ̂naive. The second type of estimators τ̂neighbor and τ̂Hajek consider
users in effective treatment by only including users who are fractional q-neighborhood exposed
to treatment/control given a fixed threshold q; then the difference between effective groups was
measured. Specifically, τ̂Hajek further weighs users via their corresponding exposure probabili-
ties and hence corrects the allocation bias. The third type of estimators include τ̂lm1 and τ̂lm2 ,
measuring the difference by adding the level of exposure into the model. These estimators’ per-
formance with respect to both bias and variance were demonstrated and compared against each
other in previous research work (Eckles et al., 2014; Gui et al., 2015). In this work, we focus on
the second question about p-value calculation.

The analytical forms for distribution of any test statistic is not available due to interference
in social network setting, thus the parametric test under H0 is not feasible. An alternative
way to test H0 is using nonparametric test based on permutation (Jiang et al., 2016). The
permutation test was based on repeated and random reassignment of each user’s assignment zi

to treatment/control group. Let NA and NB denote the sizes for group A and group B from
the original assignment. The permutation test reassigns users to two groups of size NA and NB
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Algorithm 1: Permutation test conducts at individual level.
Input: graph G, assignment vector Z, response vector Y .
Compute test statistic τ̂ from the available sample (G,Z,Y ).
for m ∈ 1, . . . ,M do
Randomly reassign Z to users, obtain new assignment vector Z(m) with
Z(m) = (Z

(m)
1 , Z

(m)
2 , . . . , Z

(m)
N ).

Compute test statistic τ̂ (m) from sample (G,Z(m),Y ).
end
An approximate p-value is given by M−1 ∑M

m=1 1{τ̂ (m) � τ̂ }.

randomly and repeatedly, and test statistics τ̂ was estimated after each random reassignment.
This process was repeated M times, then M estimates τ̂1, τ̂2, . . . , τ̂M was obtained. They were
ordered to construct the permutation distribution of test statistics τ̂ under H0. Then the one-
tailed p-value will be the number of entries in the permutation distribution greater than observed
τ̂ , divided by the total number of permutations M. This p-value is often called the permutation
p-value and the statistical test is called a permutation test (Maris and Oostenveld, 2007). Jiang
et al. (2016) used permutation test to calculate p-value for test statistics estimated from their
proposed Ising model. This permutation test conducts at individual level, and the procedure is
shown in Algorithm 1.

Now let us discuss how this permutation test at individual level will work for the three
types of test statistics mentioned above. To make it clear, all test statistics follow the design
of experiments based on graph cluster randomization. Under permutation at individual level,
the assignment vector will be reassigned to users randomly. In other words, the size of treat-
ment/control group remains the same after reassignment, but users in treatment/control group
are completely randomly selected. Thus, the level of exposure σi for a user i is completely ran-
dom after permutation. Which type of test statistics will get affected by this? The first type
τ̂naive tends to be not sensitive since it ignores the interference among users completely. The
second and third types are potentially more sensitive to permutation at individual level due
to the change of level of exposure for users after permutation. Under the experimental design
based on graph cluster randomization, users connected to each other tend to be put into the
same cluster such that they may behave approximately the same as if they were in global treat-
ment of interest. Yet permutations at individual level ignores this network structure. Thus ATE
estimate τ̂ (m) (m = 1, . . . , M) under permutation at individual level will be expected to behave
very differently compared to τ̂ under graph cluster randomization, especially when strong local
clustering exists. Note that the above discussion about sensitivity of three types of test statistics
is from the significance test point of view, rather than test statistics’s own performance with
respect to bias and variance.

