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Abstract

Inspired by the impressive successes of compress sensing-based machine learning algorithms,
data augmentation-based efficient Gibbs samplers for Bayesian high-dimensional classification
models are developed by compressing the design matrix to a much lower dimension. Ardent care
is exercised in the choice of the projection mechanism, and an adaptive voting rule is employed
to reduce sensitivity to the random projection matrix. Focusing on the high-dimensional Probit
regression model, we note that the naive implementation of the data augmentation-based Gibbs
sampler is not robust to the presence of co-linearity in the design matrix – a setup ubiquitous
in n < p problems. We demonstrate that a simple fix based on joint updates of parameters in
the latent space circumnavigates this issue. With a computationally efficient MCMC scheme in
place, we introduce an ensemble classifier by creating R (∼ 25–50) projected copies of the design
matrix, and subsequently running R classification models with the R projected design matrix
in parallel. We combine the output from the R replications via an adaptive voting scheme.
Our scheme is inherently parallelizable and capable of taking advantage of modern computing
environments often equipped with multiple cores. The empirical success of our methodology is
illustrated in elaborate simulations and gene expression data applications. We also extend our
methodology to a high-dimensional logistic regression model and carry out numerical studies to
showcase its efficacy.

Keywords collapsed Gibbs sampler; data augmentation; dimensionality reduction; ensemble
learning; parallel processing

1 Introduction
With the advent of modern technologies, it is now commonplace in many disciplines, including
but not limited to bioinformatics, ecology, remote sensing etc., to collect data containing mas-
sive numbers of predictors, ranging from thousands to millions or more. In such settings, it is
commonly of interest to consider classification models (Albert and Chib, 1993; Loaiza-Maya and
Nibbering, 2022; Cao et al., 2022) such as

yi ∼ Bernoulli(1, wi) where wi = �(xT
i β), (1.1)

where �(·) is the cumulative distribution function of N(0, 1), X is an n×p matrix of predictors,
p � n, y is an n × 1 binary response vector. As traditional techniques such as maximum likeli-
hood cannot be used, a rich variety of alternatives have been proposed mainly in the context of
linear regression models, ranging from frequentist penalized optimization methods (Tibshirani,
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1996; Zou and Hastie, 2005; Zou, 2006; Zhang, 2010; Xie and Huang, 2009) to Bayesian vari-
able selection or shrinkage priors. Examples include the classical “two-group” discrete mixture
priors with a point mass at zero (Mitchell and Beauchamp, 1988; George and McCulloch, 1993;
Shin et al., 2015), and continuous shrinkage priors expressed as global-local variance mixtures
of Gaussian distribution (Polson and Scott, 2011; Park and Casella, 2008; Hans, 2009; Brown
and Griffin, 2010; Carvalho et al., 2009, 2010; Bhadra et al., 2017; Piironen and Vehtari, 2017;
Armagan et al., 2013; Bhattacharya et al., 2015). The Bayesian approaches are particularly at-
tractive since they provide probabilistic characterization of uncertainty in the high-dimensional
regression coefficients and in the resulting predictions, while penalization methods tend to fo-
cus on point estimation. It is well known that computing the posterior under Bayesian variable
selection priors is an intractable problem, so that one can at best hope for a rough approxi-
mation using Markov chain Monte Carlo (MCMC) sampling unless p is small. However, recent
developments in this regard have largely improved the computational aspects of the “two-group”
(Biswas et al., 2022) and continuous shrinkage priors (Bhattacharya et al., 2016), but scalability
still remains to be an quite open area of enquiry. Alternatively, a commonly used approach is
to approximate the posterior with a computationally tractable distribution. This gives rise to
variational Bayes approximations (Girolami and Rogers, 2006; Titsias and Lawrence, 2010; Faes
et al., 2011; Mukherjee and Sen, 2021).

