
Journal of Data Science 22 (4), 575–590 DOI: 10.6339/23-JDS1106
October 2024 Computing in Data Science

Tuning Support Vector Machines and Boosted Trees Using
Optimization Algorithms

Jill F. Lundell
1,∗

1Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard T.H.
Chan School of Public Health, Boston, MA, USA

Abstract

Statistical learning methods have been growing in popularity in recent years. Many of these
procedures have parameters that must be tuned for models to perform well. Research has been
extensive in neural networks, but not for many other learning methods. We looked at the behavior
of tuning parameters for support vector machines, gradient boosting machines, and adaboost
in both a classification and regression setting. We used grid search to identify ranges of tuning
parameters where good models can be found across many different datasets. We then explored
different optimization algorithms to select a model across the tuning parameter space. Models
selected by the optimization algorithm were compared to the best models obtained through grid
search to select well performing algorithms. This information was used to create an R package,
EZtune, that automatically tunes support vector machines and boosted trees.

Keywords machine learning; optimization; R programming

1 Introduction
Statistical learning models have gained in popularity in recent years because of their ability to
provide greater predictive accuracy than traditional statistical models in many situations. Some
models, such as Random Forests, perform well without parameter tuning, but most learning
methods have parameters that must be tuned (Breiman, 2001). The No Free Lunch theorems
state that there is no one type of model that outperforms all other models in all situations
(Schumacher et al., 2001). Thus, it is essential to explore several different types of models to find
an optimal solution to a problem. Support vector machines (SVMs) (Cortes and Vapnik, 1995),
gradient boosting machines (GBMs) (Friedman, 2001), and adaboost (Freund and Schapire,
1997) are three supervised learning models that can be very accurate when tuned. However,
parameters can be difficult to tune and recommendations for tuning methods in journal articles,
blogs, and FAQs are often not well justified. Better understanding of the properties of tuning
parameters and how to tune them is needed to effectively use these models. Software tools that
allow users to tune models without requiring the user to do substantial research are lacking.
Further development of tuning software would provide many data analysts with a wide range of
more accessible tools for modeling.

We explore tuning parameters for SVM, GBM, and adaboost to identify tuning parameter
spaces that yield accurate predictive models. We then search over the tuning parameter space
using different optimization algorithms to assess the ability of each algorithm to find a well tuned

∗ Email: jlundell@ds.dfci.harvard.edu.

© 2024 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received March 17, 2023; Accepted May 29, 2023

mailto:jlundell@ds.dfci.harvard.edu
https://creativecommons.org/licenses/by/4.0/


576 Lundell, J.

model over many datasets. This information was used to create an R package called EZtune that
autotunes SVMs, GBMs, and adaboost. EZtune has a simple user interface, is easy to use, has
fast computational time, and produces well tuned models. EZtune is available on CRAN and
specifics about the package and its performance are in Lundell (2019) and Lundell (2023).

2 Overview of Tuning Parameters
The following overview of SVMs and boosted trees briefly summarizes SVMs, GBMs, and ad-
aboost and identifies the tuning parameters for each model.

2.1 Support Vector Machines
SVMs use separating hyperplanes to create decision boundaries for classification and regression
models (Cortes and Vapnik, 1995). The separating hyperplane is called a soft margin because it
allows some points to be on the wrong side of the hyperplane. The cost parameter, C, dictates the
tolerance for points to be on the wrong side of the margin. A large value of C allows many points
to be on the wrong side while smaller values of C have a much lower tolerance for misclassified
points. A kernel, K, is used to map the classifier into a higher dimensional space. Hyperplanes
are used to classify in the higher dimensional space, which results in non-linear boundaries in
the original space. The SVM is modeled as:

f (x) = β0 +
∑

i∈S

αiK(x, xi; γ ) (1)

where, K is a kernel with tuning parameter γ , S is the set of support vectors (points on the
boundary of the margin), and αi computed using C and the margin. The tuning parameters for
SVM classification are C and γ . Common kernels are polynomial, radial, and linear. We use the
radial kernel for this work because it performs well in many situations.