This issue about level of exposure can be largely circumvented by conducting the permuta-
tion at cluster level. Unlike permutations at individual level where users are correlated to each
other due to the interference in social network, clusters can be regarded as effectively indepen-
dent. The stronger the local clustering is, the closer the clusters get to independence. Let N

users in the network be partitioned into S clusters C1, C2, . . . , CS . Let Z̄Cs
denote the assign-

ment for cluster Cs (s = 1, 2, . . . , S). Let C(i) denote the cluster containing user i, then user
i’s assignment is determined by cluster C(i)’s assignment. We have Zi = Z̄C(i) (i = 1, . . . , N).
Given the clusters C1, C2, . . . , CS , let Z̄C = {Z̄C1, Z̄C2, . . . , Z̄CS

} denote the assignment vector at
cluster level. The assignment of user i will be the same as the assignment of the cluster C(i)
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Algorithm 2: Permutation test conducts at cluster level.
Input: graph G, assignment vector Z, response vector Y , partitioned S clusters C1, C2, . . . , CS .
Compute test statistic τ̂ from the available sample (G,Z,Y ).
for m ∈ 1, . . . ,M do
Randomly reassign Z̄C to clusters and obtain new assignment vector
Z̄

(m)
C = {Z̄(m)

C1
, Z̄

(m)
C2

, . . . , Z̄
(m)
CS

}. Equivalently, Z(m) is known. Compute test statistic τ̂ (m)

from sample (G,Z(m),Y ).
end
An approximate p-value is given by M−1 ∑M

m=1 1{τ̂ (m) � τ̂ }.

that contains user i. Reassigning Z at cluster level is equivalent to reassigning Z̄C directly. Also,
knowing Z is equivalent to knowing Z̄C , because we have Zi = Z̄C(i) for each individual user i

(i = 1, 2, . . . , N). The procedure for permutation test at cluster level is shown in Algorithm 2.
Note that the accuracy of p-value increases with the number of draws M from the permu-

tation distribution. The larger M, the more accurate the permutation p-value will be. In this
work, the permutation p-value was calculated on M = 1000 repetitions.

4 Simulation Study
To investigate the performance of our proposed cluster-level permutation test (�C) compared to
the individual-level permutation test (�I ), a simulation study was conducted. This simulation
study contains the complete process of experimentation in network A/B test study, including
graph generation G(V, E), treatment assignment Z, and response values generation Y , ATE
estimation and p-value calculation. The network G(V, E) was generated from small-world models
(Watts and Strogatz, 1998) with N vertices and rewiring probability prw. The initial degree
parameter d was fixed at d = 10. The graph was partitioned into S clusters C1, C2, . . . , CS using
balanced graph partitioning, and each cluster was randomly assigned to treatment/control group.
Here S was fixed at S = 10. Given Z = {Z1, Z2, . . . , ZN } = {Z̄C(1) , Z̄C(2) , . . . , Z̄C(N)}, the observed
user response was generated based on a model of a stochastic function of the mean of neighbors’
prior behaviors (Eckles et al., 2014) as follows:

Y ∗
i,t =λ0 + λ1Zi + λ2

Ai,Yt−1

ki

+ εi,t ,

Yi,t =1
{
Y ∗

i,t > 0
}
,

where Yi,t is the observed response for user i at step t (t = 0, 1, 2, . . .), Yt = (Y1,t , Y2,t , . . . , YN,t )
�

(� denotes transpose), ki denotes degree of vertex i, and vector Ai, is the i-th row of adjacency
matrix A. Here Yi,t is a binary response value. Observed response values for all users were
initialized at 0 when t = 0. Here λ1 and λ2 determines the strength of the direct treatment effect
and network effect respectively. This process runs until a maximum time T is reached. Eckles
et al. (2014) ran simulations with both T = 3 and T = 10 and get similar results. Thus in this
work we set T = 3.

The factors of our simulation study are as follows: the randomness of edges (prw), the
treatment effect level (λ1), the network effect level (λ2), and the graph size (N). As in Eckles et al.
(2014), we varied the rewiring probability prw ∈ {0.00, 0.01, 0.10, 0.50, 1.00}, where prw = 0.00
corresponds to regular ring lattice and prw = 1.00 corresponds to graph with all random edges
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respectively. The bigger p is, the more random edges and less clustering in the graph. We
considered 5 levels for treatment effect λ1 ∈ {0.0, 0.1, 0.2, 0.5, 1.0} and 4 levels for network effect
λ2 ∈ {0.0, 0.5, 1.0}. We added λ1 value at 0.1 and 0.2 in addition to values in Eckles et al. (2014),
in order to evaluate the sensitivity of tests at weak treatment effect. The size of graph N was
taken in {N1, N2, N3} = {1000, 2000, 4000}. The threshold q in estimating τ̂neighbor and τ̂Hajek was
chosen to be 0.7, and λ0 was fixed at −1.5.