Guhaniyogi and Dunson (2015) proposed a new approach for high-dimensional regression
problems based on random projections of the scaled predictor vector prior to analysis which
solved several problems simultaneously. In particular, for linear regression models, it completely
avoids the computational bottleneck due to the enormous p. Their approach is inspired by
the data squashing literature (DuMouchel, 2002; Madigan, 2004; Owen, 2003; Lee et al., 2010)
and dramatic success of compressed sensing to facilitate storage and analysis, while retaining
the ability to reconstruct the compressed signals with high accuracy under sparsity conditions
(Donoho, 2006; Candes et al., 2006).

While such data compression based approaches have largely proved to be extremely success-
ful in various contexts (Guhaniyogi and Dunson, 2015; Cannings and Samworth, 2017), MCMC
computation in the context of Bayesian classifications approaches is still illusive. In this article
we primarily focus on Bayesian high-dimensional probit regression. We propose a compressed
sensing framework equipped with a data augmentation based Gibbs sampler that calculates a
conjugate Gaussian-inverse gamma posterior for the regression coefficients corresponding to the
compressed predictors in parallel for different random projections in the latent space. Finally,
we aggregate the outcomes corresponding to the different compression via a simple but adaptive
voting rule. We propose a principled approach to tune the cut-off parameter α of the binary
classifier that dramatically improves classification accuracy across extensive simulation and real
data examples. Importantly, our proposed methodology is inherently paralizable and continues
to enjoy computational tractability even in ultra high-dimensional set up. We also note that,
a naive implementation of the data augmentation Gibbs sampler results in poor mixing in the
MCMC chains. It turns out that a simple fix based on joint update of the parameters in the
latent space alleviates the problem to a large extent, and improves computational efficacy. We
end our discussion with an extension to the high-dimensional logistic regression case, where we
employ a Polya-Gamma data augmentation with the compressed covariate matrix.

In summary, our primary contributions in this article are three-fold. First, we present a
scalable and inherently parallelizable compressed sensing framework equipped with a data aug-
mentation based Gibbs sampler for high-dimensional probit regression. Secondly, for the classifi-
cation task, we adapt an alternative Gibbs sampling scheme with joint update of the parameters
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in the latent space that showcases improved mixing. Thirdly, we present an adaptive voting rule
involving a data-driven choice a cut-off parameter for our ensemble classifier, that improves the
accuracy of our classifiers without significant increase in compute time.

Rest of the paper is organised as follows. Section 2 introduces a data compression strategy,
a data augmentation based Gibbs sampler equipped with adaptive cut-off to carry out Bayesian
high-dimensional probit regression. Section 3 presents elaborate empirical studies to demonstrate
the efficacy of our methodology. Section 4 includes Micro-array gene expression data analyses
to showcase practical utility and scalability of our prescription. Section 5 features an extension
to our methodology to Bayesian high-dimensional logit regression, as well as an supporting
empirical study. In section 6, we conclude.

2 Algorithm
2.1 Notations
For subjects i = 1, ..., n, let yi ∈ Y denote a response and xi = (xi1, ..., xip) ∈ X ∈ R

p denote
predictors. We consider compressed regression models having the form

yi ∼ Bernoulli(1, wi), wi = �([�xi]Tβ), β ∼ π(β), (2.1)

where � is the cumulative distribution function of N(0, 1), � is an m × p projection matrix
with m < min(n, p), and β = (β1, ..., βm)T are coefficients on the compressed predictors which a
priori are from some distribution π(·). To ensure that our inferential procedure is robust to the
specific choice of random projection �, we consider R different random compression matrices.
The sparsity of a projection matrix � is controlled by a parameter s, refer to (2.2) for details.
Now we are in a position to systematically unfold the pieces of our proposal.

