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Abstract

Obesity rates continue to exhibit an upward trajectory, particularly in the US, and is the un-
derlying cause of several comorbidities, including but not limited to high blood pressure, high
cholesterol, diabetes, heart disease, stroke, and cancers. To monitor obesity, body mass index
(BMI) and proportion body fat (PBF) are two commonly used measurements. Although BMI
and PBF changes over time in an individual’s lifespan and their relationship may also change
dynamically, existing work has mostly remained cross-sectional, or separately modeling BMI
and PBF. A combined longitudinal assessment is expected to be more effective in unravelling
their complex interplay. To mitigate this, we consider Bayesian cross-domain latent growth curve
models within a structural equation modeling framework, which simultaneously handles issues
such as individually varying time metrics, proportion data, and potential missing not at random
data for joint assessment of the longitudinal changes of BMI and PBF. Through simulation stud-
ies, we observe that our proposed models and estimation method yielded parameter estimates
with small bias and mean squared error in general, however, a mis-specified missing data mech-
anism may cause inaccurate and inefficient parameter estimates. Furthermore, we demonstrate
application of our method to a motivating longitudinal obesity study, controlling for both time-
invariant (such as, sex), and time-varying (such as diastolic and systolic blood pressure, biceps
skinfold, bioelectrical impedance, and waist circumference) covariates in separate models. Under
time-invariance, we observe that the initial BMI level and the rate of change in BMI influenced
PBF. However, in presence of time-varying covariates, only the initial BMI level influenced the
initial PBF. The added-on selection model estimation indicated that observations with higher
PBF values were less likely to be missing.

Keywords cross-domain latent growth curve model; individually varying time metrics;
missing data; obesity; proportion data

1 Introduction
Obesity is a growing problem worldwide. Although at its simplest, obesity results from people
consuming more calories than their bodies can burn, and seems preventable by changes in dietary
and physical activity patterns. However, the solution is much more complicated than “eating
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less and exercising more”. Current data indicate that the best diet (e.g., low-fat, or low carb)
varies across individuals, and exercise only helps 3% to 5% individuals with losing weight and
may introduce possible adverse effects (e.g., Makris and Foster, 2011; McQueen, 2009; Petridou
et al., 2019). Over the past 45 years, obesity rate for adults in the United States (U.S.) has
tripled from 12% to 36%; see World Health Organization report (WHO, 2017). Obesity is the
underlying cause of many diseases and comorbidities, including but not limited to high blood
pressure, high cholesterol, diabetes, heart disease, stroke, depresseion, anxiety, and even cancer.
Recent studies have also shown that obesity is associated with severe forms of the Coronavirus
Disease 2019 (COVID-19; e.g., Caussy et al., 2020; Samuels, 2020), and is second only to older
age as the main driver for people needing hospitalization due to COVID-19. The estimated
annual medical cost burden of obesity was $147 billion U.S. dollars (in 2018), with $1,429 higher
per-capita cost for the obese, compared to the normal weight.

To assess and monitor obesity, two important and popularly used biomarkers are the body
mass index (BMI), and proportion body fat (PBF), which also appear to be highly correlated
(Jelena et al., 2016; Nasr Eldeen et al., 2017). BMI is a numerical (continuous) measure, defined
as the ratio of the weight (in kilograms) to the square of the height (in meters2). It does not
distinguish between lean muscle and fat mass, often leading to confusion while categorizing
subjects who are fit with higher body weight, or who are not fit with lower weight. BMI also
does not account for gender, age, and ethnicity, and hence may not be equally valid for different
populations. On the other hand, PBF, defined as the ratio of the total fat mass to the total
body mass, is a proportion ∈ (0, 1), and the only body measurement which directly calculates
a subject’s relative body composition, without regards to height or weight. However, methods
used to quantify PBF are often expensive, or inaccurate (Wells and Fewtrell, 2006).

The relationship between BMI and PBF for adults has been earlier explored in various
studies (Deurenberg et al., 1991; Gallagher et al., 1996; Jackson et al., 2002) via linear prediction
formulas, controlling for age and sex/gender. For example, Deurenberg et al. (1991) proposed
the widely accepted empirical formula: PBF = (1.20 × BMI) + (0.23 × Age) − (10.8 × sex) − 5.4,
where Age is in years, and the binary indicator of sex is 1(0) for males (females). However, these
formulas have important limitations. For example, the Deurenberg et al. (1991) formula was
based on a cross-sectional study, where the effect of weight gain (and hence BMI) over time may
not be efficiently captured. Also, these formulas assumed a linear relationship between BMI and
PBF, whereas, controversy exists as to whether the relationship is in fact curvilinear/quadratic
(Dulloo et al., 2010; Ranasinghe et al., 2013; Ho-Pham et al., 2015). Moreover, the relationship
between BMI and PBF can be dynamic and time-varying, and thus, even a quadratic form may
not provide an accurate representation of the complex relationship.

Since obesity is a chronic disease and cannot be overcome quickly, longitudinal/repeated
measure studies appear as effective tools to help unravel the complex disease evolution over
time as captured by plausible endpoints (here, BMI and PBF), and its relationship to other
factors (covariates), factoring in within-subject association, and between-subject variations. In
that vein, Demerath et al. (2004) examined the effects of birth cohort and rate of maturation on
the timing and pattern of increases in BMI during adolescence in girls. The motivation of this
paper comes from the Fels (Roche, 1992) longitudinal study, which has been earlier considered
(Demerath et al., 2006; Guo et al., 1997, 1999; Sabo et al., 2012b; Sun et al., 2012) in the context
of modeling BMI and PBF. For example, Guo et al. (1997) investigated patterns of PBF changes
for 244 eight to twenty-year-old Caucasians using a cubic model with random intercepts and
slopes, and found that the pattern depended on gender and rate of maturation. Also, Guo et al.
(1999) fitted linear mixed-effects models for BMI and PBF, and found that physical activity was



118 Tong, X. et al.

associated with reduction in BMI and PBF for middle-aged men and increases in PBF among
women. Furthermore, Sun et al. (2012) examined secular trends (by birth decade) in BMI and
PBF for children and adolescents, separately, with polynomials of various orders specified to
model possible non-linear relationship of age. However, the above studies precludes modeling
the simultaneous complex evolution of the changes in BMI and PBF.

For a comprehensive understanding of the dynamics of BMI and PBF evolution, longitu-
dinal structural equation modeling, or SEM (Little, 2013) is often the method of choice. SEM
is a popular multivariate modeling technique in social, behavioral, and medical sciences, allow-
ing for testing complex theories by modeling manifest variables, latent variables and measure-
ment errors, simultaneously. Longitudinal SEM, in particular, considers multivariate modeling
of changes over time, and is used to answer lifespan relevant questions, such as the evaluation
of the average trajectory of endpoints, the variability between subjects, and what predicts this
variability. In this context, latent growth curve models (LGCM), based on the SEM framework,
is a powerful set of techniques that analyzes trends over time and the variations in changes
over time for study subjects, in terms of an underlying, latent, unobserved process (Duncan and
Duncan, 2004).

