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Abstract

Identifying treatment effect modifiers (i.e., moderators) plays an essential role in improving
treatment efficacy when substantial treatment heterogeneity exists. However, studies are often
underpowered for detecting treatment effect modifiers, and exploratory analyses that examine
one moderator per statistical model often yield spurious interactions. Therefore, in this work, we
focus on creating an intuitive and readily implementable framework to facilitate the discovery of
treatment effect modifiers and to make treatment recommendations for time-to-event outcomes.
To minimize the impact of a misspecified main effect and avoid complex modeling, we construct
the framework by matching the treated with the controls and modeling the conditional average
treatment effect via regressing the difference in the observed outcomes of a matched pair on the
averaged moderators. Inverse-probability-of-censoring weighting is used to handle censored ob-
servations. As matching is the foundation of the proposed methods, we explore different matching
metrics and recommend the use of Mahalanobis distance when both continuous and categori-
cal moderators are present. After matching, the proposed framework can be flexibly combined
with popular variable selection and prediction methods such as linear regression, least absolute
shrinkage and selection operator (Lasso), and random forest to create different combinations
of potential moderators. The optimal combination is determined by the out-of-bag prediction
error and the area under the receiver operating characteristic curve in making correct treatment
recommendations. We compare the performance of various combined moderators through ex-
tensive simulations and the analysis of real trial data. Our approach can be easily implemented
using existing R packages, resulting in a straightforward optimal combined moderator to make
treatment recommendations.
Keywords counterfactual outcomes; matched pair; personalized medicine; smoking cessation

1 Introduction
Substantial heterogeneity of treatment effectiveness exists in some clinical studies, and iden-
tifying treatment effect modifiers plays an essential role in improving the treatment efficacy.
Here treatment effect modifiers (or moderators) are defined as variables measured at baseline
that exhibit an interactive effect with treatment on outcomes (Kraemer et al., 2002). In prac-
tice, existing trial data and observational studies are often utilized to search for moderators by
looking for all possible interactions with treatment through regression-based methods. However,
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the power to detect the treatment effect modifiers could be reduced by limited sample sizes,
modest interaction effects, or the strong main effect that explains much of the variability in the
outcome (Kraemer, 2013). On the other hand, exploratory analyses that examine one modera-
tor per statistical model are known for the tendency of finding spurious interactions, especially
when a long list of variables is tested for moderation effects. Thus, extant literature has focused
on recommending an appropriate treatment by estimating effect modification via a systematic
approach (Kraemer, 2013; Tian et al., 2014; Chen et al., 2017; Song et al., 2017; Liang and Yu,
2022; Yadlowsky et al., 2021; Park et al., 2022).

The goal of this article is to propose an intuitive and readily implementable approach to
discovering treatment effect modifiers and making treatment recommendations for time-to-event
outcomes. The work is motivated by one of our randomized controlled trials (RCTs), Strategies
to Avoid Returning to Smoking (STARTS), with the goal of preventing postpartum smoking
relapse (Levine et al., 2013). In STARTS, a cognitive behavioral treatment (CBT) was compared
to a supportive behavioral treatment (SBT), and no significant differences were found in time
to relapse during one-year postpartum (Levine et al., 2016). We are curious, given null effects,
particularly, in studies with two active treatments, about whether one condition might benefit
a subgroup more than another and thus search for moderators.

We start with the contrast function

�(M) = E[Y |D = 1, M] − E[Y |D = 0, M],
where E[Y |D, M] is the expected outcome Y given an intervention D and a set of moderators M.
Adopting the potential outcome framework in causal inference, let (Y 1, Y 0) denote the potential
outcomes if a participant received a new treatment and a standard treatment, respectively. Then,
under regular causal inference assumptions, �(M) is the conditional average treatment effect
(CATE) and can be interpreted as a causal effect modifier (Rubin, 1974, 2005), i.e.,

CATE = E[Y 1 − Y 0|M] = E[Y 1|M] − E[Y 0|M] = E[Y |D = 1, M] − E[Y |D = 0, M] = �(M).

Kraemer (2013) developed a parametric framework based on matched pairs of treated and un-
treated subjects and modeled the difference in the paired outcomes as a linear combination of
moderators. Similarly, based on the causal interpretation of the moderator effect, Tian et al.
(2014) developed a framework that posited working models for estimating the moderator effect
in RCT studies by directly modeling the outcome on modified moderators. Mo and Liu (2022)
recently proposed an efficient learning framework for continuous outcomes, which includes the
model by Tian et al. (2014) as a special case under homogeneous variance. However, the imple-
mentation of efficient learning is not straightforward.

In this work, we focus on developing an intuitive method to be used in practice. Kraemer’s
framework has been frequently implemented in psychiatric studies to detect treatment effect
modifiers for eating disorders, anxiety, and depressive disorder, among others (Wallace et al.,
2013, 2018; Wallace and Smagula, 2018; Smagula et al., 2016; Kaneriya et al., 2016; Niles et al.,
2017; Hildebrandt et al., 2020; Chin Fatt et al., 2020). We will extend Kraemer’s framework from
a continuous outcome to the time-to-event setting, and construct a composite moderator from a
list of candidates as an optimal causal effect modifier for time to relapse in STARTS. CATE is
often the focus in detecting treatment effect modifiers for survival outcomes and is modeled based
on standard survival models like Cox proportional hazard (PH) model to handle censoring (Tian
et al., 2014; Yadlowsky et al., 2021). In this work, we adopt Tian’s interpretation by modeling
CATE as the causal effect modifier and use inverse-probability-of-censoring weighting (IPCW)
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to handle censoring, as it can be flexibly combined with different frameworks without changing
the model interpretations (Goldberg and Kosorok, 2012; Zhao et al., 2015; Cui et al., 2017).

We will model the CATE based on matched pairs to minimize the impact of misspecifying
main effects and avoid complex modeling as in Mo and Liu (2022). The 1:1 nearest neighbor
matching (NNM) algorithm is usually used to estimate the conditional average treatment effect
on treated (CATT) because it matches control individuals to the treated and discards unse-
lected controls. Different from the CATE, the CATT is the conditional expectation over the
subpopulation of treated people of the treatment effect.

CATT = E[Y 1 − Y 0|D = 1, M].
However, under random assignment, the CATT is equivalent to the CATE. Besides, given similar
sample sizes in each group, the 1:1 NNM algorithm discards few observations and thus has a
limited reduction in power (Stuart, 2010). To reduce matching bias, it is recommended to convert
categorical covariates to a series of binary indicators and standardize continuous covariates before
matching (Kraemer, 2013).

After matching, we regress the weighted difference in the observed outcomes from a matched
pair on the differences in potential effect modifiers, with or without their corresponding average
scores, and select important factors to be included in the final linear combination using Z scores,
Lasso, and random forest. As subsequent modeling depends on matching, it is important to
explore the impact of matching on estimating causal effect modifiers. Two matching metrics
are considered in this study: Mahalanobis distance (MD) and propensity score (PS). King et al.
(2011) showed that using PS could degrade causal inferences as compared to unmatched methods
if the two groups are already well balanced, while using the MD would achieve a lower imbalance.
Thus, we will compare these two metrics via simulation studies under different scenarios to assess
the impact of matching on our estimators.