Support vector regression (SVR) has an additional tuning parameter, ε. SVR attempts
to find a function, or hyperplane, such that the deviations between the hyperplane and the re-
sponses, yi , are less than ε for each observation (Smola and Schölkopf, 2004). The cost represents
the number of points that can be further than ε away from the hyperplane. Essentially, SVMs
maximize the number of points that are on the correct side of the margin and SVR maximizes
the number of points that fall within ε of the margin. The only mathematical restriction for the
tuning parameters for SVM and SVR is that they are greater than 0.

2.2 Boosted Trees
Boosted trees are part of the family of ensemble methods which combine weak classifiers into a
single, accurate, classifier. A weak learner typically does not perform well alone, but combining
many weak learners can create a strong classifier (Hastie et al., 2009). With boosted trees, a
small tree computed from the training data is the weak learner. The misclassified points or
residuals from the tree are examined and the information is used to fit a new tree. The model
is updated by adding the new tree to the previously fitted trees. The ensemble is iteratively
updated in this manner and final predictions are made by a weighted vote of the weak learners.

The primary difference between boosted tree algorithms is the method used to learn from
misclassified observations at each iteration. Adaboost fits a small tree to the training data while
applying the same weight to all observations in the dataset (Freund and Schapire, 1997). The



Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 577

misclassified points are then given greater weight than the correctly classified points and a
new tree is computed. The new tree is added to the previous tree with weights. The process
is repeated many times with misclassified points being given greater weight and a new tree is
created using the weighted data and added to the previous model. Weak learners that perform
better are given greater weight than those that classify more poorly. This results in an additive
model where the final predictions are the weighted sum of the predictions made by all of the
models in the ensemble (Hastie et al., 2009).

GBMs are a boosted tree that uses gradient descent to minimize a loss function during the
learning process (Friedman, 2001). The loss function can be tailored to the problem being solved.
The MSE was used as the loss function for regression models and a logarithmic loss was used for
classification problems in this article. A decision tree is used as the weak learner and trees are
kept small to ensure that they are weak. GBMs recursively fit new trees to the residuals from
previous trees and then combine the predictions from all of the trees to obtain a final prediction.

Adaboost and GBMs have a nearly identical set of tuning parameters. Both models require
that the number of iterations, depth of the trees, and the shrinkage, which controls how fast
the trees learn, are tuned. GBMs have an additional tuning parameter which is the minimum
number of observations in the terminal nodes.

3 Methods
Tuning parameters were analyzed using six datasets with a binary response and seven with a
continuous response. Table 1 lists the datasets and their characteristics. An extensive grid search
was done for each dataset to understand the response surface of the mean squared error (MSE) or
classification accuracy across tuning parameter values. The response surface was used to identify
a tuning parameter space that contained several of the best fitting models for each of the data
sets. Optimization algorithms searched through the tuning parameter spaces to find a well tuned
model. The MSEs or classification accuracies of the optimization algorithms were compared to
the best fitting model found in the grid search to determine which optimization algorithms
performed well both in general and relative to each other. The error measure and computation
time were both considered when assessing the performance of each optimization algorithm.
Computation time was included as a performance measure to ensure that implementation of
selected algorithms is practical.

4 Tuning Parameter Spaces
We searched blog posts, books, and journal articles to determine the tuning parameter ranges
that have been used by other authors. Many authors do not address all of the tuning parameters
and parameter space selection was not backed up by computation in any resources that we
found. We used all of the tuning parameters identified in Section 2 and did a grid search over
a wide range of tuning parameter values. These ranges include all of the regions seen in other
resources and are extended even further for some tuning parameters. Tables 2 and 3 show the
ranges that were used for the grid search along with the tuning parameter spaces we recommend.
The results of the grid search indicated that the grids were sufficiently large and do not need to
be expanded beyond the limits shown in Tables 2 and 3.