In this paper, we propose to use cross-domain LGCMs (Lee and Whittaker, 2018) to in-
vestigate how the changes in BMI affects the changes in PBF over time, in light of evaluating
obesity from the motivating Fels data (Roche, 1992). Specifically, we investigate factors such
as gender, waist circumference, blood pressure, etc (and their meaningful interpretation), that
influence the changes in BMI and PBF using longitudinal SEMs. The data presents various
technical challenges, such as modeling proportion data, handling individually varying time met-
rics, and missing data issues. The key contributions in this paper includes: (a) combining the
changes of BMI and PBF via one longitudinal SEM model and studying their interrelationships,
(b) handling non-ignorable missing data, i.e., missing-not-at-random, or MNAR (Enders, 2011)
within the cross-domain latent growth curve modeling, (c) introducing an added-on beta distri-
bution structure to the cross-domain LGCM to model continuous proportion data, and (d) using
a definition variable approach to account for the individually varying time metrics within the
SEM framework. For inference, we consider a Bayesian route powered by Markov chain Monte
Carlo (MCMC) techniques that incorporate prior information on model parameters, naturally
accommodates missing data specification, and factors in seamless uncertainty quantification at
every step of the model hierarchy to yield posterior parameter estimates within complex model
structures.

The rest of this paper is organized as follows. After a brief introduction to the Fels data
in Section 2, the statistical modeling outlined in Section 3 proposes the cross-domain LGCMs
to assess the changes in BMI and PBF domains simultaneously with a time invariant covariate
(in Study 1), and additional multiple time-varying covariates (in Study 2). Utilizing a Bayesian
paradigm, the proportion PBF responses were modeled as a beta density, with individually-
varying time metrics in the SEM handled via a definition variable approach, accounting for
missing data using added-on selection models. Next, Section 4 presents the results from the
model fits to the two studies. The finite-sample performances of our cross-domain LGCMs along
with robustness assessments in regards to missing data assumptions were evaluated in Section 5.
Finally, Section 6 concludes, pointing to plausible future research.
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2 Fels Data
Our motivating data in this paper was obtained from participants of the Fels longitudinal study,
the world’s largest and earliest longitudinal study of human growth and body composition
(Roche, 1992). Since 1929, more than 1600 subjects have been enrolled (predominantly Cau-
casian), with health characteristics measured at birth, 1, 3, 6, 9, and 12 months, then semi-
annually to 18 years, and biennially thereafter. Our current analytical sample consists of data
collected on and after August 1976 (when PBF was actually measured) till June 2010 for par-
ticipants with at least two responses (for both BMI and PBF), which reduced our analytical
sample to 431 female and 395 male subjects, with 4876 total observations. Subjects were mea-
sured between 2 to 15 times (average = 5.9; standard deviation = 3.25). Across all observations,
the mean age is 29.52 with a minimum of 6.004 and a maximum of 84.827. Along with BMI
and PBF, various other health status indicators are available, which includes diastolic blood
pressure (DBP), systolic blood pressure (SBP), biceps skinfold (Bicep), bioelectrical impedance
(BCimp), and waist circumference (waist). The PBF variable has 175 missing observations.

As discussed in Section 1, the change patterns of BMI and PBF from cross-sectional studies
were not consistent (can be linear, or curvillinear). Although there exist studies analyzing the
longitudinal trajectories of BMI and PBF, separately, there is no research investigating the
longitudinal relationship between their change patterns. The Fels data allow us to perform a
systematic longitudinal study to investigate such relationship, and potential factors that may
influence the relationship.

3 Statistical Models
In this section, we outline our statistical modeling in light of the aforementioned two studies.
Based on published literature (Deurenberg et al., 1991; Jackson et al., 2002) which suggests BMI
and PBF trajectories are dependent on sex and age, we consider sex as a time-invariant covariate,
and age as the time variable in our cross-domain LGCM in Study 1. Also, following previous
research (Sabo et al., 2012b; Ho-Pham et al., 2015) which suggests considering the effects of other
factors, we modify Study 1 to further control for additional available time-varying covariates,
such as DBP, SBP, Bicep, BCimp, and waist, to investigate the changes of BMI and PBF over
time in Study 2.

3.1 Study 1: Cross-domain LGCMs with a Time Invariant Covariate

Exploratory modeling: Before we fit a cross-domain LGCM, determining an appropriate form
of the growth curves for each domain (i.e., BMI and PBF) is necessary. Patterns of changes over
time in BMI and PBF for subjects enrolled in the Fels study were modeled earlier using low-
degree polynomial functions, such as linear, quadratic and cubic functions (e.g., Guo et al.,
1997, 1999; Sabo et al., 2012a; Sun et al., 2012). Hence, we initially compare a series of LGCMs
for each domain separately. By comparing the model fit and estimation results, we determine
the form of growth curves for these two domains, and use those forms in our subsequent cross-
domain analysis. For each domain, linear, quadratic and cubic growth curve models were fitted
to the data, with age as the time-varying and sex as a time-invariant covariate. The models were
estimated using the popular Bayesian software JAGS (Plummer, 2003). Model fit was evaluated
using the widely applicable information criterion (or, Watanabe–Akaike information criterion,
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Table 1: WAIC and LOO values corresponding to the linear, quadratic, and cubic separate-
domain LGCMs models fitted to the BMI and PBF responses in the Fels data. Entries corre-
sponding to the PBF for the cubic LGCM are absent (−), due to model non-convergence.

BMI PBF

WAIC LOO WAIC LOO
Linear LGCM 17708.2 17975.5 −13772.1 −13499.9
Quadratic LGCM 17032.0 17602.6 −13907.6 −13176.5
Cubic LGCM 16348.6 17315.4 – –

WAIC), and the leave-one-out cross-validation, LOO (Vehtari et al., 2017; Watanabe, 2010).
The two fit criteria were computed using the loo package (Vehtari et al., 2019) in R.

Table 1 presents the WAIC and LOO values corresponding to the 3 model fits (linear,
quadratic and cubic LGCMs), with the corresponding parameter estimates appearing in Ta-
bles A.1–A.3 in Web Supplement A, respectively. For BMI, both criteria preferred the cubic
model. However, after further examining parameter estimates from the cubic LGCM, we ob-
served that the posterior (mean) estimates for the quadratic and cubic terms were ≈ 0(< 0.01)

and non-significant, the variances of the two terms were also very small, and the correlations
between cubic term and other random variables were not significant, too, indicating that there
is minimal quantifiable inter-individual differences revealed from the quadratic and cubic terms,
and they are not interrelated. Thus, it is reasonable to infer that the quadratic and cubic terms
are not necessary in the model. Furthermore, we fitted individual growth curves to each individ-
ual. Overall, the linear form of growth trajectories fitted BMI scores reasonably well with the
average R-squared being 0.67.