The rest of the article is organized as follows: In Section 2, we propose various matched-
weighting (MW) estimators for the causal effect modifier. In Section 3, simulation studies under
different scenarios are conducted to compare the performance of MW estimators to comparative
methods in estimating the treatment effect modification and making treatment recommenda-
tions. In Section 4, we illustrate the utility of our modeling framework by applying it to STARTS.
Finally, the conclusion and discussion are provided in Section 5.

2 Matched-Weighting Estimators
In the following, for individual i, let T̃i be the minimum of event time Ti and independent
censoring time Ci . Denote the event status as δi = 1{Ti � Ci}. Let Mi be a p-dimensional
vector of all potential moderators. The independent censoring assumption can be relaxed to be
conditional independence given moderators. In addition, we center the treatment allocation Di ,
which equals to 0.5 if individual i is in the treatment group and −0.5 if individual i belongs to
the control group. Then, the observed outcome can be denoted by n independent and identically
distributed (i.i.d.) replications of (T̃ , δ, D, M), such that {(T̃i, δi, Di, Mi), i = 1, . . . , n}.

In general, we assume that given any variable M, the treatment assignment D is independent
of the potential outcomes and is not deterministic, i.e.,

D ⊥ (T 1, T 0) | M

and
0 < Pr{D = d | M} < 1,
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for all d and M (Strong Ignorability, SI). Furthermore, the Stable Unit Treatment Value As-
sumption (SUTVA) is assumed, where the potential outcomes for any individual are not affected
by the treatment assigned to other individuals, and there is only one form of treatment for each
treatment level.

2.1 A Model
Now we adopt the framework of Kraemer (2013) based on the matched pairs and extend it
to survival outcomes and handle censoring by introducing IPCW weights wj to adjust for the
bias caused by censoring. Consider a survival model for the event time T of an individual with
treatment D and a vector of potential treatment modifiers M

h(T ) = θ0 + θdD + θᵀ
maM + θᵀ

moD × M + ε, (1)

where h is some monotone function of T , ε is a mean-zero error term, θ0 is the intercept, θd

is the treatment effect, and θᵀ
ma and θᵀ

mo are the transposes (ᵀ) of two p-dimensional vectors,
referring to the main and moderator effects, respectively. When h = log, it becomes the familiar
accelerated failure time (AFT) model. Then under the SUTVA assumption, we have

CATE = E[�h(T ) | M]
= E[h(T 1) − h(T 0) | M]
= E[h(T 1) | D = 0.5, M] − E[h(T 0) | D = −0.5, M] SI
= E[h(T ) | D = 0.5, M] − E[h(T ) | D = −0.5, M] SUTVA
= θd + θᵀ

moM,

where θd is the treatment effect when M = 0, and the moderator effect θmo becomes the coefficient
for the causal effect modifier. Motivated by the above relationship, we now consider a matched
pair of a treated subject and their control with event times and moderators (T1, M1, T0, M0).
With a perfect match, the difference in the potential moderators dM = 0. Thus, if one works on
the matched pairs and regresses the difference in the matched outcome on the average of two
moderators aM, the slope will be an unbiased estimator of θmo.

For time-to-event data, not all outcomes are observed. To maintain a relatively large number
of matched pairs, all censored observations from each treatment will be excluded before matching.
For each matched pair j , denote the paired event time as (T1j , T0j ) and the paired patient profile
as (M1j , M0j ), for j = 1, . . . , np and np is the number of pairs. After matching, we start modeling
the paired contrast,

�h(Tj ) = h(T1j ) − h(T0j ).

Then, based on model (1) and the relationship revealed above, we have:
√

wj�h(Tj ) = √
wj [θd + θᵀ

moaMj + dεj ], (2)

where θd ∈ R, θmo ∈ Rp, dεj are i.i.d. mean zero error terms. The modified moderators,

aMj = (M1j + M0j )/2 ∈ Rp,

which is due to the centering of the treatment allocation. The IPCW is calculated in terms of
the paired event times and the survival probability of the censoring time Sc,

wj = δ1j δ0j

Sc(T1j−)Sc(T0j−)
.
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In practice, Sc is typically unknown and can be estimated by the Kaplan Meier estimator (Kaplan
and Meier, 1958) or from a Cox proportional hazards model (Cox, 1972), denoted as Ŝc.

Based on model (2), we propose an Ordinary Least Squares (OLS)-typed matched-weighting
(MW) estimator for the causal effect modifier, θ̂a:

θ̂a := arg min
θmo

np∑

j=1

ŵj

[
�h(Tj ) − θd − θᵀ

moaMj

]2
, (3)

where
ŵj = δ1j δ0j

Ŝc(T1j−)Ŝc(T0j−)
.

Thus, the “A model” indicates that the modified outcome is fitted on the paired average only.

2.2 DA Model
However, in practice, the misspecification of the statistical model or the covariate set when
calculating matching metrics may lead to imbalanced baseline characteristics after matching.
Therefore, considering the impact of matching imbalance on estimating the causal effect modifier,
we adjust for the paired difference term dM and name it as the “DA model”:

√
wj�h(Tj ) = √

wj [θd + θᵀ
madMj + θᵀ

moaMj + dεj ], (4)

where the main effect θma ∈ Rp,

dMj = M1j − M0j ∈ Rp.

Subsequently, we propose another MW estimator θ̂da:

θ̂da := arg min
θmo

np∑

j=1

ŵj

[
�h(Tj ) − θd − θᵀ

moaMj − θᵀ
madMj

]2
. (5)

2.3 Moderator Selection
In Kraemer (2013), an optimal treatment effect modifier was constructed as a linear combination
of modified continuous moderators, where those moderators were selected based on their corre-
lations with the paired difference of continuous outcomes. A selection threshold was set after the
univariate analysis, but the correlations calculated in practice are generally small. Therefore, we
propose to use the standardized estimated coefficient of aM in each univariate analysis as the
selector and use the critical value of the corresponding distribution of the estimated coefficient as
the threshold. In addition, to minimize the impact of imbalance caused by matching, dM could
also be screened and selected into the composite moderator based on its standardized estimated
coefficient. These screening procedures yield the other two MW estimators, θ̂Sa(α) and θ̂Sda(α),

θ̂Sa(α) := arg min
θmo(α)

np∑

j=1

wj

[
�h(Tj ) − θd(α) − θᵀ

mo(α)aMj

]2
, (6)

where S stands for screening, and α denotes the screening threshold. θ̂Sda(α) is defined similarly
as θ̂Sa(α), with the additional adjustment θᵀ

ma(α)dMj(α) in the equation.
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Similarly, L1 penalized (Lasso) estimators proposed by Tibshirani (1996) can be applied to
this weighted matching framework to select important causal effect modifiers, with or without
adjusting for the imbalance captured by dM. The penalized MW estimators with a shrinkage
parameter λ are denoted as θ̂La(λa) and θ̂Lda(λda), without and with dM, respectively, which
can be calculated by minimizing:

1

np

np∑

j=1

wj

[
�h(Tj ) − θd − θᵀ

moaMj

]2 + λa‖θmo‖1, (7)

1

np

np∑

j=1

wj

[
�h(Tj ) − θd − θᵀ

madMj − θᵀ
moaMj

]2 + λda‖{θma, θmo}‖1, (8)

where ‖ · ‖1 is the L1 norm. If the focus is on making treatment recommendations rather than
estimating treatment effect modifiers, one could adopt machine learning techniques like random
forest or the decision tree under the MW framework (Breiman, 2001; Liaw et al., 2002).