SVM, GBM, and adaboost models were computed for tuning parameters throughout their
specified grid region. The error measure was evaluated at each grid location using 10-fold cross-



578 Lundell, J.

Table 1: List of datasets used to explore tuning parameters.

Number of Number of
Categorical Continuous

Number of Number of Explanatory Explanatory
Dataset Observations Variables Variables

Binary
Breast Cancer Data1 699 10 0 9
Ionosphere1 351 35 1 33
Pima Indians1 768 9 0 8
Sonar1 208 61 0 60
Lichen2 840 40 2 31
Mullein2 12094 32 0 31
Continuous
Abalone3 4177 9 1 7
Boston Housing 21 506 19 1 15
CO24 84 5 3 1
Crime5 47 14 1 12
Ames Housing6 1460 61 36 24
Union5 50 4 0 3
Wage5 39 10 0 9
1mlbench (Newman et al., 1998); 2EZtune (Lundell, 2017); 3AppliedPredictiveModeling (Kuhn
and Johnson, 2018); 4datasets (R Core Team, 2022); 5Practicing Statistics (Kuiper and Sklar,

2013); 6Kaggle (De Cock, 2011; Kaggle, 2019)

Table 2: Tuning parameter ranges for models with a binary response.

Grid Tuning Search
Search Parameter Start

Model Parameter Range Space Location

Support vector Cost [2−10, 225] [1, 1024] 10
machines γ [2−25, 210] [2−10, 210] 2−5

Gradient Number of trees [50, 20,000] [50, 3000] 500
boosting Interaction depth [1, 19] [1, 15] 5
machines Shrinkage [0.001, 0.1] [0.001, 0.1] 0.1

Minimum number of [5, 15] [5, 12] 8
observations in
terminal nodes

Adaboost Number of trees [100, 1400] [50, 500] 300
Interaction depth [1, 20] [1, 10] 10
Shrinkage (ν) [0.01, 1] [0.01, 0.5] 0.05

validation for most datasets and 3-fold cross-validation for the largest datasets. The error mea-
sure is the misclassification rate for binary response variables and the MSE for continuous



Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 579

Table 3: Tuning parameter ranges for models with a continuous response.

Grid Tuning Search
Search Parameter Start

Model Parameter Range Space Location

Support vector Cost [2−10, 225] [1, 1024] 2
machines γ [2−25, 210] [2−10, 20] 2−5

ε [0, 10] [0, 0.5] 0.4
Gradient Number of trees [50, 20,000] [50, 5000] 2000
boosting Interaction depth [1, 19] [1, 15] 8
machines Shrinkage [0.001, 0.1] [0.001, 0.1] 0.1

Minimum number of [5, 15] [5, 10] 5
observations in
terminal nodes

response variables. Computation time was recorded for each of the models to aid in finding
regions that are computationally practical. We were able to identify parameter spaces for each
model type that included accurate models and faster computation times for each dataset. The
parameter space for each model type is identified in Section 4 and specified in Tables 2 and 3.
Calculations were done using the packages e1071 (Meyer et al., 2022), gbm (Greenwell et al.,
2022), and ada (Culp et al., 2016) in the R statistical software environment for statistical com-
puting and graphics (R Core Team, 2022). Note that regression models were not computed with
adaboost because the adaboost package that was used does not do regression.

We wanted to ensure that selected tuning parameter spaces produced models with stable
performance. Thus, error measures obtained from each fold of cross-validation were used to
compute a 95% upper confidence limit for the error measures to assess the consistency of error
measures across the grid. The upper confidence limits were graphed at each grid location in
addition to the cross validated error measure and the computation time. In all cases, the surfaces
produced by the upper confidence limits yielded nearly identical surface patterns as the error
measures so they are not discussed further.

Grid searches were done using the data listed in Table 1 over the parameter ranges specified
in Tables 2 and 3. Figure 1 shows the surface of the errors obtained for the classification SVM
models. Although a distinct surface emerges across all of the datasets, it is difficult to determine
a smaller region where performance is good across all datasets. The grid results were subsetted
to include only best 20% of the errors and to include the best 20 error measures across the entire
grid. Figure 2 shows the surface for the computation times across the grid with the fastest 20
computation times highlighted in orange. Surface plots for the other models are included in the
supplementary materials.