For the PBF response, we considered a LGCM under a Beta regression framework (Ferrari
and Cribari-Neto, 2004; Bandyopadhyay et al., 2017), popularly used for modeling proportion
responses, with a common precision parameter for all subjects. The cubic model did not converge
even after 100,000 iterations. WAIC preferred the quadratic model, while LOO preferred the
linear LGCM. Although WAIC is asymptotically equal to LOO, LOO is more robust in the
finite sample cases (Vehtari et al., 2017). Hence, we rely on the suggestions from LOO. Similarly
as above, the posterior mean estimates of the quadratic terms were ≈ 0 (< 0.01), and non-
significant. Hence, we posit the linear LGCM as the most desirable for modeling PBF.

Cross-domain modeling: We thus select linear LGCMs for both BMI and PBF, and the linear
form will be used in subsequent cross-domain analysis. The main structural part of the cross-
domain LGCM is presented in Figure 1. Controlling for sex, we are interested in how the latent
intercept IB of BMI influences the latent intercept IP and slope SP for PBF, and whether and
how the latent slope SB of BMI affects the latent slope SP of PBF.

To fit such a cross-domain LGCM to the Fels data, we encounter three major challenges.
First, typical to most observational data, subjects in our analytical dataset have unique time-
profiles, measured at varying time points with varying intervals. Handling individually-varying
time metrics within the SEM framework is not straightforward. To circumvent this, we propose
to use definition variables (Mehta and Neale, 2005), i.e., observed variables used to fix model
parameters to individual specific data values, such that the factor loading matrix in SEM will
be converted based on the definition variables, instead of the varying time points. Second, PBF
responses are proportion data ∈ (0, 1), where traditional normality-based linear mixed models
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Figure 1: Path diagram of a cross-domain latent growth curve model, illustrating the association
between BMI and PBF for subject i. Here, BMIti and PBFti denote the respective BMI and
PBF measures at time ti , with (IB, SB) and (IP , SP ), the respective latent (intercept, slope)
combinations.

may not provide accurate and precise parameter estimates. Hence, we employ beta regression
(Bandyopadhyay et al., 2017), and introduce an added-on structure to the SEM models. Third,
missing responses, a commonplace within the Fels database, have been previously handled via
listwise deletion, full-information-maximum likelihood estimation (FIML), or multiple imputa-
tion (MI) methods (Guo et al., 1997, 1999; Nahhas et al., 2010; Sun et al., 2012), under missing
completely at random (MCAR), or missing at random (MAR) assumptions. Both FIML and MI
can provide accurate parameter estimates when data are MCAR or MAR. However, it is reason-
able to assume that study subjects with higher obesity status may also have higher likelihood of
attrition (being too ill to participate), leading to the missing not at random (MNAR) scenario,
where there is a quantifiable relationship between the outcome variable and the propensity for
missing data (Enders, 2011), even after controlling for possible correlates of missingness. There-
fore, we propose to use selection models (Gomes et al., 2020) with a logit link function to model
the missing data indicator within our SEM framework to obtain reasonable interpretations of
the missingness. In the following, we describe our modeling framework.

Let yi = (yi1, . . . , yiTi
)′ be a Ti × 1 vector of observed PBF scores for individual i, where

yit is the observation for this individual at time t with i = 1, . . . , N and t = 1, . . . , Ti . Here,
N is the sample size, and Ti is the total number of measured occasions for individual i. In the
BMI domain, let zi = (zi1, . . . , ziTi

)′ be a Ti × 1 vector of observed BMI scores for individual i,
where zit is the observation for this individual at time t with i = 1, . . . , N and t = 1, . . . , Ti . For
modeling the proportion PBF scores yi , we consider a beta distribution,

yit ∼ Beta(μitφi, (1 − μit )φi), (1)

with the hyperparameters μitφi and (1 − μit )φi , respectively, such that

E(yit ) = μitφi

μitφi + (1 − μit )φi

= μit ,
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and
V ar(yit ) = μitφi(1 − μit )φi

(μitφi + (1 − μit )φi)2(μitφi + (1 − μit )φi + 1)
= μit (1 − μit )

φi + 1
.

Here, φi can be interpreted as a precision parameter. For a fixed μit , a larger value of φi

implies smaller variance of yit . Since μit ∈ (0, 1), we conveniently use a logit link, such that

logit(μit ) = �it ·bi , (2)

where �it · is the t-th row of the �i , a Ti × q factor loading matrix (q is the number of growth
factors) determining the shape of the growth trajectories, and bi is a q × 1 vector of factor
scores for individual i. The precision parameter φi can be modeled by a gamma distribution,
Gamma(d1, d2). With the augmented structure in equations 1-2, the cross-domain LGCM can
be expressed as

yit ∼ Beta(μitφi, (1 − μit )φi),

logit(μit ) = �it ·bi ,

bi = �ci + Xiβ + ζi , (3)
zi = �ici + ui ,

ci = γ + ξi ,

where β = (βIP
, βSP

)′ is the fixed effects for PBF (βIP
and βSP

are averages of the latent intercepts
IP i and latent slopes SPi , respectively) and ζi represents the random components in the random
effects bi . Further, �i is a Ti × l factor loading matrix determining the shape of the growth
trajectories for the BMI scores (l is the number of growth factors), ci is a l × 1 vector of factor
scores for individual i, ui is a vector of intra-individual measurement errors, γ = (γIB

, γSB))
′ is

the fixed effects for BMI (γIP
and γSP

are averages of the latent intercepts IBi and latent slopes
SBi , respectively), and ξi is the random components in the factor score ci . The q × l matrix �

quantifies the association between the two domains (i.e., PBF and BMI). Since we have selected
the linear LGCMs to model the changes in PBF and BMI, q = l = 2. The vectors ζi , ui , and ξi

follow multivariate normal distributions, with mean 0, and covariance matrices �ζ , �u, and �ξ ,
respectively.