For each scenario, a graph was first generated from the small-world models with chosen prw,
then B data sets were generated. The bootstrap sample size B was set to 500 and all tests were
carried out at a significance level of 0.05. For each bootstrap sample, we computed all five test
statistics and calculated p-values for each test statistic under both permutation tests �c and �I ,
respectively. Here the number of permutation replicates is M = 1000. The performance of the
tests was investigated in all scenarios. As discussed in section 2.3, the following test statistics were
considered in the simulations: τ̂naive, τ̂neighbor , τ̂Hajek, τ̂lm1 , and τ̂lm2 . Being classified into three
types as discussed in Section 3, estimators within each type perform similarly based on our
simulation results, as desired. Thus we will focus on the performance of tests for τ̂naive, τ̂neighbor

and τ̂lm1 as representatives for each type of estimators. Next we will discuss the performance of
tests �C and �I in two scenarios: size study and power study, corresponding to when H0 is true
and H0 is false respectively.

4.1 Size Study

A type I error occurs if we reject the null hypothesis when the null hypothesis is true. Under
the null hypothesis, the treatment effect λ1 = 0, means that assigning users to either the control
or treatment group will expose them to exactly the same experience. This is also equivalent to
A/A Test, an experiment where users are assigned to one of two groups, but their experience is
the same despite of the group assignment. Since there is no true difference between treatment
and control group, all significant τ s identified by the test should be false positive tests. Ideally,
the null hypothesis should be rejected 5% of the time.

As shown in Figure 1, test �C holds its level reasonably well for all estimators. When
λ1 = 0.0, the percent of positive tests observed by �C closely corresponds to 0.05, proving
that this test controls false positive rate. Test �I holds its level well only for estimator τ̂naive.
For τ̂neighbor and τ̂lm1 , �I produces 0% false positive rates; A further observation of histogram
for p-values shows that p-values all concentrate over a small interval, rather than uniformly
distributed over [0, 1] interval.

4.2 Power Study

The statistical power is the probability of rejecting the null hypothesis when the null hypothesis
is false – that is, the ability of a test to detect an effect if the effect actually exists. Here H0 is
false when λ1 is greater than zero.

We first assess the power of two permutation tests �C and �I for τ̂naive, τ̂neighbor and τ̂lm1

when fixing prw at prw = 0.0 (Figure 1). From Figure 1, three estimators shows similar trend
of performance for �C (represented by solid lines in Figure 1). For all three estimators, the test
power increases as treatment effect λ1 increases. The test power also increases as the number
of users N gets larger. At the smallest treatment effect λ1 = 0.1, �C can detect the effect at
least 40% of times at N = N3 = 4000. Increasing λ1 to 0.2, the power reaches to 60% or 70%
of times even at N = N2 = 4000; it reaches almost 100% for λ1 = 0.5 even with the smallest
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Figure 1: Rate of rejection of H0 for τ̂naive (top panel), τ̂neighbor (middle panel) and τ̂lm1 (bottom
panel) at different combinations of λ1, λ2 and N , with fixing prw = 0.0.

N = N1 = 1000. And, our test �C is quite robust to the change of network effect λ2. Comparing
the power of �C at λ2 ∈ {0.0, 0.5, 1.0} in Figure 1, we even see a slightly increasing power as λ2

increases. This may come from our data generation mechanism of adding up treatment effect
and network effect; strong network effect will strengthen user’s treatment effect and thus makes
the detect of treatment effect slightly easier. In contrast, the test �I behaves quite differently
for τ̂naive, τ̂neighbor and τ̂lm1 . For τ̂naive, �I behaves similarly as �C as we expected due to its
insensitivity to network exposure. For τ̂neighbor and τ̂lm1 , �I performs poorly; it fails to detect the
effect, with 0% rejection rate when λ1 is at 0.1 and 0.2 even at N = N5 = 5000. In the case of
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Figure 2: Rate of rejection of H0 for τ̂naive (top panel), τ̂neighbor (middle panel) and τ̂lm1 (bottom
panel) at different combinations of prw, λ2 and N , with fixing λ1 = 0.2.