The wide distribution of the orange dots in Figures 1 and 2 shows that there are many
local minima across the surface. Figure 2 also shows that there are areas in the grid with slow
computation times. The best computation times seemed to be in the same grid regions with the
best error rates. The MSE and computation time surfaces for the regression models were similar
to those for the classification models. Smaller values of ε produced smaller MSEs but also had
slower computation times for all datasets. Good error rates with reasonable computation times
can be obtained by models with a cost between 1 and 1000 and a γ between 2−10 to 210. The



580 Lundell, J.

Figure 1: Error surface plots for support vector machines on datasets with a binary response.
Orange dots on the bottom figure represent the best 20 models across the grid.

best results for regression were seen for values of ε less than 0.5. It is clear from the analysis that
cost, γ , and ε should all be tuned. Although the regression and classification models had similar



Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 581

Figure 2: Computation time surface plots for support vector machines on datasets with a binary
response. Orange dots represent the 20 models with the shortest computation times across the
grid. Time is in seconds.

response surfaces, the tuning parameter spaces selected for data types are slightly different. This
is so the subtle differences between each model type can be best utilized. Tables 2 and 3 show the
selected tuning parameter spaces for all of the models. Starting values for each of the parameter
spaces were also selected from the error surfaces. The starting locations were selected from areas
that tend to have low error measures and faster computation times across all datasets.

The parameter regions for GBM were searched in a similar manner and response surfaces
showed patterns in performance. However, none of the error rate or computation time surfaces
were smooth, even when examined with multidimensional graphics. Computation times were
unilaterally faster with smaller values for all tuning parameters with the exception of shrinkage.
The best error measures were found across the range of shrinkage values, so a smaller shrinkage
does not always result in a better model fit. Better error rates were also found with fewer
than 1000 iterations and often with only about 500 iterations. Good results were seen across
the spectrum of tested interaction depths and the different values of the minimum number of
observations in the terminal nodes. The areas of best performance varied for each dataset so
it was determined that the range of values should be minimally trimmed for those two tuning
parameters. As with the SVM analysis, it was clear that it is important to tune all tuning
parameters. Tables 2 and 3 show the selected tuning parameter spaces.



582 Lundell, J.

Adaboost was evaluated only for the binary datasets. The best computation times were
seen for the smallest number of trees and the smallest tree depths. Shrinkage did not have much
impact on computation times. Good error rates were seen across all values of shrinkage that were
tested and good models were found for all values of tree depth and the number of iterations. The
tuning parameter space was chosen to try to minimize computation time while catching some
of the best models for each dataset. Tables 2 and 3 shows the selected tuning parameter spaces.

Smaller regions than those listed in Tables 2 and 3 were tested during the optimization
phase to determine if reducing this region to a smaller area improves computation time with
little sacrifice in accuracy. It was found that smaller regions did not decrease computation
times for most optimization algorithms and often resulted in larger error measures so the larger
parameter space was retained.

5 Optimization Algorithms
Once a parameter space was determined, the parameter spaces for each dataset were searched
using 17 different optimization algorithms. Table 4 lists the algorithms that were assessed. Ten
searches were carried out for each dataset and algorithm. Both the error measure and compu-
tation time were computed for each search to determine the stability of the algorithm. If an
algorithm was not able to complete 10 runs within a specified time frame for one of the datasets,
it was considered a failure for that dataset.

The R statistical package (R Core Team, 2022) was used for all optimization computations.
Table 4 shows the R packages and functions that were used for the optimization. Computation
time and error measures were compared and it was assumed that different optimization algo-
rithms may perform better for different model types. A description of each of these algorithms
can be found in Appendix A of the supplementary material.