2.2 Compression Mechanism
The choice of the projection scheme in (2.1) is a vital component of our methodology, and there
is potential merit in attempting to utilize data-driven dimension reduction techniques, i.e, es-
timate � based on the data. To that end, we can turn to the enormous body of literature on
linear dimension reduction techniques, including principal component analysis (Hotelling, 1933;
Jolliffe and Cadima, 2016), non-negative matrix factorization (Sra and Dhillon, 2005), singu-
lar value decomposition (Banerjee and Roy, 2014), sufficient dimension reduction (Adragni and
Cook, 2014), semantic mapping (Corrêa and Ludermir, 2007), multi-dimensional scaling (Cox
and Cox, 2001), to name a few. Besides, various non-linear dimensionality reduction techniques
are available in our arsenal, like kernel-PCA (Mika et al., 1998), locally linear embedding (Roweis
and Saul, 2000), stochastic neighbourhood embedding (Hinton and Roweis, 2002), t-SNE (van
der Maaten and Hinton, 2008), etc. Such techniques are routinely incorporated in predictive
models to ensure scalability, but developing data driven projection schemes still convey a huge
computational price that is often practically infeasible in ensuing applications. Further, some of
the linear dimension reduction techniques, e.g singular value decomposition, principal compo-
nents analysis, classical multidimensional scaling, etc. suffer from unfavorable local properties
(van der Maaten and Hinton, 2008). We make this precise in the next paragraph, focusing on
singular value decomposition.

Given the design matrix X = (x1, x2, . . . , xn)
T, in order to embed the n points in Rp into Rm

via the singular value decomposition, we project them onto the m-dimensional space spanned
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by the singular vectors corresponding to the m largest singular values of X. This produces an
optimal rank m approximation of X under several popular matrix norms. But this optimality
implies no guarantees regarding local properties of the resulting embedding. That is, we can
easily devise examples where the new distance between a pair of points is arbitrarily smaller
than their original distance. In increasing number of modern machine learning applications where
dimensionality reduction is desirable, the absence of such local guarantees can make it hard to
exploit embeddings algorithmically.

With these limitations in mind, following Guhaniyogi and Dunson (2015), Cannings and
Samworth (2017), we do not attempt to estimate � based on the data. Instead, we take refuge
to random projection schemes, owing to their favourable local properties, and computational
simplicity of the resulting algorithms. The seminal paper by Johnson and Lindenstraus (1984)
proved the existence of lower dimensional projection mechanisms that satisfy favorable local
properties, under certain sufficient conditions. To add on to the impressive theoretical develop-
ments in Johnson and Lindenstraus (1984), Achlioptas (2003) provided a concrete construction
of such projection mechanisms as follows: (i) Let U ⊂ R

p be an arbitrary set of n points collected
in a n × p design matrix X. Also, given ε, ν > 0, define m0 ∝ log n, where the proportionality
constant depends on ν and ε. (ii) For any integer m � m0; define � = ((ψij )) to be a p × m

random matrix such that ψij are independent random variables from the following probability
distribution:

ψij = √
s

⎧⎪⎨
⎪⎩

−1, with probability 1
2s

,

0, with probability 1 − 1
s
,

+1, with probability 1
2s

,

(2.2)

where, for example, s = 1 or 3. (iii) Let E = (1/
√

m)X�, and suppose f : Rp → R
m projects the

i-th row of X to the i-the row of E. Then, for any u, v ∈ U, (1 − ε)||u − v||2 � ||f (u)− f (v)||2 �
(1 + ε)||u − v||2, with probability at least 1 − n−ν . Random compression matrices with similar
local properties can also be obtained via populating a random matrix with elements drawn from
the standard normal distribution (Dasgupta, 2013; Li et al., 2006b). But the sparse random
projections scheme described in equation (2.2), only processes 1/s-th of the data, and only
involves simulation from uniform density. Hence it is typically preferred in many applications.
Further, Li et al. (2006a,b) demonstrated that we can even use very sparse random projection
with s � 3, e.g., s = √

p, or s = p/ log p to significantly speed up the computation. However, for
improved robustness, they recommended choosing s less aggressively, e.g, s = √

p. In practice,
we observed that fixed s = 5 or 10 works reasonably well in varied empirical settings.