2.4 Evaluation

To evaluate the performance of our proposed MW estimators, we will tabulate the sample mean,
the average of estimated standard errors (ASE), the empirical standard deviation (ESD), and the
empirical coverage rate (CVRT) of the coefficients for causal effect modifiers. On the other hand,
the out-of-bag prediction error (OOBPE) and the out-of-bag area under the receiver operating
characteristic curve (OOBAUC) will be used to evaluate the performance in making personalized
recommendations. The MW estimators with relatively larger OOBAUC and smaller OOBPE will
be considered optimal ones to make treatment recommendations. In addition, we also calculated
PE and area under the curve (AUC) under a two-sample (TS) setting to check the robustness
of the OOB metrics, where the original simulated sample is treated as the training data, and
another independent sample is simulated as the testing dataset.

3 Numerical Studies

3.1 Simulation Setting

In this section, we performed numerical studies to investigate the finite sample performance
of the proposed MW estimators in various settings. The causal effect modifiers were estimated
under the MW framework in combination with the OLS (MW.O), Lasso (MW.L), and random
forest (MW.RF) methods.

Here our method was evaluated and compared with existing approaches in estimating mod-
erator effects, including the AFT model with prior knowledge of error distribution and the Cox
PH model. Both approaches were fitted on treatment allocation, each (U) or all possible mod-
erators, and their interactions with treatment. As a competitive method, we also adopted a
random survival forest (RSF) model with the log-rank score splitting rule and a Kaplan-Meier
(KM) based OOB ensemble estimator (Ishwaran et al., 2008; Ishwaran and Kogalur, 2007). Al-
though Cox could not provide a comparative estimation of the moderator effect when the PH
assumption is violated, and the RSF predicts the survival probability only, one could still calcu-
late the pair difference in the predicted hazard risks or survival probability and evaluate their
performance in making treatment recommendations.
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The outcome was generated from parametric survival models with log-linear representation:

log(Ti) = α + βDi + θᵀ
maMi + θᵀ

moDiMi + σei,

where ei ∼ F and σ is the scale parameter, i = 1, . . ., 300. Two treatment arms with equal group
sizes were specified. We assumed that the first 5 of 15 moderator candidates had an interactive ef-
fect, such that (α, β) = (−6, 0.10), θᵀ

ma = (0.15, −0.20, −0.50, 0.25, −0.20, 0.50, 0.25, 0, 0, −0.20,

− 0.20, 0, 0, 0, 0) and θᵀ
mo = (−0.75, 0.50, 0.25, −1.25, 1, 0, . . . , 0). The baseline covariates were

generated independently from either the standard normal distribution or a Bernoulli distribution
with mean of 0.5. To study the properties of the proposed MW estimators, we considered differ-
ent simulation scenarios with the following key aspects of interest: (1.) The 1:1 NNM algorithm
with two different metrics, MD and PS, was implemented using the R package “MathIt” (Ho
et al., 2011); (2.) We considered two error distributions: extreme value distribution (EV) and
standard logistic distribution (Logistic); (3.) Two scales of error variance, σ = 1

2 ,
1
6 , were used

to determine the noise of the data; (4.) We assumed the independent censoring time to follow a
50-50 mixture distribution of exp(λ1) and exp(λ2) and considered two censoring rates 15% and
25%. One thousand simulations were performed under each simulation setting. Due to the space
limitation, in this section, we only present the results from representative scenarios and refer
the reader to Supplementary Material for the remaining results.

3.2 Simulation Results
We first compared the matching performance using MD and PS to study how the matching
bias impacts our proposed methods. Ho et al. (2007) pointed out that, one should try as many
matching solutions as possible and choose the one that yields the best balance. Consequently, the
inclusion of covariates depends not only on factors like the covariate distribution, covariate effect,
sample size, etc., but also on the objective of matching and how the optimal balance is defined.
In Stuart (2010), the method that achieves optimal balance can be defined as follows: (1.) The
one yields the smallest standardized mean difference across the largest covariates. (2.) The one
minimizes the standardized difference of means of a few, particularly prognostic covariates. (3.)
The one results in the fewest number of “large” standardized differences of means.

In this study, we aim to create matched pairs with similar characteristics. Thus, we included
all covariates and evaluated matching performance by the standard pair difference (SPD) for
each moderator, i.e., the average absolute within-pair difference of each covariate after matching
(Ho et al., 2011). In addition, the proportion of “perfect match” is reported for categorical
variables for both MD and PS. Shown in Table 1, the SPDs of moderators matched by the
PS are generally larger than the MD, especially for categorical moderators, resulting in smaller

Table 1: Standard pair difference (“prefect matching” proportion) under the setting: 15% cen-
soring rate, EV, σ = 1/6; using Mahalanobis distance (MD) and propensity score (PS) metrics.

Type MD PS

M1 cont. .818 1.08
M2 cont. .816 1.09
M3 cont. .817 1.10
M4 cate. .42(78.8%) .92(53.5%)
M5 cate. .42(78.8%) .92(53.1%)
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Table 2: Estimated moderator effects under the setting: MD σ = 1/6 15% censoring rate; for each
estimator of the five non-zero moderators, the cell above shows the estimated moderator effect
(and coverage rate), the cell below shows the average standard error (and empirical standard
deviation), and k = 1, 2, 3 in MW.SDAk and MW.SAk refer to the threshold value used to select
meaningful moderators.
Moderator M1 M2 M3 M4 M5

TRUE −0.75 0.50 0.25 −1.25 1

Error Dist. EV Logistic EV Logistic EV Logistic EV Logistic EV Logistic

MW.ODA.U −.76(.95) −.77(.96) .50(.95) .52(.95) .25(.95) .26(.96) −1.26(.96) −1.28(.96) 1.02(.96) 1.01(.95)
.14(.14) .14(.14) .15(.14) .15(.15) .15(.14) .15(.14) .28(.26) .29(.28) .29(.28) .30(.30)

MW.OA.U −.76(.95) −.77(.95) .50(.96) .52(.95) .25(.94) .26(.95) −1.26(.96) −1.28(.96) 1.02(.95) 1.01(.95)
.14(.14) .14(.14) .15(.15) .16(.15) .16(.16) .16(.16) .28(.26) .29(.28) .29(.28) .30(.30)

MW.ODA −.75(.97) −.75(.97) .50(.98) .50(.96) .25(.97) .25(.97) −1.25(.97) −1.26(.94) 1.00(.95) 1.00(.96)
.04(.04) .06(.05) .04(.04) .06(.05) .04(.04) .06(.05) .08(.07) .11(.11) .08(.07) .11(.10)

MW.OA −.75(.94) −.75(.94) .49(.93) .50(.94) .24(.91) .24(.93) −1.24(.94) −1.24(.94) .99(.92) .98(.93)
.10(.12) .11(.12) .10(.11) .11(.12) .11(.12) .11(.12) .20(.21) .21(.22) .20(.22) .21(.23)

MW.ODA.S1 −.74(.95) −.74(.95) .48(.92) .49(.93) .19(.72) .19(.74) −1.22(.94) −1.23(.95) .98(.93) .97(.94)
.04(.04) .06(.06) .04(.07) .05(.08) .03(.11) .04(.12) .08(.08) .10(.12) .08(.12) .10(.15)