Table 5 concisely summarizes the results of all of the optimization algorithms. Figures 3–7
show parallel coordinate plots of the results of the optimization tests. Values in the graphs
have been standardized by subtracting the minimum measure obtained from the grid search
and then dividing by the maximum resulting value. This means that the worst error measure
or computation time for each dataset is 1 and the best error measure or computation time is
0. The x-axis lists the R function name to avoid confusion for algorithms that were tested with
more than one function. If the computation time was too long to obtain a result, a value of 1
was plotted for both the time and the error measure.

6 Discussion
The grid search showed that there are tuning parameter spaces that contain models with small
error rates and fast computation times across all of the tested datasets. Areas that have fast
computation times for the SVM models include models with good error rates for binary classi-
fication. Regression models with SVM showed that this was true for cost and γ , but not always
for ε. Tuning parameter spaces for binary and continuous responses were similar, but a smaller
region for γ can be used when the response is continuous.

GBM and adaboost have nearly identical tuning parameters, but they behave differently.
GBM requires a larger range of trees and interaction depths than adaboost. GBM also requires
smaller shrinkage values than adaboost. With both models, a smaller shrinkage was not always
better but also did not seem to increase computation time.



Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 583

Table 4: Optimization algorithms along with the packages and functions in R that will be used
to implement them.

Algorithm Type Package Function

Ant Lion Metaheuristic MetaheuristicOpt ALO
(Mirjalili, 2015a) (Septem Riza et al., 2017)
BOBYQA Derivative free minqa (Bates et al., 2022) bobyqa
(Powell, 2009)
Dragonfly Metaheuristic MetaheuristicOpt DA
(Mirjalili, 2016a)
Firefly Metaheuristic MetaheuristicOpt FFA
(Yang, 2009)
Genetic algorithm Metaheuristic GA (Scrucca, 2013) ga
(Goldberg, 1999)
Grasshopper Metaheuristic MetaheuristicOpt GOA
(Saremi et al., 2017)
Grey wolf Metaheuristic MetaheuristicOpt GWO
(Mirjalili et al., 2014)
Hooke-Jeeves Derivative free optimx (Nash, 2014a), hjk,
(Hooke and Jeeves, 1961) dfoptim (Varadhan et al., 2020) hjkb
Improved harmony search Metaheuristic MetaheuristicOpt HS
(Mahdavi et al., 2007)
L-BFGS Quasi-Newton lbfgsb3 (Nash et al., 2020), lbfgsb3,
(Byrd et al., 1995) stats (R Core Team, 2022) optim
Moth flame Metaheuristic MetaheuristicOpt MFO
(Mirjalili, 2015b)
Nelder-Mead Derivative free dfoptim nmk
(Kelley, 1999)
Nonlinear conjugate gradient Gradient Rcgmin (Nash, 2014b) Rcgmin
(Dai and Yuan, 2001)
Particle swarm Metaheuristic MetaheuristicOpt PSO
(Shi and Eberhart, 1998)
Sine cosine Metaheuristic MetaheuristicOpt SCA
(Mirjalili, 2016b)
Spectral projected gradient Gradient BB (Varadhan and Gilbert, 2009) spg
(Birgin et al., 2000)
Whale Metaheuristic MetaheuristicOpt WOA
(Mirjalili and Lewis, 2016)



584 Lundell, J.

Table 5: Performance summary of optimization algorithms.

Method Error Time Consistency

Genetic algorithm Good Slow Consistent
Hooke and Jeeves Varies Varies Inconsistent
Hooke and Jeeves B Good Good Consistent
L-BFGS Good Good Crashes often
Nocedal-Morales Poor Slow Consistent
Nonlinear conjugate gradient Poor Fast Stays at start
BOBYQA Poor Fast Consistent
L-BFGS B Poor Fast Consistent
Spectral projected gradient Moderate to Poor Good to moderate Inconsistent
Ant lion Poor Moderate Consistent
Dragonfly Poor Good Consistent
Firefly Poor Slow Consistent
Grasshopper Moderate Moderate Inconsistent
Grey wolf Poor Moderate Inconsistent
Harmony search Poor Moderate Inconsistent
Moth flame Poor Moderate Inconsistent
Particle swarm Poor Slow Consistent
Sine cosine Poor Moderate Inconsistent
Whale optimization Poor Slow Consistent

Figure 3: Standardized optimization results for support vector regression.