Further, to ensure that our methodology is robust to the specific choice of random projection
�, we consider R different random compression matrices and utilize an ensemble classifier that
combines outputs obtained corresponding to each of the random projection. In this context,
readers may be aware that the usage of Bayesian ensemble methods is ubiquitous in classification
and prediction settings; including Bayesian model averaging (Hoeting et al., 1999), Bayesian
additive classification and regression tree (Chipman et al., 1998, 2006), Bayesian version of
bagging (Clyde and Lee, 2001), to name a few. Bayesian Model Averaging (Hoeting et al., 1999)
describes an umbrella of techniques where we not only quantify model parameter uncertainty,
but also the associated model uncertainty. Clyde and Lee (2001) introduced a Bayesian version
of bagging based on the Bayesian bootstrap that often results in more efficient estimators.
Bayesian CART (Chipman et al., 1998, 2006) is constructed via an ensemble of binary decision
trees built by dividing the predictor space repeatedly into partitions based on splitting rules and
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it has enjoyed immense empirical success in this context. Other related ideas include Bayesian
classifier combination (Kim and Ghahramani, 2012), Bayesian boosting (Lorbert et al., 2012),
cascading classifiers (Li et al., 2010), bucket of models, stacking etc.

In this article, we adapt an adaptive voting scheme in 2.5 to combine outputs obtained
corresponding to each of the random projections. In our empirical studies, we typically observe
that the performance of the classifier improves with the increase in R, but usually plateaus after
a while. A choice of R = 25 to 50 provided favorable results across the different numerical studies
we considered. Next, we describe MCMC algorithms to learn the parameters in (2.1).

2.3 A Naive Blocked Gibbs Sampler
The probit regression model in (2.1) enjoys an equivalent representation via latent variables
(Tanner and Wong, 1987; Albert and Chib, 1993),

yi = δ(zi > 0), zi ∼ N([�xi]Tβ, 1), β ∼ π(β), (2.3)

where δ(·) is the Dirac delta measure, yi is simply the deterministic conditional on the sign of the
stochastic latent variable zi . In what follows, we denote y = (y1, . . . , yn)

T and z = (z1, . . . , zn)
T.

Under the conditional independence of {zi | β}ni=1, the marginal likelihood L(β | y) in model
(2.3) is exactly same as in (2.1). The advantage of working with representation in (2.3) is that,
for judicious choice of π(β), we easily device efficient blocked Gibbs sampler (Albert and Chib,
1993). In particular, we assume a normal prior on β, i.e, π(β) ≡ N(μ, �), where μ is set to
vector of p zeros, and � is diagonal matrix of order p. Then, the full conditional distribution of
β is remains to be normal:

β | z ∼ N((�−1 + �XXT�T)−1(�−1μ + �TXTz), (�−1 + �XXT�T)−1). (2.4)

The full conditional for each element zi is then truncated normal,

zi | β, y ∼ δ(yi = 1)TN(0,∞)(�
Txi, 1) + δ(yi = 0)TN(−∞,0)(�

Txi, 1), (2.5)

where TNa,b(·, ·) is the pdf of truncated normal distribution restricted to (a, b). The full condi-
tional distributions in equations (2.4)–(2.5) are extremely straight forward to sample from, and
we refer to this algorithm as Algorithm 1: AC from here on.

The above latent variable based augmentation method offers a convenient framework to
device simple Markov chain Monte Carlo (MCMC) algorithm by iteratively sampling from the
full conditional densities. However, a potential problem lurks in that there is strong posterior
correlation between regression coefficients β and the latent variables z, clearly indicated in the
above model. In the standard Albert-Chib iterative updates, this correlation is likely to cause
slow mixing of the MCMC chain.

2.4 An Improved Blocked Gibbs Sampler
To combat the issue of auto-correlation in the MCMC chain, based on Held and Holmes (2006),
we suggest a simple approach that reduces auto-correlation and dramatically improves the mixing
in the Markov chain. Here, we put the factorisation, π(β | z, y) = π(z | y) π(β | z) to use, and
update β and z jointly. Note that, in the above display, the distribution π(β | z) is unchanged
from earlier (2.4), but now we update z from its marginal distribution obtained via integrating
over β. In particular, we assume that the prior for π(β) is a mean zero normal density N(0, �),
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Algorithm 1 Ensemble AC/ AC+.