For handling individually-varying time metrics in this SEM, we resort to definition variables
(Mehta and Neale, 2005). In the definition variable approach, the �i and �i matrices do not
contain fixed values (e.g., 0, 1, 2, 3), but values based on the definition variables. For example,
if there are four measurement occasions for individual i and we track a linear change pattern of
yi against age, the �i matrix is then specified as

�i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
agei1 − k1

k2

1
agei2 − k1

k2

1
agei3 − k1

k2

1
agei4 − k1

k2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, the first column defines the intercept and the second defines the linear age-based slope.
The variables ageij , j = 1, . . . , 4, are the definition variables, and represent the age of individual
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i at the measurement occasions, while k1 and k2 are constants to center the intercept and scale
the slope, respectively. In this study, we centered age at the mean age 29.52, which yielded
k1 = 29.52. So, the intercept will represent predicted PBF or BMI scores at this age. The
constant k2 scales the slope according to the chosen time metric. In our data, age was measured
in years. Hence, we did not need to rescale age, and thus set k2 = 1. Based on this specification,
the factor loading matrix �i varies across individuals. The �i matrix can be specified in the
same way using definition variables, such that it also varies across individuals.

In practice, the cross-domain LGCM given by the set of equations (3) can be simpli-
fied by letting the precision parameter φi to be constant across individuals, such that yit ∼
Beta(μitφ, (1 − μit )φ). We denote this simplified cross-domain growth curve model with a com-
mon precision parameter as Com-CLGCM, and the previous cross-domain growth curve model
with individually varying precision parameters as Ind-CLGCM.

Handling missing data: Rubin (1976) distinguished three missing data mechanisms based on
the process that gives rise to the missing data. They are missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR), respectively. MCAR and MAR
data are called ignorable missing data because the missingness is independent of other variables,
or related to only observed variables so the missingness can be ignored or explained. MNAR
data are non-ignorable because the missingness is related to unobserved factors that influence
the outcomes. Different missing data analytical methods should be applied accordingly to obtain
reliable parameter estimates.

When data are ignorably missing, multiple imputation method (MI) can be easily applied
in the Bayesian framework. Given the distribution of the missing values, Markov Chain Monte
Carlo (MCMC) methods are used to iteratively impute estimates of the missing values. If missing
values appear in the independent variables, we need to assume the distribution of them. When
missing values only appear in the outcomes (like what we have in the Fels data), since the
distribution of the outcomes are provided by the model, MI can be automatically applied.

When data are non-ignorable (e.g., our assumed MNAR specification as described earlier),
joint models (Ibrahim et al., 2005) are often employed for parameter estimation to account for
the unobserved factors that explain the missingness. Selection models (Kenward, 1998) are a
type of joint models that focus on modeling the joint distribution of the outcome variable and
the missingness indicator. Let Rit be the missingness indicator, such that Rit = 1 if yit is missing
and Rit = 0 otherwise. A possible model could be

logit(Pr(yit is missing)) = logit(Pr(Rit = 1)) = α0 + α1yi(t−1) + α2yit . (4)

Diggle and Kenward (1994) introduced this selection model for longitudinal analysis of non-
ignorable missing data. The probability of missingness at time t depends on the outcome variables
at the previous time point (t − 1) and the current time t . If the model is correctly specified, a
significant α1 implies MAR missingness, while a significant α2 points to the MNAR scenario. If α1

and α2 are not significant, it may indicate that missingness is MCAR. Note that different forms
of selection models are available in the literature. For example, the probability of missingness
can be modeled as a function of the latent factors and auxiliary variables (Enders, 2011; Wu
and Carroll, 1988). We use the model in Equation 4 because it can easily accommodate varying
probabilities of missingness to individually-varying observation times in the Fels data.

By combining equations 3–4, we are able to model longitudinal proportion data with individ-
ually varying time metrics and non-ignorable missing values. We use Ind-CLGCM-Selection to
represent the cross-domain growth curve model with individually-varying precision parameters
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and an added-on selection structure. We use Com-CLGCM-Selection to represent the cross-
domain growth curve model with a common precision parameter and an added-on selection
structure.

In sum, for Study 1, we fit and compare the performances of the four models, (a) Ind-
CLGCM, (b) Com-CLGCM, (c) Ind-CLGCM-Selection, and (d) Com-CLGCM-Selection, in the
context of the Fels data. While Ind-CLGCM and Com-CLGCM can automatically handle ignor-
able missing data (i.e., MCAR and MAR data) within our Bayesian framework, the Ind-CLGCM-
Selection and Com-CLGCM-Selection models are expected to also handle non-ignorable data
(i.e., MNAR data).

With regards to prior specifications in Study 1, we used weakly informative priors for
fixed effect parameters (β and γ ) and parameters for the structural component �, such as
β ∼ N(0, 103) for β ∈ β, γ ∼ N(0, 103) for γ ∈ γ , and θ ∼ N(0, 103) for θ ∈ �. Inverse Wishart
priors were used for �ζ and �ξ , such that �ζ ∼ IW(2, I2) and �ξ ∼ IW(2, I2), where I2 is a
2 × 2 identity matrix. For the residual variance of ui , we typically assumed �u = σ 2

u I and used
an inverse gamma prior InvGamma(0.001, 0.001) for σ 2

u . For the coefficients in the added-on
selection structure, we used priors αi ∼ N(0, 103) for i = 0, 1, 2. For the Com-CLGCM and
Com-CLGCM-Selection models, we set prior φ ∼ Gamma(0.1, 0.01). For the Ind-CLGCM and
Ind-CLGCM-Selection models, priors of φi was set as φi ∼ Gamma(6, 0.1). Bayesian software
JAGS was used for data analysis. The length of the Markov chains was set at 60,000, with the
first 30,000 iterations discarded as the burn-in. Model convergence was evaluated using Geweke’s
test (Geweke, 1991)

Besides WAIC and LOO, we also assessed the adequacy of model fit using posterior predic-
tive checking (Gelman et al., 1996). Posterior predictive p (PP p) values based on a fit statistic
T (·) were computed. Let T (y, θ (m)) be the test statistic computed for data y with parameter
values at the mth iteration in the MCMC procedure. At each iteration, we generate a replicated
data yrep from the same hypothetical model based on θ (m). We then compute the fit statistic for
both y and yrep. The PP p value can be approximated by the proportion of iterations where
T (y, θ (m)) < T (yrep, θ (m)). When the model is true, the replicated data generated from the model
should be similar to the original sample. Thus, about 50% of the time a fit statistics based on the
original sample will be smaller than that based on the replicated data, meaning that a perfect
fit should have a PP p value of 0.5. An extreme PP p value close to 0 or 1 indicates poor fit.
For SEM analysis, it is reasonable to use a cut-off value of 0.05 to reject poor fitting models
(Muthén and Asparouhov, 2012). In our study, we used the mean of PBF as the fit statistic for
computing PP p values.