The optimization algorithms listed in Table 4 differed markedly in computation time and
in their ability to find a set of parameters that produce a good model. We initially thought
that a gradient method would perform well for the SVM models because the error surfaces
were smooth and that non-gradient based algorithms would be better for GBM and adaboost.



Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 585

Figure 4: Standardized optimization results for gradient boosting machine regression.

Figure 5: Standardized optimization results for support vector machines for binary classification.

However, gradient based methods performed poorly for all models. The non-linear conjugate
gradient algorithm had a very fast computation time, but it failed to move from the starting
values. This may be an artifact of the Rcgmin function that was used (Nash, 2014b), but it is
a gradient based function and it is unlikely it will perform well regardless of how it is coded.
The Nelder-Meade algorithm had fast computation times and low error rates that rivaled all
other algorithms, but it often failed to converge. It is worth exploring this algorithm in another
programming language, such as Python, to see if more stable performance can be achieved. The
metaheuristic algorithms seem like they would perform well based on the appearance of the error



586 Lundell, J.

Figure 6: Standardized optimization results for gradient boosting machines for binary classifica-
tion.

Figure 7: Standardized optimization results for adaboost models for binary classification.

rate surfaces and based on the performance of the genetic algorithm so further investigation in
Python or another language may yield better results. The Hooke-Jeeves algorithm consistently
produced the best error measures and computation times for all datasets across all model types.
The genetic algorithm found the best error rates overall, but computation times were slow. With
larger datasets, the computation time of the genetic algorithm was prohibitive.

The success in finding tuning parameter spaces across multiple datasets and the identifica-
tion of two optimization algorithms that were able to find well tuned models makes it possible
to automate tuning. We wrote an R package, EZtune (Lundell 2019 & 2023), that can tune an



Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 587

SVM, GBM, or adaboost model with little input from the user. The user selects a model type
in the main function, eztune, and the function searches the tuning parameter spaces listed in
Tables 2 and 3 using either a Hooke-Jeeves or genetic algorithm. The function returns a tuned
model, the values for the tuning parameters, and performance metrics. The results of the eztune
function were compared to the grid search results and the models that were returned were as
good, or nearly as good, as the best model found in the grid search. The benchmarking results
are included in Appendix B in the supplementary material. The eztune function also contains
arguments that can substantially decrease computation time with little sacrifice in model perfor-
mance. The package contains a second function, eztune_cv that will compute a cross-validation
accuracy rate or MSE for any model generated using eztune.

7 Conclusions
This computational work demonstrates that practical tuning parameter spaces can be identified
for SVMs and boosted trees that work well across many different datasets. These spaces can
increase the speed and efficacy of tuning an SVM or boosted tree. In addition to narrowing the
search region, we have demonstrated that the Hooke-Jeeves algorithm and a genetic algorithm
can search the tuning parameter space to identify a tuned model that is often as good, or nearly
as good, as a model found by a very extensive grid search. The information in this article not only
provides insight into tuning these types of models, but it can also be used to create algorithms
that automatically tune SVMs and boosted trees well with reasonable computation time. The R
package EZtune was created using this research and provides an effective algorithm for tuning
SVMs and boosted trees with a user friendly interface.

Supplementary Material
The following supplementary material are available:

Appendixes

A: Description of optimization algorithms
B: Performance tables

R-package for EZtune: R-package EZtune that can implement autotuning of SVMs, GBMs,
and adaboost using the Hooke-Jeeves algorithm and genetic algorithm. The package also con-
tains Lichen and Mullein datasets used in the examples in the article. The package is currently
available on CRAN and updates are available at https://github.com/jillbo1000/EZtune (GNU
zipped tar file).