MW.OA.S1 −.74(.92) −.74(.93) .48(.92) .48(.91) .19(.67) .20(.67) −1.22(.91) −1.23(.91) .97(.92) .96(.90)
.10(.11) .11(.12) .10(.12) .10(.13) .07(.15) .08(.15) .19(.21) .20(.23) .19(.23) .20(.25)

MW.ODA.S2 −.72(.91) −.72(.92) .44(.86) .44(.86) .10(.37) .10(.34) −1.19(.90) −1.20(.93) .92(.90) .89(.86)
.05(.06) .06(.07) .05(.14) .06(.16) .02(.13) .02(.13) .10(.17) .12(.19) .09(.24) .11(.29)

MW.OA.S2 −.74(.91) −.75(.93) .46(.86) .46(.85) .11(.31) .11(.29) −1.22(.92) −1.23(.92) .95(.89) .92(.86)
.10(.12) .11(.12) .09(.18) .10(.19) .03(.16) .03(.17) .19(.25) .20(.27) .19(.30) .19(.34)

MW.ODA.S3 −.71(.91) −.70(.92) .33(.65) .33(.64) .03(.10) .03(.08) −1.11(.87) −1.12(.87) .71(.69) .66(.64)
.08(.12) .08(.12) .05(.24) .05(.24) .01(.09) .01(.09) .13(.33) .15(.36) .10(.47) .10(.49)

MW.OA.S3 −.74(.91) −.74(.92) .35(.62) .35(.60) .04(.07) .04(.06) −1.17(.88) −1.18(.88) .76(.68) .71(.62)
.11(.15) .11(.15) .07(.27) .07(.28) .01(.12) .01(.12) .19(.37) .20(.40) .14(.51) .14(.54)

MW.LDA −.73(.95) −.73(.95) .48(.94) .47(.93) .23(.92) .22(.94) −1.22(.93) −1.21(.92) .97(.92) .95(.94)
.04(.04) .06(.05) .04(.04) .06(.05) .04(.04) .06(.05) .07(.07) .10(.11) .07(.07) .10(.10)

MW.LA −.68(.90) −.68(.91) .42(.90) .42(.90) .17(.83) .17(.86) −1.11(.90) −1.10(.90) .86(.89) .84(.89)
.11(.12) .11(.12) .11(.12) .11(.12) .10(.12) .11(.12) .20(.21) .21(.23) .20(.23) .21(.24)

Cox.U −.12(.00) −.12(.00) .08(.00) .08(.00) .04(.00) .03(.00) −.19(.00) −.19(.00) .15(.00) .15(.00)
.02(.02) .02(.02) .02(.02) .02(.02) .02(.03) .02(.03) .04(.04) .04(.04) .04(.04) .04(.04)

AFT.U −.75(.87) −.78(.94) .50(.90) .52(.94) .22(.87) .25(.93) −1.23(.88) −1.30(.93) .98(.88) 1.03(.93)
.12(.15) .12(.12) .12(.15) .13(.13) .12(.15) .12(.12) .24(.30) .25(.27) .25(.31) .26(.27)

Cox −.82(.76) −.48(.00) .54(.81) .32(.01) .27(.88) .16(.15) −1.36(.78) −.81(.00) 1.09(.79) .64(.00)
.05(.05) .03(.05) .04(.04) .03(.04) .03(.03) .03(.04) .09(.09) .06(.09) .08(.08) .06(.08)

AFT −.75(.94) −.76(.95) .50(.93) .50(.92) .25(.93) .25(.95) −1.25(.93) −1.26(.93) 1.00(.92) 1.00(.90)
.02(.02) .04(.04) .02(.02) .04(.04) .02(.02) .04(.04) .04(.05) .07(.08) .04(.05) .07(.08)

proportions of “perfect match.” When estimating the causal effect modifiers (comparing Table 2
to Table 3 under σ = 1/6), the estimated and empirical standard deviations increase as the
matching bias increase. A slightly larger bias also appears in the estimators matched by the PS
if the selection is involved. We observe similar results from Tables S1 and S2 in Supplementary
Material under σ = 1/2.

When making treatment recommendations, comparing Table 4 to Table 5, a larger matching
bias would degrade the performance of A models, as shown by smaller AUC and larger PE. For
example, in Tables 4–5, with 25% censoring, an EV error distribution, and a smaller variance
(σ = 1/6), the OOB (TS) AUC of the MW estimator with the OA model using the MD is 0.73
(0.75), which is larger than the AUC using PS, 0.66 (0.67). While for the MW.ODA estimators,
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Table 3: Estimated moderator effects under the setting: PS σ = 1/6 15% censoring rate; for each
estimator of the five non-zero moderators, the cell above shows the estimated moderator effect
(and coverage rate), the cell below shows the average standard error(and empirical standard
deviation), and k = 1, 2, 3 in MW.SDAk and MW.SAk refer to the threshold value used to select
meaningful moderators.
Moderator M1 M2 M3 M4 M5

TRUE −.75 .50 .25 −1.25 1

Error Dist. EV Logistic EV Logistic EV Logistic EV Logistic EV Logistic

MW.ODA.U −.81(.93) −.82(.93) .54(.91) .55(.92) .27(.91) .28(.93) −1.35(.94) −1.37(.93) 1.09(.91) 1.10(.92)
.19(.20) .19(.19) .19(.21) .20(.21) .18(.21) .19(.20) .38(.39) .39(.41) .39(.41) .40(.44)

MW.OA.U −.81(.93) −.82(.93) .54(.91) .55(.93) .27(.92) .28(.92) −1.35(.94) −1.37(.93) 1.10(.92) 1.10(.92)
.19(.20) .19(.19) .20(.21) .20(.22) .21(.23) .21(.23) .38(.39) .39(.41) .39(.41) .40(.44)

MW.ODA −.75(.98) −.75(.97) .50(.97) .50(.97) .25(.97) .25(.97) −1.25(.96) −1.26(.95) 1.00(.96) 1.00(.96)
.05(.04) .07(.06) .05(.05) .07(.06) .05(.05) .07(.07) .10(.09) .14(.13) .10(.09) .14(.13)

MW.OA −.76(.94) −.76(.95) .49(.95) .49(.95) .25(.94) .25(.94) −1.26(.96) −1.26(.96) 1.00(.95) 1.00(.95)
.17(.17) .17(.16) .17(.17) .17(.18) .17(.17) .18(.19) .33(.32) .34(.34) .34(.35) .34(.35)

MW.ODA.S1 −.74(.95) −.74(.95) .47(.89) .47(.89) .17(.67) .17(.66) −1.22(.93) −1.22(.93) .93(.89) .94(.89)
.05(.05) .07(.07) .05(.12) .06(.13) .03(.12) .04(.13) .10(.16) .13(.16) .09(.23) .12(.26)

MW.OA.S1 −.74(.95) −.75(.93) .47(.90) .47(.88) .19(.61) .20(.61) −1.21(.94) −1.22(.93) .96(.89) .96(.90)
.16(.16) .16(.16) .15(.19) .15(.20) .10(.19) .11(.20) .31(.33) .32(.35) .30(.38) .31(.38)

MW.ODA.S2 −.72(.93) −.72(.91) .38(.73) .38(.72) .09(.32) .08(.29) −1.12(.87) −1.13(.86) .76(.72) .76(.72)
.06(.11) .08(.12) .05(.21) .06(.22) .02(.13) .02(.13) .12(.34) .14(.35) .10(.42) .11(.44)