Input : (a) Data: binary response vector yn×1, design matrix Xn×p; a query point x ∈ R
p.

(c) Hyper-parameters: compression dimension m, number of projections R,

sparsity parameter s.

Step 1: Generate R projection matrices �(k), k = 1, . . . , S, each of order m × p in parallel,
via the scheme in (2.2).

Step 2: Run R classification models in parallel by setting � = �(k), k = 1, . . . , R in (2.1)
respectively, and iterating over steps in (2.4)-(2.5) to calculate corresponding β̂(k).

Step 3: For the x, compute z(k) ∼ N([�(k)x]Tβ̂(k), 1) and y(k)(x) = δ(z(k) > 0), k = 1, . . . , R.

Output: Compute the ensemble estimate at x as yvote(x) = δ
[ R∑

k=1

y(k)(x) > R × α
]
, where

α = 0.5 for AC, and α = α̂oracle from (2.10) for AC+.

where � is a diagonal matrix of order p. Then we have π(z | y) ∼ N(0, In + �XV XT�T)

truncated to an appropriate region. Direct sampling from the multivariate truncated normal is
known to be difficult, however, it is straightforward to Gibbs sample the distribution,

zi | z−i ∝ δ(yi = 1)TN(0,∞)(ηi, vi) + δ(yi = 0)TN(−∞,0)(ηi, vi) (2.6)

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn)
T, and

ηi = xiB − ui(zi − xiB), vi = 1 + ui, ui = hi/(1 + hi) (2.7)

with B =(�−1+�XXT�T)−1, Vz =(�−1+�XXT�T)−1(�−1μ+�TXTz), and hi =((�XVzX�T))ii .
Following an update to each zi we recalculate B via

B = Bold − Fi(zi − zold
i ) (2.8)

where Bold and zold
i denote the values of B and zi prior to the update of zi , and Fi denotes the i-th

column of F = VzX
T�T. The full conditional distributions in equations (2.4) and (2.6) describes

our Algorithm 2: HH. It is important to note that, we only need to calculate F , ui and vi need
only be performed once before we run the MCMC iterations. Consequently, the algorithm carries
little increase in computational burden over the naive Gibbs sampling approach in section 2.3.
The simple modification of the sampler based on use of joint updates dramatically improves
mixing and sampling efficiency in the Markov chain across all the numerical studies that we
have performed.

With a computationally efficient MCMC scheme in place, we next introduce an ensemble
classifier via first creating R (∼ 25–50) projected copies of the design matrix, and then running
R classification models with the R projected design matrices in parallel. Finally, we combine
the output from the R replications via an adaptive voting scheme equipped with a data driven
approach, reminiscent of leave one out cross validation, to choose cut-off parameter introduced
next.
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Algorithm 2 Ensemble HH/ HH+.

Input : (a) Data: binary response vector yn×1, design matrix Xn×p; a query point x ∈ R
p.

(c) Hyper-parameters: compression dimension m, number of projections R,

sparsity parameter s.

Step 1: Generate R projection matrices �(k), k = 1, . . . , R, each of order m × p in parallel,
via the scheme in (2.2).

Step 2: Run S classification models in parallel by setting � = �(k), k = 1, . . . , S in (2.1)
respectively, and iterating over steps in (2.4) & (2.6) to calculate corresponding β̂(k).

Step 3: For the x, compute z(k) ∼ N([�(k)x]Tβ̂(k), 1) and y(k)(x) = δ(z(k) > 0), k = 1, . . . , S.

Output: Compute the ensemble estimate at x as yvote(x) = δ
[ S∑

k=1

y(k)(x) > S × α
]
, where

α = 0.5 for HH, and α = α̂oracle from (2.10) for HH+.

2.5 Adaptive Voting Scheme
We calculate an ensemble of predictions corresponding to the R projections, and combine
the results via a simple voting scheme following Cannings and Samworth (2017). Suppose
{yk(x)}Rk=1 ∈ {0, 1}R are the predictions at x corresponding to the R projections, then the com-
bined classifier takes the form:

yvote(x) = δ

[ R∑
k=1

y(k)(x) > R × α

]
, (2.9)

where α ∈ (0, 1) is a hyper-parameter, and δ(·) denotes the Dirac delta measure. We emphasise
that additional flexibility is afforded by not pre-specifying the voting threshold α to be 0.5.