λ2 = 0.0, one may question why �I performs poorly for τ̂neighbor and τ̂lm1 even without network
effect. Note that, unlike τ̂naive, τ̂neighbor and τ̂lm1 are computed by considering the factor of level
of exposure; �I breaks the clustering at experimental design and reassigns assignments to users
randomly, leading to poor performance.

We now look at the performance of cluster-level permutation test �C vs individual-level
permutation test �I with varying rewiring probability prw (see Figure 2). For τ̂naive, tests �C

and �I behave similarly with varying prw, since τ̂naive is not sensitive to graph structure. Two
tests behave very differently for τ̂neighbor and τ̂lm1 . The power of test �C decreases as prw increases,
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with a big drop when prw increases from 0.1 to 0.5. With prw = 0.5, many random edges and
less clustering in the graph makes clusters in G harder to get close to independent events. As for
the test �I , it fails to detect the effect, with 0% power when prw is at 0.01 and 0.1. Interestingly,
the power of �I goes up slightly for τ̂neighbor and τ̂lm1 as prw increases from 0.1 to 0.5, with
opposite direction compared to �C . For τ̂lm1 , even at prw = 1.0, which corresponds to �C ’s
worst scenario and �I ’s best scenario, �C still performs better than �I . Overall, the power of
test �C is larger when the network has more local clustering. If the network has little local
clustering, then benefits of conducting permutation at cluster level are reduced.

5 Discussion
In this work, we described the entire procedure for designing experiment, estimating ATE, and
testing the null hypothesis of no ATE between two groups in the network A/B testing framework.
Due to the violation of SUTVA in social network settings, analytical forms for distributions under
the null hypothesis are not available for test statistics. It is natural to perform nonparametric
tests based on permutation. Permutation has the advantage of being able to be used for testing
any statistics of interest if events can be assumed to be independent, regardless of its theoretical
tractability under the null hypothesis. In contrast to the work in Jiang et al. (2016) who used a
permutation test at user level, we proposed a novel method by permutation of users’ assignment
at cluster level, which can make users’ level of neighborhood exposure remain similar as they
were in the original experimental design to the largest extent. Our cluster-level permutation
test considers the graph structure for each permutation and minimizes the “contamination”
across clusters in contrast to the individual-level permutation test. Our work also compared
two permutation tests by testing three different types of test statistics for estimating ATE.
Specifically, we have estimated all five test statistics and tested each of these against both a
null distribution derived from repeated permutation of assignment vector at cluster level and
a null distribution derived from repeated permutation at the individual level. To the best of
our knowledge, this is the first study to propose a nonparametric permutation test considering
the graph structure in network A/B testing framework. It also represents the first comparative
appraisal of permutation tests at the cluster level vs at the individual level in network A/B
testing via intensive simulation study for different types of test statistics.

The simulation study shows that our proposed test �C performs well. Nominal type I error
controls for all three types of test statistics. When treatment effect exists, �C can detect with
high power in most cases. In general, the power of �C increases as treatment effect λ1 increases
and the graph size N increases. The performance of test �C is robust to the strength of the
network effect. Note that for τ̂neighbor and τ̂lm1 , the power of �C drops when prw increases from
0.1 to 0.5. This can be explained by the fact that a large rewiring probability prw indicates there
are many random edges and less clustering in the graph and thus clusters in the graph can not
be regarded as effectively independent. Thus sampling is an important factor for determining
the power of our test, which urges practitioners to pay attention to the local clustering of graph
G when sampling G from the entire network. Our proposed test �C is superior to �I for τ̂neighbor

and τ̂lm1 in all scenarios, while �C performs equivalently to �I for estimator τ̂naive in that τ̂naive

is not sensitive to network exposure. Overall, this cluster-level permutation test is an effective
and easily implemented approach for testing the null hypothesis of ATE = 0, ascertaining the
distribution under null hypothesis, and deriving the corresponding p-value in the network A/B
testing framework.
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Supplementary Material
The zip supplementary material file contains the Python scripts for generating graph data,
computing ATE estimators, estimating p-value via permutation tests, and generating figures in
this paper.
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