MW.OA.S2 −.74(.94) −.74(.93) .41(.74) .41(.72) .11(.26) .11(.25) −1.17(.89) −1.19(.88) .84(.74) .84(.74)
.16(.19) .16(.19) .12(.26) .12(.27) .04(.18) .04(.19) .29(.43) .30(.46) .24(.52) .25(.53)

MW.ODA.S3 −.67(.87) −.67(.86) .24(.44) .23(.41) .03(.08) .03(.08) −.90(.70) −.89(.66) .48(.44) .45(.41)
.09(.23) .09(.24) .04(.26) .04(.27) .01(.10) .01(.10) .13(.57) .14(.60) .08(.53) .08(.54)

MW.OA.S3 −.71(.86) −.71(.86) .27(.41) .27(.41) .04(.07) .04(.07) −1.00(.70) −.98(.66) .58(.43) .54(.41)
.15(.28) .15(.28) .07(.32) .07(.32) .01(.13) .01(.14) .23(.66) .23(.69) .15(.65) .14(.64)

MW.LDA −.73(.95) −.73(.95) .48(.93) .47(.94) .22(.92) .22(.93) −1.21(.94) −1.20(.94) .96(.94) .95(.93)
.05(.04) .07(.06) .05(.05) .07(.06) .05(.05) .07(.07) .09(.09) .13(.13) .09(.09) .13(.13)

MW.LA −.64(.92) −.64(.92) .37(.89) .37(.88) .14(.86) .15(.87) −1.02(.93) −1.02(.92) .77(.89) .76(.89)
.17(.18) .18(.17) .17(.18) .17(.18) .15(.15) .15(.16) .34(.34) .35(.35) .33(.36) .34(.37)

their AUCs are quite close to each other: 0.91 (0.92) and 0.91 (0.90). This suggests that adjusting
D terms could provide a more robust result in the presence of a larger matching bias. When we
change censoring rates, we observe by comparing Table 2 to Table 7, and comparing Table 4
to Table S3 in Supplementary Material that the MW estimators have a robust performance in
estimating causal effect modifiers and making treatment recommendations as the censoring rate
increases from 15% to 25%. The IPCW appears effective in overcoming the censoring issue when
the censoring rate is modest.

As illustrated by Tables 2–3 and 6–7, if the error term follows a logistic distribution, our
proposed estimators’ SDs become larger, as the logistic distribution has a heavier tail than
the EV error in our setting. When the selection procedure is involved, the skewer the error
distribution, the larger the bias. In terms of prediction, a logistic error yields a smaller AUC and
a larger PE than the EV error, according to Tables 4–5. Furthermore, when the scale parameter
of the error term σ increases, i.e., the data become noisier, the performance of all methods
degrades, especially for a heavier tail error, resulting in a larger bias, larger ASE, empirical SD,
and PE, and a smaller AUC.
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Table 4: Prediction result under the setting: MD, σ = 1/2, 1/6, 25% censoring rate.

OOB(TS) AUC OOB(TS) PE

Error Dist EV Logistic EV Logistic

Scale σ 1/2 1/6 1/2 1/6 1/2 1/6 1/2 1/6

MW.ODA .76(.79) .90(.92) .68(.72) .87(.89) 1.28(1.08) .42(.36) 1.73(1.54) .59(.51)
MW.OA .67(.70) .73(.75) .65(.67) .73(.74) 1.46(1.38) 1.06(1.03) 1.73(1.70) 1.10(1.08)
MW.ODA.S1 .74(.79) .89(.91) .68(.72) .86(.88) 1.21(1.06) .48(.41) 1.62(1.49) .61(.53)
MW.OA.S1 .72(.70) .82(.76) .67(.67) .80(.75) 1.31(1.36) .74(1.01) 1.66(1.68) .83(1.06)
MW.ODA.S2 .73(.76) .85(.87) .68(.70) .83(.85) 1.23(1.14) .62(.56) 1.59(1.56) .72(.68)
MW.OA.S2 .69(.70) .77(.75) .65(.66) .76(.74) 1.37(1.37) .92(1.01) 1.66(1.69) .98(1.07)
MW.ODA.S3 .70(.71) .80(.80) .65(.65) .78(.78) 1.33(1.32) .82(.83) 1.64(1.70) .90(.91)
MW.OA.S3 .66(.67) .73(.73) .63(.63) .72(.72) 1.44(1.44) 1.04(1.08) 1.69(1.75) 1.08(1.13)
MW.LDA .75(.79) .90(.92) .69(.72) .87(.89) 1.17(1.04) .40(.36) 1.55(1.47) .56(.50)
MW.LA .67(.70) .73(.75) .64(.66) .73(.74) 1.41(1.36) 1.03(1.02) 1.66(1.67) 1.07(1.07)
MW.RFDA .61(.63) .62(.64) .59(.61) .62(.64) 1.47(1.48) 1.16(1.20) 1.67(1.75) 1.20(1.24)
MW.RFA .58(.59) .59(.60) .57(.58) .59(.60) 1.54(1.57) 1.25(1.31) 1.73(1.82) 1.29(1.35)
AFT .79(.81) .91(.93) .73(.75) .89(.90) 1.03(.95) .37(.32) 1.41(1.36) .49(.46)
Cox .79(.81) .92(.93) .72(.74) .88(.90) - - - -
RSF .70(.73) .76(.79) .67(.69) .75(.78) - - - -

Table 5: Prediction result under the setting: PS, σ = 1/2, 1/6, 25% censoring rate.

OOB(TS) AUC OOB(TS) PE

Error Dist EV Logistic EV Logistic

Scale σ 1/2 1/6 1/2 1/6 1/2 1/6 1/2 1/6

MW.ODA .77(.75) .91(.90) .71(.69) .88(.87) 1.20(1.45) .40(.50) 1.63(2.01) .56(.68)
MW.OA .62(.64) .66(.67) .61(.62) .66(.67) 1.66(1.62) 1.36(1.33) 1.88(1.90) 1.39(1.37)
MW.ODA.S1 .77(.79) .90(.90) .71(.73) .87(.88) 1.16(1.13) .45(.47) 1.55(1.55) .59(.59)
MW.OA.S1 .72(.64) .80(.68) .68(.62) .79(.67) 1.35(1.60) .85(1.31) 1.67(1.87) .92(1.35)
MW.ODA.S2 .76(.78) .87(.87) .70(.72) .85(.85) 1.19(1.15) .59(.61) 1.54(1.55) .69(.70)
MW.OA.S2 .67(.64) .73(.67) .64(.61) .72(.67) 1.49(1.60) 1.11(1.31) 1.74(1.87) 1.16(1.35)
MW.ODA.S3 .72(.73) .82(.81) .67(.67) .80(.79) 1.29(1.33) .79(.85) 1.61(1.70) .87(.92)
MW.OA.S3 .63(.62) .68(.65) .61(.59) .68(.65) 1.57(1.65) 1.25(1.36) 1.79(1.91) 1.29(1.40)
MW.LDA .77(.79) .92(.91) .71(.73) .88(.88) 1.13(1.08) .38(.41) 1.50(1.51) .53(.56)
MW.LA .62(.64) .66(.67) .61(.61) .66(.67) 1.60(1.59) 1.31(1.31) 1.80(1.86) 1.34(1.35)
MW.RFDA .65(.68) .69(.71) .63(.65) .68(.70) 1.46(1.49) 1.17(1.20) 1.67(1.76) 1.21(1.24)
MW.RFA .57(.58) .58(.59) .56(.56) .58(.59) 1.64(1.69) 1.40(1.45) 1.82(1.94) 1.42(1.48)
AFT .80(.82) .92(.94) .74(.76) .90(.91) 1.00(.95) .36(.32) 1.38(1.35) .48(.45)
Cox .80(.82) .93(.94) .74(.76) .89(.90) - - - -
RSFALL .72(.75) .78(.80) .69(.71) .77(.79) - - - -
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Table 6: Estimated moderator effects under the setting: MD σ = 1/2 25% censoring rate; for each
estimator of the five non-zero moderators, the cell above shows the estimated moderator effect
(and coverage rate), the cell below shows the average standard error(and empirical standard
deviation), and k = 1, 2, 3 in MW.SDAk and MW.SAk refer to the threshold value used to select
meaningful moderators.
Moderator M1 M2 M3 M4 M5