In order to develop a data-driven approach to determine α, we introduce some notations.
Suppose that the pair (X, Y ) takes values in R

p × {0, 1} with joint distribution characterised by

(π0, π1) = (π [Y = 0], π [Y = 1]); �TX | Y = r ∼ π(r)

where π(r) has the cumulative distribution function Gn,r (·), r = 0, 1. Note that, the oracle choice
of the cut-off parameter α minimises the miss-classification error rate, i.e,

αoracle = arg min
α∈[0,1]

[
π0 Gn,1(α) + π1 (1 − Gn,0(α))

]
.

Obviously, we cannot calculate αoracle in practice, since (πr, Gn,r ), r = 0, 1 are unknown. So, we
estimate it via replacing the unknown quantities by their sample counter parts, i.e,

α̂oracle = arg min
α∈[0,1]

[
π̂0 Ĝn,1(α) + π̂1 (1 − Ĝn,0(α))

]
, (2.10)

where

π̂r = 1

n

n∑
i=1

δ[yi = r], and Ĝn,r (t) =
1
nr

∑
i:yi=r δ[yvote(xi) < t]

1
n

∑n
i=1 δ[yi = r] , r = 0, 1,
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where δ(·) is the Dirac delta measure. Since empirical distribution functions are piece-wise con-
stant, the objective function in (2.10) does not have a unique minimum, so we choose α̂oracle to
be the average of the smallest and largest minimisers. From here on, we refer to the versions of
AC and HH equipped with the adaptive voting scheme in (2.9)–(2.10) as AC+ and HH+, respec-
tively. AC+ and HH+ enjoy superior performance across numerous empirical studies, compared
to AC and HH that uses the default choice of α = 0.5.

3 Simulation Study
In this section we compare the predictive performance of various versions of the proposed high
dimensional probit regression methodology equipped with the data augmentation based Gibbs
sampler (2.3). We also consider the alternative implementation of data augmentation based
Gibbs sampler that potentially enjoys improved computational efficacy (2.4). We take the pro-
posed principled approach to tune the cut-off parameter α of the binary classifier (2.5). Before
presenting the empirical results, we propose default set ups for our algorithms.

The algorithms described in Sections 2.3 and 2.4 involve three tuning-parameters: (1) the
dimension of the compressed linear subspace m, (2) the sparsity parameter s of the compression
matrix, and (3) the number of random projections R. We propose default choices of these hyper-
parameters for ease of use of the practitioners:
1. Based on the recommendation in Guhaniyogi and Dunson (2015), we also propose to use the

dimension of the linear subspace to compress to, m = 40. This choice works reasonably well
in practice while preserving the computational convenience.

2. We set the sparsity parameter s of the compression matrix � to 10, for both sparse and dense
examples in Sub-sections 3.1 and 3.2, respectively. It is important to note that the sparsity in
the projection matrix increases as s increases, refer to equation (2.2) for details. Consequently,
there is potential merit in using smaller s for dense cases in 3.2. We prefer a default choice of
s = 10 since it works reasonably well under both the set ups, and provides concrete guideline
to the users. Moreover, Li et al. (2006a,b) demonstrated that we can use very sparse random
projection with s � 3, e.g., s = √

p, or s = p/ log p to significantly speed up the computation.
In particular, when the data are approximately normal, log p of the data usually suffice, i.e.
s = p/ log p, because of the exponential tail bounds in normal-like distributions. A less
aggressive choice of s = 10 provides a good balance between computational convenience and
robustness of the procedure in a wide range of empirical studies.