3.2 Study 2: Cross-domain LGCMs with Additional Time-varying Covariates

Only a few studies have considered the effects of factors other than age and sex, such as blood
pressure and waist circumference (e.g., Ho-Pham et al., 2015; Sabo et al., 2012b), on the longitu-
dinal changes of BMI and PBF. Hence, in Study 2, we further control for time varying covariates
(mentioned in Section 2), abbreviated as DBP, SBP, Bicep, BCimp, and waist, to quantify the
relationship between BMI and PBF. After prior standardization of the time-varying covariates,
we first determined the change patterns of BMI and PBF, separately, in presence of these co-
variates in the model. Again, after comparing linear, quadratic, and cubic growth curve models,
we selected linear models for both BMI and PBF because the linear models fitted the data
well, are parsimonious and are more interpretable. Similar to Study 1, model comparison using
WAIC and LOO appear in Table B.1 (see, Web-supplement B), with parameter estimates cor-
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responding to the linear, quadratic and cubic fits appear in Tables B.2-B.4, respectively (also,
in Web-Supplement B).

Similar to Study 1, we modified the conventional cross-domain LGCM to accommodate
individually varying time metrics and proportion outcomes. Our model is as follows:

yit ∼ Beta(μitφi, (1 − μit )φi),

logit(μit ) = b0i + b1itimeit + ν1BPit + ν2Bicepit + ν3BCimpit + ν4waistit ,

b0i = θII c0i + β00 + β01sexi + ζ0i , (5)
b1i = θISc0i + θSSc1i + β10 + β11sexi + ζ1i ,

zit = c0i + c1itimeit + τ1BPit + τ2Bicepit + τ3BCimpit + τ4waistit + uit ,

c0i = γ00 + γ01sexi + ξ0i ,

c1i = γ10 + γ11sexi + ξ1i ,

where uit ∼ N(0, σ 2
u ), (ζ0i , ζ1i)

′ ∼ MN(0, �ζ ), (ξ0i , ξ1i )
′ ∼ MN(0, �ξ ), φi ∼ Gamma(d1, d2), and

MN(.,.) denotes the multivariate normal distribution. In Equations 5, BPit represents the blood
pressure for individual i at time t . It is a latent variable and is indicated by diastolic blood
pressure (DBP) and systolic blood pressure (SBP), as

DBPit = λBPit + e1it , e1it ∼ N(0, σ 2
e ),

SBPit = BPit + e2it , e2it ∼ N(0, σ 2
e ),

BPit ∼ N(0, σ 2
BP ).

DBP and SBP were not directly included in Equations 5 since they are highly correlated
(cor=.67). By introducing the latent BP variable, the multicollinarity problem can be avoided.
As in Study 1, we denote the above model as Ind-CLGCM. This model can be simplified by
letting φi be a constant φ across individuals. We denote the cross-domain LGCM with a common
precision parameter as Com-CLGCM.

The added-on selection structure can be incorporated into Ind-CLGCM and Com-CLGCM
to model non-ignorable missing data as follows:

logit(Pr(Rit = 1)) = α0 + α1yi(t−1) + α2yit . (6)

By adding Equation 6 to Ind-CLGCM, we build the Ind-CLGCM-Selection model, and by adding
Equation 6 to Com-CLGCM, we build the Com-CLGCM-Selection model. The performance of
the four models is evaluated based on model selection criteria and parameter estimation results.

In order to conduct a Bayesian analysis, prior distributions for unknown parameters need to
be specified. In Study 2, similar to Study 1, for the fixed effect parameters β = {β00, β01, β10, β11},
γ = {γ00, γ01, γ10, γ11}, ν = {ν1, ν2, ν3, ν4}, τ = {τ1, τ2, τ3, τ4} and parameters for the structural
component θ = {θII , θIS, θSS}, we used weakly informative priors, such as β ∼ N(0, 103) for
β ∈ β, γ ∼ N(0, 103) for γ ∈ γ , ν ∼ N(0, 103) for ν ∈ ν, τ ∼ N(0, 103) for τ ∈ τ , and
θ ∼ N(0, 103) for θ ∈ θ . For latent BP, prior distributions were specified as λ ∼ N(0, 102),
σ 2

e ∼ InvGamma(0.001, 0.001), and σ 2
BP ∼ InvGamma(0.001, 0.001). Inverse Wishart priors

were used for �ζ and �ξ , such as �ζ ∼ IW(2, I2) and �ξ ∼ IW(2, I2), where I2 is a 2 × 2
identity matrix. For the residual variance of zit , an inverse gamma distributed prior was used,
σ 2

u ∼ InvGamma(0.001, 0.001). For the coefficients in the added-on selection structure, priors
were set as αi ∼ N(0, 103) for i = 0, 1, 2. Additionally, we set φ ∼ Gamma(0.1, 0.01) for the Com-
CLGCM and Com-CLGCM-Selection models, and φi ∼ Gamma(6, 0.1) for the Ind-CLGCM and
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Table 2: Model fit for the four cross-domain linear growth curve models in Study 1.

WAIC LOO PP p

Com-CLGCM 3838.4 4389.9 0.733
Ind-CLGCM 3443.9 4082.6 0.161
Com-CLGCM-Selection 3825.6 4354.9 0.739
Ind-CLGCM-Selection 3433.2 4048.1 0.163

Ind-CLGCM-Selection models. Again, the length of the Markov chains was set at 60,000, with
the first 30,000 iterations discarded as the burn-in period. Model convergence was evaluated
using Geweke’s test. PP p values were also calculated for model assessment.

4 Application: Fels Data
4.1 Study 1
The four models (Com-CLGCM, Ind-CLGCM, Com-CLGCM-Selection and Ind-CLGCM-Selec-
tion) were fitted to the Fels data and their model fit information was summarized in Table 2. PP
p values were all above 0.05, indicating that there were no concern with model fit. Both WAIC
and LOO suggested that models with individually varying precision parameters (Ind-CLGCM
and Ind-LCLGCM-Selection) fit data better than the models with a common precision parameter
(Com-CLGCM and Com-CLGCM-Selection). We would like to note that although WAIC and
LOO values for Ind-CLGCM-Selection model are the smallest, they cannot be directly compared
with those values for Ind-CLGCM model. This is because when an added-on selection model is
used, missing data indicator variables are created and included in the data. Therefore, models
with the selection structure (Com-CLGCM-Selection and Ind-CLGCM-Selection) and models
without the selection structure (Com-CLGCM and Ind-CLGCM) use different data, and thus
WAIC and LOO for those two sets of models are not comparable. Based on Table 2, we may
either select the Ind-CLGCM, or the Ind-CLGCM-Selection model. We conduct a simulation
study in Section 5 to evaluate the robustness of Ind-CLGCM and Ind-CLGCM-Selection models
against different types of missing data.