TRUE −.75 .50 .25 −1.25 1

Error Dist. EV Logistic EV Logistic EV Logistic EV Logistic EV Logistic

MW.ODA.U −.77(.95) −.79(.95) .50(.94) .53(.95) .25(.95) .24(.97) −1.25(.96) −1.29(.93) 1.03(.95) 1.02(.94)
.18(.18) .21(.21) .19(.19) .22(.22) .19(.19) .23(.21) .36(.34) .43(.44) .37(.37) .44(.44)

MW.OA.U −.77(.96) −.79(.95) .50(.94) .53(.95) .24(.96) .24(.96) −1.25(.96) −1.29(.93) 1.03(.95) 1.02(.94)
.18(.18) .21(.21) .19(.19) .22(.22) .20(.20) .23(.22) .36(.34) .43(.44) .37(.37) .44(.44)

MW.ODA −.76(.96) −.76(.97) .49(.97) .50(.97) .25(.97) .24(.98) −1.24(.97) −1.25(.96) 1.01(.96) .98(.97)
.14(.12) .19(.18) .14(.12) .19(.18) .14(.12) .19(.16) .26(.23) .36(.35) .26(.24) .36(.33)

MW.OA −.76(.95) −.76(.94) .49(.95) .50(.94) .24(.94) .23(.96) −1.24(.94) −1.25(.93) 1.00(.94) .98(.95)
.16(.16) .19(.20) .16(.16) .19(.20) .16(.16) .19(.19) .30(.31) .36(.40) .30(.32) .37(.37)

MW.ODA.S1 −.72(.95) −.71(.94) .45(.89) .45(.88) .17(.61) .17(.55) −1.17(.94) −1.17(.92) .95(.92) .88(.87)
.12(.11) .17(.17) .11(.16) .15(.20) .08(.16) .10(.18) .23(.24) .31(.38) .22(.28) .29(.40)

MW.OA.S1 −.74(.94) −.73(.93) .47(.88) .47(.87) .18(.57) .18(.52) −1.19(.92) −1.21(.91) .97(.92) .91(.87)
.15(.15) .18(.20) .14(.19) .17(.22) .09(.18) .10(.20) .28(.31) .34(.42) .27(.34) .32(.43)

MW.ODA.S2 −.70(.92) −.68(.90) .36(.70) .34(.62) .08(.22) .07(.17) −1.09(.87) −1.06(.81) .80(.77) .66(.61)
.12(.14) .16(.23) .09(.24) .11(.28) .03(.15) .03(.16) .22(.37) .27(.52) .19(.44) .20(.56)

MW.OA.S2 −.73(.94) −.72(.90) .39(.69) .37(.60) .08(.19) .08(.16) −1.15(.89) −1.14(.81) .86(.77) .72(.60)
.15(.17) .17(.25) .11(.27) .11(.31) .03(.17) .03(.18) .27(.41) .30(.56) .23(.49) .22(.60)

MW.ODA.S3 −.65(.85) −.60(.74) .22(.36) .19(.26) .02(.03) .01(.01) −.88(.69) −.80(.54) .50(.42) .37(.27)
.12(.26) .14(.36) .05(.28) .05(.31) .00(.09) .00(.08) .19(.60) .20(.74) .12(.58) .10(.60)

MW.OA.S3 −.69(.87) −.63(.73) .24(.35) .19(.25) .02(.03) .01(.01) −.94(.68) −.85(.52) .55(.41) .40(.27)
.14(.27) .14(.38) .06(.31) .05(.32) .00(.10) .00(.10) .21(.64) .21(.78) .13(.63) .11(.64)

MW.LDA −.68(.93) −.64(.91) .42(.91) .38(.89) .17(.86) .13(.87) −1.10(.92) −1.01(.90) .87(.91) .74(.88)
.13(.12) .18(.18) .13(.12) .17(.17) .12(.12) .15(.13) .24(.23) .33(.35) .24(.25) .33(.35)

MW.LA −.65(.93) −.61(.91) .38(.88) .35(.88) .14(.84) .12(.88) −1.02(.90) −.96(.88) .79(.89) .70(.87)
.16(.17) .20(.21) .16(.17) .19(.20) .14(.15) .16(.15) .30(.31) .37(.42) .30(.34) .36(.40)

Cox.U −.34(.00) −.31(.00) .22(.02) .19(.02) .10(.43) .09(.38) −.54(.00) −.49(.00) .43(.02) .38(.01)
.07(.07) .07(.07) .06(.07) .06(.07) .07(.07) .07(.07) .13(.13) .13(.13) .13(.14) .13(.14)

AFT.U −.77(.88) −.79(.94) .50(.90) .52(.93) .23(.88) .25(.96) −1.26(.88) −1.31(.91) 1.01(.88) 1.03(.94)
.14(.17) .16(.16) .15(.17) .17(.17) .14(.18) .16(.16) .29(.35) .33(.36) .29(.37) .33(.35)

Cox −.83(.86) −.52(.26) .54(.91) .35(.49) .27(.92) .17(.80) −1.37(.89) −.86(.34) 1.10(.88) .67(.46)
.08(.09) .08(.09) .08(.08) .08(.08) .07(.08) .07(.08) .16(.16) .16(.16) .15(.17) .15(.17)

AFT −.76(.94) −.77(.94) .50(.93) .51(.93) .25(.93) .26(.94) −1.26(.93) −1.27(.93) 1.01(.92) 1.00(.91)
.07(.07) .11(.11) .07(.07) .11(.12) .07(.08) .11(.12) .14(.15) .22(.25) .14(.16) .22(.24)

Among all MW estimators, those with variable selection (MW.ODA.S, MW.OA.S and
MW.LDA, MW.LA) have slightly larger biases and lower coverage probabilities than the es-
timators using all possible moderators (MW.ODA, MW.OA). Additionally, selections based on
each moderator’s standardized coefficient tend to underestimate the variability (i.e., smaller
than the empirical standard deviation) as the threshold increases, while for the Lasso-based
selections, the averaged standard errors are close to the empirical ones. When making treat-
ment recommendations, ODA and LDA estimators seem to have larger AUCs and smaller PEs
than other estimators across all scenarios, where the random forest method has the worst AUC.
The MW estimators accounting for all possible moderators have a better performance than the
“univariate” analysis (ODA.U, OA.U, AFT.U, and Cox.U).
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Table 7: Estimated moderator effects under the setting: MD σ = 1/6 25% censoring rate; for each
estimator of the five non-zero moderators, the cell above shows the estimated moderator effect
(and coverage rate), the cell below shows the average standard error(and empirical standard
deviation), and k = 1, 2, 3 in MW.SDAk and MW.SAk refer to the threshold value used to select
meaningful moderators.
Moderator M1 M2 M3 M4 M5