Code and data for creating grids and performing optimization tests: The code and
data used to create the error and time response surfaces and the code for testing the optimization
algorithms is available at https://github.com/jillbo1000/autotune.

References
Bates D, Mullen KM, Nash JC, Varadhan R (2022). minqa: Derivative-free optimization algo-

rithms by quadratic approximation. R package version 1.2.5.

https://github.com/jillbo1000/EZtune
https://github.com/jillbo1000/autotune


588 Lundell, J.

Birgin EG, Martínez JM, Raydan M (2000). Nonmonotone spectral projected gradient methods
on convex sets. SIAM Journal on Optimization, 10(4): 1196–1211. https://doi.org/10.1137/
S1052623497330963

Breiman L (2001). Random forests. Machine Learning, 45(1): 5–32. https://doi.org/10.1023/A:
1010933404324

Byrd RH, Lu P, Nocedal J, Zhu C (1995). A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5): 1190–1208. https://doi.org/10.
1137/0916069

Cortes C, Vapnik V (1995). Support-vector networks. Machine Learning, 20(3): 273–297.
Culp M, Johnson K, Michailidis G (2016). ada: The R package ada for stochastic boosting.

R package version 2.0-5.
Dai YH, Yuan Y (2001). An efficient hybrid conjugate gradient method for unconstrained

optimization. Annals of Operations Research, 103(1–4): 33–47. https://doi.org/10.1023/
A:1012930416777

De Cock D (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester
regression project. Journal of Statistics Education, 19: 3.

Freund Y, Schapire RE (1997). A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1): 119–139.
https://doi.org/10.1006/jcss.1997.1504

Friedman JH (2001). Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451

Goldberg D (1999). Genetic algorithms in search optimization and machine learning. Addison-
Wesley Longman Publishing Company, Boston, MA, USA.

Greenwell B, Boehmke B, Cunningham J, Developers G (2022). gbm: Generalized Boosted Re-
gression Models. R package version 2.1.8.1.

Hastie T, Tibshirani R, Friedman J (2009). The elements of statistical learning: Data mining,
inference, and prediction. Springer, New York, NY, USA.

Hooke R, Jeeves TA (1961). “Direct Search” solution of numerical and statistical problems.
Journal of the ACM, 8(2): 212–229. https://doi.org/10.1145/321062.321069

Kaggle (2019). Ames housing dataset. https://www.kaggle.com/datasets/prevek18/ames-
housing-dataset. Accessed: 2019-02-13.

Kelley CT (1999). Iterative methods for optimization. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA.

Kuhn M, Johnson K (2018). AppliedPredictiveModeling: Functions and data sets for ‘Applied
Predictive Modeling’. R package version 1.1-7.

Kuiper S, Sklar J (2013). Practicing statistics: Guided investigations for the second course.
Pearson, Boston, MA, USA.

Lundell J (2023). Eztune: A package for automated hyperparameter tuning in R. arXiv preprint
arXiv:2303.12177.

Lundell JF (2017). There has to be an easier way: A simple alternative for parameter tuning of
supervised learning methods. In: JSM Proceedings, Statistical Computing Section, 3028–3036.
American Statistical Association, Alexandria, VA.

Lundell JF (2019). Tuning hyperparameters in supervised learning models and applications of
statistical learning in genome-wide association studies with emphasis on heritability, Ph.D.
thesis, Utah State University.

Mahdavi M, Fesanghary M, Damangir E (2007). An improved harmony search algorithm for

https://doi.org/10.1137/S1052623497330963
https://doi.org/10.1137/S1052623497330963
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1023/A:1012930416777
https://doi.org/10.1023/A:1012930416777
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1145/321062.321069
https://www.kaggle.com/datasets/prevek18/ames-housing-dataset
https://www.kaggle.com/datasets/prevek18/ames-housing-dataset
http://arxiv.org/abs/arXiv:2303.12177


Tuning Support Vector Machines and Boosted Trees Using Optimization Algorithms 589

solving optimization problems. Applied Mathematics and Computation, 188(2): 1567–1579.
https://doi.org/10.1016/j.amc.2006.11.033

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2022). e1071: Misc functions of the
department of statistics. probability theory group (Formerly: E1071), TU Wien. R package
version 1.7-12.