Table 3 summarizes the parameter estimation from the posterior distributions for the four
models. Convergence was assessed using Geweke’s test (Geweke, 1991). We observe no issues with
convergences. The results from the models with a common precision parameter were slightly
different from those with individually varying precision parameters, especially in the domain
of PBF. Because both WAIC and LOO selected Ind-CLGCM model or Ind-CLGCM-Selection
model, we focused on these two models henceforth. The results were similar from the Ind-
CLGCM and Ind-CLGCM-Selection models, implying that the selection model did not add any
additional information to interpret the cause of missingness. This indicated that MI probably
can handle the missing data well. However, since there was a negative association between an
observation and the probability of the observation to be missing (α̂2), we may infer that the
missing data mechanism underlying Fels data is MNAR, and rely more on the results from the
Ind-CLGCM-Selection model. Hence, we interpret results from the Ind-CLGCM-Selection model
below. The interpretation can be applied to the solution from Ind-CLGCM model as well. The
parameter estimates for each domain (BMI and PBF) were similar to the results in separate
growth curve modeling for the two domains, respectively. Both PBF and BMI tended to increase
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Table 3: Summaries of the parameter estimates for the four cross-domain LGCMs fitted to the
Fels data in Study 1. Values followed by an asterisk (*) imply the 95% credible intervals do not
include 0.

Parameter Com-CLGCM Ind-CLGCM Com-CLGCM-
Selection

Ind-CLGCM-
Selection

Fixed effects (PBF)

I Intercept β00 −1.423* −1.403* −1.424* −1.402*
Sex β01 0.702* 0.683* 0.703* 0.678*

Time Intercept β10 0.024* 0.024* 0.024* 0.024*
Sex β11 0.002 0.001 0.002 0.001

Fixed effects (BMI)

I Intercept γ00 25.632* 25.619* 25.627* 25.635*
Sex γ01 −0.534 −0.537 −0.525 −0.559

Time Intercept γ10 0.353* 0.353* 0.352* 0.354*
Sex γ11 −0.029 −0.029 −0.028 −0.031

Structural part

IBMI to IPBF θII 0.062* 0.061* 0.061* 0.060*
IBMI to SPBF θIS −0.002* −0.002* −0.002* −0.002*
SBMI to SPBF θSS 0.072* 0.070* 0.073* 0.070*

Random effects

Var(ζ0i) �ζ (1, 1) 0.052* 0.042* 0.053* 0.041*
Var(ζ1i) �ζ (2, 2) 0.002* 0.002* 0.002* 0.002*
Cov(ζ0i , ζ1i) �ζ (1, 2) 0.000 0.000 0.000 0.000
Cor(ζ0i , ζ1i) 0.019 0.005 0.021 0.005
Var(ξ0i) �ξ (1, 1) 38.339* 38.250* 38.253* 38.135*
Var(ξ1i) �ξ (2, 2) 0.085* 0.085* 0.085* 0.084*
Cov(ξ0i , ξ1i) �ξ (1, 2) 1.442* 1.434* 1.438* 1.429*
Cor(ξ0i , ξ1i) 0.798* 0.798* 0.798* 0.798*
Precision φ 60.516* – 60.504* –
Residual σ 2

u 1.658* 1.658* 1.660* 1.660*

Added-on selection structure

Intercept α0 – – −2.601* −2.612*
yi(t−1) α1 – – 0.842 0.830
yit α2 – – −3.565* −3.555*

as age increased. For PBF, female groups tended to have higher values than the male groups
when age was 29.52 (at the mean age), but the slope difference between females and males were
not significantly different from zero. For BMI, the effect of sex was not detected for both the
initial level and the rate of change. The structural component parameter estimates indicated
that (1) the initial state of BMI had positive effects on the initial state of PBF and negative
effect on the rate of change for PBF; and (2) the slope of BMI had positive effects on the slope
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Table 4: Model fit for the four cross-domain linear growth curve models in Study 2.

WAIC LOO PP p

Com-CLGCM −4441.5 −3964.8 0.745
Ind-CLGCM −4633.2 −4106.0 0.093
Com-CLGCM-Selection −4450.9 −3998.7 0.742
Ind-CLGCM-Selection −4644.4 −4124.6 0.093

of PBF. The parameter estimates for the added-on selection structure (α0, α1, and α2) imply
that the probability of an observation to be missing is likely to be lower for a participant with
a higher PBF score at the time of observation. The variances-covariance components suggested
that both intercepts and slopes of PBF and BMI varied across subjects. The intercept and slope
appeared to be highly correlated for BMI (correlation = 0.798), but the intercept and slope for
PBF did not appear to be correlated.

4.2 Study 2

Similar to Study 1, the four models were fitted to the data. PP p values suggested all mod-
els had an adequate fit. Both WAIC and LOO suggested that cross-domain GCMs with in-
dividually varying precision parameters fit the data better (see Table 4). Table 5 summa-
rizes parameter estimates from the four cross-domain growth curve models. Again, models
with a common precision parameter provided slightly different results from the correspond-
ing ones with individually varying precision parameters. However, the estimation results from
models with or without the added-on selection structure are similar. We report results from
the Ind-CLGCM-Selection model below. Same conclusion can be drawn based on Ind-CLGCM
model.

Controlling for the time-varying covariates, PBF tended to increase as age increased for
both males and females, and BMI appeared to increase only for females. Females tended to
have higher PBF and BMI at age 29.52 than males when the covariates were controlled. One
standard deviation increase in BP led PBF to decrease, and one standard deviation increase
in Bicep, BCimp, and Waist led PBF to increase. For BMI, one standard deviation increase in
BCimp led to decreasing BMI, and one standard deviation increase in BP, Bicep, and Waist led
to increasing BMI. Once the time-varying covariates were controlled, the structural component
parameter estimates showed that only the initial state of BMI influence the initial state of
PBF. The parameter estimates for the added-on selection model (α0, α1, and α2) show that the
probability of an observation to be missing is more likely to be lower for a participant with a
higher PBF score at the time of observation. After controlling for the time-varying covariates,
the variance of intercept for BMI and PBF decreased compared to the variances in Study 1. The
intercept and slope for BMI were strongly correlated (correlation = 0.55), but the correlation
was not significant for PBF.

Overall, inclusion of more time-varying covariates in Study 2 led to several changes from
Study 1. First, the variance of the intercept for PBF and BMI noticeably decreased after in-
cluding the covariates. The variance of the intercept for BMI, in particular, decreased from 38
to 2.5 (approximately 93% decrease), indicating that the covariates explained a major portion
of the variance in BMI. Second, the parameter estimates for the structural component became
non-significant, except for θII . This result indicates that PBF and BMI values at age 29.52 are
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Table 5: Summaries of the parameter estimates for the four cross-domain LGCMs fitted to the
Fels data in Study 2. Values followed by an asterisk (*) imply the 95% credible intervals do not
include 0.