TRUE −.75 .50 .25 −1.25 1

Error Dist. EV Logistic EV Logistic EV Logistic EV Logistic EV Logistic

MW.ODA.U −.77(.96) −.78(.94) .50(.96) .51(.96) .25(.95) .25(.97) −1.26(.96) −1.28(.96) 1.02(.95) 1.02(.95)
.15(.14) .16(.15) .16(.16) .17(.16) .16(.16) .17(.14) .30(.28) .31(.30) .31(.31) .32(.31)

MW.OA.U −.77(.95) −.78(.94) .50(.96) .51(.97) .25(.94) .25(.97) −1.26(.96) −1.28(.96) 1.02(.95) 1.02(.95)
.15(.14) .16(.15) .16(.16) .17(.16) .17(.17) .18(.16) .30(.28) .31(.30) .31(.31) .32(.31)

MW.ODA −.75(.98) −.75(.98) .50(.97) .50(.97) .25(.98) .25(.98) −1.25(.96) −1.26(.97) 1.00(.96) 1.00(.97)
.05(.04) .07(.06) .05(.04) .06(.06) .05(.04) .07(.05) .09(.08) .12(.11) .09(.08) .12(.11)

MW.OA −.75(.94) −.76(.92) .48(.93) .49(.94) .25(.93) .24(.92) −1.24(.95) −1.25(.94) .99(.93) .99(.94)
.12(.12) .12(.13) .12(.12) .12(.13) .12(.13) .12(.13) .22(.23) .23(.24) .22(.25) .23(.25)

MW.ODA.S1 −.73(.95) −.74(.94) .48(.93) .48(.93) .18(.70) .18(.69) −1.22(.94) −1.23(.94) .97(.94) .97(.94)
.05(.05) .06(.06) .04(.09) .06(.09) .03(.12) .04(.13) .09(.10) .12(.13) .09(.12) .12(.16)

MW.OA.S1 −.75(.94) −.74(.93) .48(.91) .48(.93) .19(.64) .19(.63) −1.22(.94) −1.23(.93) .97(.92) .96(.91)
.11(.12) .12(.12) .11(.14) .11(.14) .07(.16) .08(.16) .21(.23) .22(.24) .21(.24) .22(.26)

MW.ODA.S2 −.72(.93) −.72(.92) .42(.83) .42(.82) .09(.32) .08(.30) −1.18(.92) −1.19(.93) .86(.84) .84(.83)
.06(.07) .07(.09) .05(.17) .06(.18) .02(.13) .02(.13) .12(.17) .14(.20) .10(.31) .12(.35)

MW.OA.S2 −.75(.93) −.75(.93) .44(.82) .44(.82) .10(.26) .09(.24) −1.22(.93) −1.23(.93) .91(.85) .90(.83)
.11(.12) .12(.13) .10(.20) .10(.21) .03(.16) .03(.16) .21(.26) .22(.28) .19(.37) .20(.40)

MW.ODA.S3 −.70(.91) −.70(.90) .29(.56) .28(.54) .02(.06) .02(.06) −1.06(.85) −1.07(.85) .62(.60) .59(.56)
.09(.14) .09(.17) .05(.25) .05(.26) .00(.08) .01(.09) .15(.40) .16(.42) .10(.50) .10(.52)

MW.OA.S3 −.74(.92) −.73(.91) .30(.52) .30(.51) .02(.04) .03(.05) −1.13(.86) −1.14(.85) .68(.58) .65(.56)
.12(.16) .12(.19) .06(.29) .06(.29) .01(.10) .01(.10) .20(.44) .21(.46) .14(.56) .13(.57)

MW.LDA −.73(.95) −.72(.92) .48(.93) .42(.82) .22(.93) .08(.30) −1.21(.93) −1.19(.93) .96(.94) .84(.83)
.04(.04) .07(.09) .04(.04) .06(.18) .05(.04) .02(.13) .08(.08) .14(.20) .08(.08) .12(.35)

MW.LA −.68(.91) −.75(.93) .41(.88) .44(.82) .16(.82) .09(.24) −1.09(.90) −1.23(.93) .85(.91) .90(.83)
.12(.13) .12(.13) .12(.12) .10(.21) .11(.13) .03(.16) .22(.23) .22(.28) .22(.25) .20(.40)

Cox.U −.13(.00) −.12(.00) .08(.00) .08(.00) .04(.00) .04(.00) −.20(.00) −.19(.00) .16(.00) .15(.00)
.02(.03) .02(.03) .02(.02) .02(.02) .02(.03) .02(.03) .05(.05) .05(.05) .05(.05) .05(.05)

AFT.U −.76(.87) −.78(.94) .50(.89) .51(.94) .23(.87) .25(.94) −1.26(.88) −1.29(.93) 1.01(.88) 1.03(.94)
.13(.16) .13(.13) .13(.16) .13(.14) .12(.16) .12(.12) .26(.33) .26(.29) .26(.33) .26(.28)

Cox −.83(.73) −.50(.00) .55(.80) .33(.02) .27(.89) .17(.24) −1.37(.75) −.83(.00) 1.10(.77) .66(.01)
.05(.06) .04(.05) .04(.05) .03(.05) .03(.04) .03(.04) .09(.10) .07(.10) .08(.09) .06(.09)

AFT −.75(.94) −.76(.94) .50(.93) .50(.93) .25(.93) .25(.94) −1.25(.93) −1.26(.92) 1.00(.91) 1.00(.91)
.02(.02) .04(.04) .02(.03) .04(.04) .02(.03) .04(.04) .05(.05) .07(.09) .05(.05) .07(.08)

As the true model in our simulation studies, the AFT model performs well in general, with
a smaller bias, estimated/empirical SD, PE, and a larger AUC. Even though the Cox PH model
tends to have a larger bias, slightly underestimate the variability, and consequently have a lower
coverage probability than the AFT model and our proposed MW estimators, it still seems robust
enough to classify patients to suitable treatments when the proportional hazards assumption is
violated. The RSF approach yields a smaller AUC than both AFT and Cox, especially when
the error variance is small. Compared to competitive methods, when making recommendations,
the ODA and LDA estimators have similar AUCs and PEs as the AFT and Cox PH models,
where the MW estimators are more sensitive to the increase in noise. When estimating the
causal effect modifiers, the AFT and Cox have a smaller estimated standard error than the
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empirical standard deviation, and thus have a smaller coverage probability than ODA and LDA
estimators. In general, the ODA estimator and the AFT model have a smaller bias.

4 Real Data Application
The Strategies to Avoid Returning to Smoking (STARTS) study was conducted on 300 women
from September 2007 to June 2014 in Pittsburgh, PA, USA (Levine et al., 2013). It was a
randomized controlled trial aiming to assess the effect of a 24-week cognitive behavioral ther-
apy (CBT) on postpartum smoking relapse prevention, as compared to a standard supportive
behavioral therapy (SBT) with fewer interventions. The primary endpoint was the biochemi-
cally confirmed sustained tobacco abstinence within 52 weeks postpartum. Then, the time to
relapse was determined by counting the number of days between delivery and the first day of 7
consecutive days of smoking.