3. We typically observe that the performance of our classifiers improve with the increase in R,
but usually plateaus after a while, refer to Figures 1, 3 for details. A choice of R = 25 to 50
provide favorable results across the different numerical studies we considered. For the sake
of objectivity, we set the number of random projections R = 50.
In the next two subsections, we carry our repeated simulations and benchmark our proposed

classifiers: AC/AC+ and HH/HH+. The performance metric we mainly focus on is the median
of the missclassification error rates obtained from the different repetitions of a simulation. For a
query point x ∈ R

p, a missclassification is observed if yvote(x) calculated via (2.9) is different from
the true class level. We also report the between repetition standard deviation of missclassification
error to demonstrate the stability of the numerical results.
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Figure 1: Choice of R in sparse cases. Miss-classification error rates with varying number of
weak classifiers R, for (n, p, ζ ) = (102, 104, 10) and ρ ∈ {0.0, 0.5, 0.7, 0.9} for algorithms AC and
AC+. We typically observe that the performance of our classifiers improve with the increase in
R, but usually plateaus after a while. This observation holds for all other (n, p, ζ ) combinations
presented in Tables 1 and 3 both for AC/AC+ and HH/HH+, and hence the additional plots
are not presented to avoid repetitiveness.

Figure 2: Time comparison in sparse cases. Time comparison (in seconds) for drawing
104 MCMC samples via algorithms AC, AC+, HH, HH+ for (n, p, ζ ) = (102, 103, 5) and ρ ∈
{0.0, 0.5, 0.7, 0.9}. We typically observe that AC+ (HH+) incurs 5 − 10% extra computational
expense in terms of time compared to AC (HH), while enjoying significantly improved miss-
classification error rates . This observation holds for all other (n, p, ζ ) combinations presented
in Tables 1 and 3, and hence the additional plots are not presented to avoid repetitiveness.

3.1 Sparse Cases

We generate observations from the high-dimensional Probit Regression model. We consider the
following scenarios, and in each of the scenarios we simulate 50 data sets. We keep the sample
size fixed at n = 102 but vary the number of covariates p = 103, 104 and number of non-zero
regressions coefficients ζ = 5, 10, in order to assess how sparsity impacts performance. We set
first ζ regression coefficient at 1, and remaining p − ζ at 0. Further, we generate the design
matrix X such that corr(xi, xj ) = ρ|i−j | and vary ρ = 0.0, 0.5, 0.7, 0.9, in order to assess the
sampling efficiency under correlated design. To complete the model-prior specification, we set
the prior variance � to be the identity matrix.

For MCMC based model implementations, we discard the first 5000 samples as a burn-
in and draw inference based on the next 5000 samples. In particular, we report median miss
classification error rates and corresponding 95% confidence intervals obtained from the repeated
simulations. We also report effective sample size (ESS) as an empirical measure of sampling
efficiency under the two MCMC schemes, in order to investigate the mixing behavior of our
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Figure 3: Choice of R in dense cases. Miss-classification error rates with varying number of
weak classifiers R, for (n, p, ζ ) = (102, 104, 10) and ρ ∈ {0.0, 0.5, 0.7, 0.9} for algorithms AC and
AC+. We typically observe that the performance of our classifiers improve with the increase in
R, but usually plateaus after a while. This observation holds for all other (n, p, ζ ) combinations
presented in Tables 1 and 3 both for AC/AC+ and HH/HH+, and hence the additional plots
are not presented to avoid repetitiveness.

samplers. The effective sample size is a measure of the amount of the auto-correlation in a
Markov chain, and essentially amounts to the number of independent samples in the MCMC
path. From an algorithmic robustness perspective, it is desirable that the effective sample sizes
remain stable across varying sparsity and co-linearity in the design matrix, and this is the aspect
we wish to investigate here.