Parameter Com-CLGCM Ind-CLGCM Com-CLGCM-
Selection

Ind-CLGCM-
Selection

Fixed effects (PBF)

I Intercept β00 −1.349* −1.325* −1.349* −1.321*
Sex β01 0.440* 0.414* 0.439* 0.408*
BP ν1 −0.019 −0.014 −0.019 −0.014
Bicep ν2 0.117* 0.114* 0.116* 0.114*
BCimped ν3 0.169* 0.173* 0.169* 0.174*
Waist ν4 0.343* 0.338* 0.342* 0.337*

Time Intercept β10 0.005* 0.005* 0.005* 0.006*
Sex β11 0.000 0.000 0.000 0.000

Fixed effects (BMI)

I Intercept γ00 22.724* 22.720* 22.722* 22.721*
Sex γ01 0.978* 0.981* 0.980* 0.979*
BP τ1 0.176* 0.177* 0.176* 0.177*
Bicep τ2 0.915* 0.914* 0.915* 0.912*
BCimped τ3 −0.827* −0.827* −0.828* −0.826*
Waist τ4 3.711* 3.711* 3.712* 3.714*

Time Intercept γ10 −0.007 −0.007 −0.007 −0.008
Sex γ11 0.016* 0.016* 0.016* 0.016*

BP DBP λ 1.001* 1.001* 1.001* 1.002*
Residual σ 2

e 0.327* 0.327* 0.327* 0.327*
Var(BP) σ 2

BP 0.673* 0.673* 0.673* 0.673*

Structural part

IBMI to IPBF θII 0.042* 0.045* 0.042* 0.045*
IBMI to SPBF θIS −0.002 −0.002 −0.002 −0.002
SBMI to SPBF θSS 0.045 0.046 0.045 0.046

Random effects

Var(ζ0i) �ζ (1, 1) 0.040* 0.027* 0.040* 0.027*
Var(ζ1i) �ζ (2, 2) 0.002* 0.002* 0.002* 0.002*
Cov(ζ0i , ζ1i) �ζ (1, 2) 0.000 0.000 0.000 0.000
Cor(ζ0i , ζ1i) 0.005 −0.009 0.006 −0.010
Var(ξ0i) �ξ (1, 1) 2.475* 2.482* 2.472* 2.481*
Var(ξ1i) �ξ (2, 2) 0.007* 0.007* 0.007* 0.007*
Cov(ξ0i , ξ1i) �ξ (1, 2) 0.072* 0.073* 0.072* 0.073*
Cor(ξ0i , ξ1i) 0.554* 0.554* 0.554* 0.555*
Precision φ 71.942* – 71.925* –
Residual σ 2

u 0.370* 0.369* 0.370* 0.369*

Added-on selection structure

Intercept α0 – – −2.776* −2.777*
yi(t−1) α1 – – 0.155 0.183
yit α2 – – −2.255* −2.284
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still correlated, after controlling for the four covariates, and the other relationships that were
significant in Study 1 (θIS and θSS) may be due to the four covariates that were not controlled
in Study 1. Finally, the effect of sex on intercept and slope became significant for BMI after
inclusion of the four covariates, which is consistent with previous studies on BMI in that males
and females are known to have different BMI growth patterns (Sabo et al., 2012a; Demerath
et al., 2006; Guo et al., 1999).

5 Simulation Study
In this section, we conduct a simulation study to evaluate the numerical performance of the
proposed cross-domain LGCMs and the robustness of the models, in light of handling ignorable
and non-ignorable missing data.

The data generation mimics the Fels setup. We included one time-varying covariate, with
values generated independently from N(0, 1) and one time-invariant covariate, with values drawn
from a Bernoulli distribution with probability 0.5, which resembles the sex variable in the Fels
data. The fixed effects for y were set as β00 = −3.5, β01 = 1, β10 = 0.02, β11 = 0.005, and
ν = 0.5. The fixed effects for z were set as γ00 = 22, γ01 = 1, γ10 = 0.3, γ11 = −0.02, and τ = 1.
For simplicity, we assumed that all individuals were measured at a common set of occasions,
but the total number of measurements were allowed to vary by assuming Ti ∼ Poisson(6), where
Ti is the number of measurement occasions for individual i. The parameters for the structural
component were fixed at (θII , θIS, θSS)

′ = (0.1, 0, 0.05)′, while those of the individually varying
precision parameter values were generated from φi ∼ Gamma(8, 0.1), with the residual variance
for BMI fixed at σ 2

u = 2. Covariance matrices for y and z were set to be

�ζ =
(

0.05 0
0 0.002

)
and �ξ =

(
3 0.1

0.1 0.01

)
,

respectively.
Sample sizes were set to N = 400, 800, with missing data generated under both MAR and

MNAR conditions, and missingness rate set to 5% and 15%. Missing data were generated for
y only (covariate missingness not considered). The minimum number of observations for each
individual was set to be 3 and the maximum number of missing observations for each subject
was set to 6 to prevent observations from being dominated by missing values and to generate
simulated data similar to the Fels data. For the MAR simulation, missing values on y were
dependent on values of z in that high values on z has the highest likelihood of missing on y.
The MNAR simulation depended the values on y itself. For each observation, the probability of
missing on yit was generated using the following equation: logit(Pr(Rit = 1|ζ )) = α0 + α1yi(t−1) +
α2yit , with (α0, α1, α2)

′ = (2, 0, −7)′, which implies that a higher value on yit is related to a lower
probability of missing on yit . For each condition, we simulated 500 datasets. For each dataset,
we obtain parameter estimates from the Ind-CLGCM and Ind-CLGCM-Selection models via
MCMC sampling, using 100,000 total iterations, with the first 50,000 discarded as burn-in.
Convergence was evaluated using the Geweke’s test (Geweke, 1991). Associated R/JAGS scripts
for model implementation using simulated data are available at the GitHub link: https://github.
com/bandyopd/GCM; see Web Supplement C.

Estimation bias and mean squared error (MSE) for each parameter were used to evaluate
and compare the performance of the four models. Let ω denote a parameter, and ω̂l denote its
estimate from the lth simulation replication, l = 1, . . . , L. Then, the parameter estimate of ω,

https://github.com/bandyopd/GCM
https://github.com/bandyopd/GCM
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Figure 2: Averaged absolute bias and MSE for all parameters from the CLGCM and CLGCM-
selection models for varying sample sizes, missing data mechanisms, and proportions of missing-
ness.

ω̂, is calculated as the average of parameter estimates of L replications, given by

ω̂ = 1

L

∑
l

ω̂l .

The bias of ω̂ is bias(ω̂) = ω̂ − ω. The empirical standard error given as

ESE(ω̂) =
√

1

L − 1

∑
l

(
ω̂l − ω̂

)2
.