To illustrate the use of our proposed methodology, we chose thirteen baseline variables
as the moderator candidates, including age in years, motivation to stay quit, the number of
previous quit attempts, Fagerstrom (FAGR) test score for nicotine dependence, Smoking Self-
Efficacy Questionnaire (SEQ-12) score, smoking year to age ratio, the number of cigarettes
smoked daily, Edinburgh Postnatal Depression Scale (EPDS) (higher vs. not), Perceived Stress
Scale (PSS) (higher vs. not), race (black vs. Others), income level (household income below
$30k/yr vs. not), parity and education background (High school or equivalent vs. not), after
considering clinical rationales, missing data, and substantial collinearity with others.

Among 268 women with complete data, the censoring rate is 22.8%. Then, 103 matched
pairs were created via the 1:1 NNM algorithm with MD, as it yields a more negligible matching
bias. The analysis results on STARTS data, including the OOB PE/AUC of Cox, RSF, MW
estimators combined with different methods and their causal effect estimators, are tabulated in
Table 8 and Table 9, respectively.

Based on Table 8, we observe that all MW estimators have similar PE and AUC. When
compared with Cox and RSF, MW methods have slightly larger AUCs. The AUCs from all are
generally around 0.60, indicating that the data are noisy. According to Tables 8 and 9, Cox fails
to select any significant moderator. At the same time, MW estimators, in general, reveal that

Table 8: Prediction result of MW estimators on STARTS data.
OOB PE AUC

Methods Mean(SD) Mean(SD)

MW.ODA 1.59(.20) .62(.08)
MW.OA 1.46(.16) .61(.07)
MW.ODA.S1 1.52(.18) .61(.08)
MW.ODA.S2 1.49(.17) .57(.08)
MW.OA.S1 1.50(.17) .61(.08)
MW.OA.S2 1.49(.17) .57(.07)
MW.LDA 1.43(.18) .61(.07)
MW.LA 1.42(.16) .60(.07)
Cox - .54(.08)
RSFALL - .57(.08)
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Table 9: Analysis of STARTS data using the Cox and MW estimators.
Moderator
(θ̂mo, p)

Cox AllA AllDA SA1 SDA1 SA2 SDA2 LA LDA

Age −.12(.55) −.11(.60) −.03(.88) −.05(.79) −.02(.90)
Motivation .19(.46) .69(.01) .71(.01) .67(.01) .76(.00) .49 .60
No. of Quit .07(.63) −.33(.01) −.46(.00) −.30(.03) −.37(.01) −.26(.06) −.22 −.30
FAGR −.25(.22) −.16(.42) −.19(.36) −.13(.53) −.17(.40) −.12 −.14
SEQ12 −.06(.70) −.05(.74) −.04(.80)
Smoking
year(%)

.25(.19) −.40(.06) −.40(.05) −.38(.07) −.35(.07) −.35(.03) −.41(.01) −.31 −.34

No.cigarettes .25(.28) −.16(.60) −.14(.64) −.20(.51) −.16(.58) −.03 −.04
EPDS(high) −.66(.11) .71(.07) .68(.10) .24 .36
PSS(high) .40(.28) −.98(.01) −1.34(.00) −.65(.04) −1.00(.00) −.81(.01) −.89(.00) −.62 −.95
Black .38(.29) −.46(.16) −.64(.06) −.51(.11) −.63(.04) −.29 −.37
Income
(�30k/yr)

−.04(.93) −.21(.61) .18(.68) −.09(.83) .30(.44)

Nulliparous −.12(.71) −.20(.52) −.26(.41) −.01
�Highschool .25(.46) −.12(.70) −.35(.29) −.08

women with stronger motivation, fewer quit attempts, shorter lengths of smoking concerning
their age, higher EPDS screening scores, and milder perceived stress and those who were not
identified as African American would benefit more from the CBT than the SBT. If we used
the combined MW estimator from the LDA model, the one with relatively larger OOBAUC
and smaller OOBPE, as our optimal estimator to make treatment recommendations, then, for
the 103 matched pairs, 47 of them would be assigned to the CBT group and the rest to SBT.
Furthermore, the mean (SD) of time to smoking relapse among the 103 CBT-treated patients
is 18.2 (15.3) weeks before re-assignment. After assigning the rest to SBT, the mean (SD) of
the modified time to smoking relapse becomes 24.5 (16.1). The roughly six weeks improvement
suggests the usefulness of the recommendation by our proposed method.

5 Discussion
In this paper, we proposed an intuitive and readily implementable framework for estimating
causal effect modifiers and making treatment recommendations for a study with survival out-
comes. Our approach can be easily applied using well-established R packages, and the resulting
optimal combined moderator has a clear and straightforward interpretation. Our framework
is built upon matching, which might yield a non-negligible bias. We explored the impact of
matching imbalance on the performance of our estimators of causal effect modifiers. With a
larger matching imbalance, the bias and estimated and empirical standard deviations also in-
crease. When making treatment recommendations, a larger matching bias could degrade the
performance with a smaller AUC and a larger predicted error. However, adjusting the paired
differences (DM) in the model provides a more robust result in the presence of a larger match-
ing bias, and matching bias has a limited impact on the performance of our estimators. In the
literature, there are other methods that do not require matching, e.g., the method in Tian et al.
(2014). However, those methods are more complicated and less straightforward to interpret. Our
goal was to find an intuitive method to be used by practitioners to make personalized recommen-
dations for survival outcomes. Thus, we made the trade-off between some bias and the simplicity
of the method.
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In general, modeling the CATE on a composite of moderator candidates provides higher
precision and a more significant effect than exploring the moderator effect univariately. The
optimal MW estimator could achieve similar performance as the results of the AFT model with
prior knowledge of the error distribution. We also observe that even though the PH assumption
is violated, the Cox PH model is often robust enough to make treatment recommendations.

The proposed methods can also be adapted to scenarios with nonlinear effects. If only
the main effect exhibits nonlinearity, it will impact the estimation of the intercept θd but not
the moderator effect θmo, and our proposed methods remain valid. If both the main effect and
the interactions are nonlinear, the matching framework simplifies the detection of the nonlinear
pattern, as one can plot the residuals from a linear model versus a potential moderator. However,
interpreting a nonlinear moderation effect can be notably challenging. In practice, a dichotomized
moderator is often employed as a workaround.

One limitation of the MW estimator is that it fails to make precise treatment recommen-
dations with considerable noise, a common problem faced by traditional methods as well. The
other disadvantage of our MW framework is that it is subject to matching performance, where
the imbalance can be enormous in a high-dimensional setting. Therefore, future studies could
adopt high-dimensional matching methods with penalization methods like Lasso to extend the
MW framework to a high-dimensional setting. Nevertheless, the proposed methods provide a
straightforward and intuitive framework for practitioners to explore heterogeneous treatment
effects. More importantly, although we used an RCT study as our data example, the matching
framework is more useful for observational studies to draw any causal inference on CATE.

Supplementary Material
Some additional simulation results and a compressed folder with the code to simulate the settings
with 5 moderators (5M), implement our proposed methods, and some existing methods are
provided as the online Supplementary Material.
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