Mirjalili S (2015a). The ant lion optimizer. Advances in Engineering Software, 83: 80–98.
https://doi.org/10.1016/j.advengsoft.2015.01.010

Mirjalili S (2015b). Moth-flame optimization algorithm: A novel nature-inspired heuristic
paradigm. Knowledge-Based Systems, 89: 228–249. https://doi.org/10.1016/j.knosys.2015.
07.006

Mirjalili S (2016a). Dragonfly algorithm: A new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Computing & Applications,
27(4): 1053–1073. https://doi.org/10.1007/s00521-015-1920-1

Mirjalili S (2016b). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-
Based Systems, 96: 120–133. https://doi.org/10.1016/j.knosys.2015.12.022

Mirjalili S, Lewis A (2016). The whale optimization algorithm. Advances in Engineering Soft-
ware, 95: 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Mirjalili S, Mirjalili SM, Lewis A (2014). Grey wolf optimizer. Advances in Engineering Software,
69: 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Nash JC (2014a). On best practice optimization methods in R. Journal of Statistical Software,
60(2): 1–14. https://doi.org/10.18637/jss.v060.i02

Nash JC (2014b). Rcgmin: Conjugate gradient minimization of nonlinear functions. R package
version 2013-2.21.

Nash JC, Zhu C, Byrd R, Nocedal J, Morales JL (2020). lbfgsb3: Limited memory BFGS mini-
mizer with bounds on parameters. R package version 2020-3.2.

Newman D, Hettich S, Blake C, Merz C (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html

Powell MJD (2009). The BOBYQA algorithm for bound constrained optimization without
derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26–46.

R Core Team (2022). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria.

Saremi S, Mirjalili S, Lewis A (2017). Grasshopper optimisation algorithm: Theory and appli-
cation. Advances in Engineering Software, 105: 30–47. https://doi.org/10.1016/j.advengsoft.
2017.01.004

Schumacher C, Vose MD, Whitley LD (2001). The no free lunch and problem description length.
In: Spector L, Goodman ED, Wu A, Langdon WB, Voight HM (eds.), Proceedings of the 3rd
Annual Conference on Genetic and Evolutionary Computation, 565–570. Morgan Kaufmann
Publishers Inc.

Scrucca L (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software,
53(4): 1–37. https://doi.org/10.18637/jss.v053.i04

Septem Riza L, Iip , Prasetyo Nugroho E (2017). metaheuristicOpt: Metaheuristic for optimiza-
tion. R package version 1.0.0.

Shi Y, Eberhart R (1998). A modified particle swarm optimizer. In: 1998 IEEE International
Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computa-
tional Intelligence (Cat. No. 98TH8360), 69–73. IEEE.

Smola AJ, Schölkopf B (2004). A tutorial on support vector regression. Statistics and Computing,

https://doi.org/10.1016/j.amc.2006.11.033
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.18637/jss.v060.i02
http://www.ics.uci.edu/~mlearn/MLRepository.html
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.18637/jss.v053.i04


590 Lundell, J.

14(3): 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
Varadhan R, Gilbert P (2009). BB: An R package for solving a large system of nonlinear equa-

tions and for optimizing a high-dimensional nonlinear objective function. Journal of Statistical
Software, 32(4): 1–26. https://doi.org/10.18637/jss.v032.i04

Varadhan R, Hopkins University J, Borchers HW (2020). dfoptim: Derivative-free optimization.
In: ABB Corporate Research. R package version 2020.10-1.

Yang XS (2009). Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T
(eds.), International Symposium on Stochastic Algorithms, 169–178. Springer.

https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.18637/jss.v032.i04

	Introduction
	Overview of Tuning Parameters
	Support Vector Machines
	Boosted Trees

	Methods
	Tuning Parameter Spaces
	Optimization Algorithms
	Discussion
	Conclusions