Then, the mean squared error is calculated as MSE(ω̂) = (bias(ω̂))2 +(ESE(ω̂))2. A smaller MSE
indicates a more accurate and precise estimator.

The results from this study are summarized in Figure 2, comparing the performances of
Ind-CLGCM and Ind-CLGCM-Selection models, under varying conditions of missing data mech-
anisms (MAR and MNAR), sample sizes (N = 400, 800), and missing proportions (5% and 15%).
We calculated the bias and MSE corresponding to each parameter (β, γ , ν, τ , θ , �ζ , �ξ ), and
then averaged over the parameters. Note that the original MSE values were multiplied by 103

for better presentation. Overall, the Bayesian estimation methods used yield very small bias and
MSE. Specifically, bias values were smaller than 0.05 regardless of missing data mechanism. Bias
and MSE tended to be particularly lower when missing data mechanism for data generation and
model estimation were the same (i.e., MAR with CLGCM and MNAR with CLGCM-Selection in
Figure 2). Bias and MSE were lower for conditions with larger sample size and lower missingness
rate, but the effect of sample size appeared to be much more salient than the effect of missing-
ness rate. In general, the small bias and MSE implies that the results in Study 1 and Study 2
are reliable. We would like to point out that the mis-specification of missing data mechanism
caused larger bias and MSE, especially when missing data generation was MAR but estimated
using the MNAR model (i.e., Ind-CLGCM-Selection). Because the parameter estimates from
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Figure 3: Feature comparison between the proposed models (Com-CLGCM, Ind-CLGCM, Com-
CLGCM-Selection, and Ind-CLGCM-Selection) and commonly used traditional models. Note
that this is a rough guideline. Some features may be available for certain models (e.g., proportion
data can be handled in the SEM framework), but commonly used software does not incorporate
such features. CLGCM: cross-domain latent growth curve model.

models with and without the added-on selection structure in our studies were similar, we are
not concerned much about this. In practice, if the two sets of models yield very different results,
researchers need to be cautious to select the best model, and then draw conclusions.

6 Conclusions
Obesity is a complex physiological and socioeconomic issue as people did not decide to be being
obesity and their weight gain is a consequence of complicated changes in the environment.
BMI and PBF are two important measurements to monitor weight and assess obesity. In this
article, we proposed cross-domain growth curve models in the SEM framework to investigate
the longitudinal relationship between BMI and PBF and simultaneously considered the issues
of proportion data, individually varying time metrics, and non-ignorable missing data. We used
the definition variable approach to model the individually varying time metrics in the structural
equation modeling framework, used augmented beta distribution to model proportion PBF data,
and used added-on selection models to handle potential missing not at random data. Figure 3
presents a feature comparison between the proposed models, and existing traditional models.

As pointed out by the Editor, LGCMs are more readily modeled via splines (Suk et al.,
2019), compared to linear/quadratic/cubic fits. However, the presence of additional covariates,
and our cross-domain LGCM framework modeling both BMI and PBF, which involves proportion
responses, complicates the estimation framework. Based on our extensive literature search, we
were unable to find any prior work on Beta regression for cross-domain LGCM. The basis of our
current choice of a simpler linear LGCM is to attain parsimony, model interpretability, and one
that leads to tractable computing. We strive to consider exploring splines and other non-linear
functional forms (Harring et al., 2021) within LGCMs as future work.
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In light of the Fels data, we observed that BMI and PBF are associated. Comparing Study
1 with Study 2, several variations were observed in quantifying the relationship between BMI
and PBF, controlling for the time varying covariates. Importantly, the average initial level and
rate of change for BMI no longer predicted the average rate of change for PBF. Only the average
initial levels of BMI and PBF were still associated. The effect of sex became significant for BMI
after including the five covariates. In addition, a major portion of the between-persons variance
in BMI can be explained by the time varying covariates. Within each study, cross-domain growth
curve models without the added-on selection structure (i.e, Com-CLGCM and Ind-CLGCM) and
their corresponding models with the added-on selection structure (i.e., Com-CLGCM-Selection
and Ind-CLGCM-Selection) provided similar parameter estimates in our Fels data analysis. The
parameters for modeling PBF appeared to be slightly influenced by the way of specifying the
precision parameter in the beta distribution. As indicated by WAIC and LOO, the models with
individually varying precision parameters was preferred over the models with a common precision
parameter. Thus, in our simulation, we evaluated the performance of the proposed cross-domain
growth curve models with individually varying precision parameters (i.e., Ind-CLGCM and Ind-
CLGCM-Selection) in parameter recovery. Parameter estimates had smaller bias and MSE when
the underlying missing data mechanism was correctly specified, but the two proposed models
generally had very small estimation bias and MSE across all simulation conditions.

We would like to note that the performance of the selection model is sensitive to the mod-
eling assumptions. These assumptions are usually not testable, and minor violations of the
assumptions can cause biased parameter estimates (Enders, 2011). In our analysis, the added-
on selection structure parameter estimates appeared to have a negative association between an
observation and the probability of the observation to be missing. This result may provide an
evidence that the missing data mechanism underlying Fels data is MNAR. But based on our
simulation results, it may be safer to use solutions from the Ind-CLGCM model for the Fels data
since both Ind-CLGCM and Ind-CLGCM-Selection models had similar performance when data
were MNAR, but the Ind-CLGCM-Selection model had notably higher estimation bias when
data were MAR, especially with a smaller sample size. This is inconsistent with the simula-
tion results in Shi and Tong (2022), where a selection model was always preferred. Based on a
preliminary study, we believe that the measurement reliability plays an important role in the
performance of having an added-on selection structure. In our simulation study, the population
parameter values were specified based on the real (Fels) data analysis, and the measurement
reliability are much lower than those in Shi and Tong (2022). This may have led to a relatively
worse performance of the Ind-CLGCM-Selection model. Further studies should be conducted to
systematically investigate factors that may influence the performance of selection models. At
this point, parameter estimates from the selection model should be interpreted with caution.

Note, although the cross-domain growth curve models in this article were specified for linear
growth curves, the same idea can be applied for other nonlinear growth curves. As explained in
Sterba (2014), the definition variable approach can be applied to fit polynomial, piecewise, and
structured latent curves with truly individually varying time points as well. Furthermore, future
studies may compare the performance of the beta regression, with beta rectangular and simplex
specifications (Bandyopadhyay et al., 2017). In addition, the time invariant and time-varying
covariates used in the analyses are limited to what were available in the Fels data. It is possible
that other factors, such as ethnicity may also have effects on the change patterns of BMI and
PBF, and the relationship between them. The Bayesian cross-domain LGCMs proposed in this
paper can be applied to study different populations using other data.
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Supplementary Material
Additional Tables summarizing model comparisons and parameter estimation from the two stud-
ies are available as Supplementary Materials associated with this article.
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