We present the miss-classification error rates of the classifiers averaged over the repetitions
and the corresponding standard errors under various simulation scenarios for (n, p) = (102, 103)

in Table 1. While all the versions of our methodology enjoyed similar accuracy, the classifiers
equipped with the data-driven choice of the cut-off parameter α compared to the default choice
α = 0.5, seem to slightly improve the performance. Next, we present the corresponding effective
sample sizes of the classifiers averaged over the repetitions and the corresponding standard er-
rors under various simulation scenarios in Table 2. The alternative implementation of the data
augmentation Gibbs sampler seems to be more robust to the presence of co-linearity in the de-
sign matrix, compared to the vanilla implementation. In particular, the effective sample size of
AC/AC+ drops by 15% as the ρ changes from 0 to 0.9, whereas the drop is only about 1% for
HH/HH+. Moreover, the alternative implementation of the data augmentation Gibbs sampler
enjoys significantly higher effective sample size. Although, the gain is about 10% for the inde-
pendent design, we observe a more pronounced improvement of 25% at ρ = 0.9. This indicates

Table 1: (Sparse cases) median miss-classification error proportions and between repetition
standard error in the subscript for (n, p) = (102, 103) with varying sparsity ζ .

Independent ρ = 0.5 ρ = 0.7 ρ = 0.9

ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10

AC 0.050.02 0.040.02 0.040.02 0.030.02 0.050.02 0.040.02 0.090.02 0.080.02

AC+ 0.030.02 0.020.02 0.030.02 0.030.02 0.050.02 0.040.02 0.090.02 0.070.02

HH 0.050.02 0.040.02 0.040.02 0.030.02 0.050.02 0.050.02 0.090.02 0.080.03

HH+ 0.030.02 0.040.02 0.030.01 0.030.02 0.040.02 0.040.02 0.090.02 0.070.02
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Table 2: (Sparse cases) median effective sample size and between repetition standard error in
the subscript for (n, p) = (102, 103) with varying sparsity ζ .

Independent ρ = 0.5 ρ = 0.7 ρ = 0.9

ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10

AC/AC+ 47185 47185 46235 46245 44758 44776 400212 399711

HH/HH+ 50084 50075 50055 50055 49995 50015 49595 49604

Table 3: (Sparse cases) median miss-classification error proportions and between repetition
standard error in the subscript for (n, p) = (102, 104) with varying sparsity ζ .

Independent ρ = 0.5 ρ = 0.7 ρ = 0.9

ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10

AC 0.030.02 0.020.02 0.020.02 0.020.01 0.020.01 0.040.02 0.020.02 0.030.02

AC+ 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 0.040.02 0.020.02 0.020.02

HH 0.030.03 0.030.02 0.020.01 0.010.01 0.020.02 0.020.01 0.030.02 0.030.01

HH+ 0.010.02 0.010.02 0.010.01 0.010.01 0.010.01 0.020.01 0.030.01 0.030.01

Table 4: (Sparse cases) median effective sample size and between repetition standard error in
the subscript for (n, p) = (102, 104) with varying sparsity ζ .

Independent ρ = 0.5 ρ = 0.7 ρ = 0.9

ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10 ζ = 5 ζ = 10

AC/AC+ 49894 49875 49785 49805 49655 49655 49715 48745

HH/HH+ 50104 50124 50125 50105 50115 50115 50135 50104

that HH/HH+ will be particularly preferred when the design matrix is highly correlated.
For the case (n, p) = (102, 104), we present the miss-classification error rates of the classifiers

averaged over the repetitions and the corresponding standard errors under various simulation
scenarios in Table 3, and the corresponding effective sample sizes of the classifiers averaged
over the repetitions and the corresponding standard errors under various simulation scenarios
in Table 4. Notably, the effective sample size for AC/AC+ plummeted less compared the case
earlier, i.e it drops by 10% as the ρ changes from 0 to 0.9, whereas the is practically no drop for
HH/HH+.

3.2 Dense Cases
We stick to the same data generation scenarios, except now we set all the regression coefficients
to 1. These dense cases correspond to a one dimensional subspace with no sparsity, and are
motivated by the practical applications where each of the covariates has small effect on the
outcome. We continue to use the same MCMC configurations as before, and focus the same
performance metric.

We present the miss-classification error rates of the classifiers and effective sample size
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Table 5: (Dense cases) median miss-classification error proportions / effective sample size
(ESS) and between repetition standard error in the subscript for (n, p, ζ ) = (102, 103, 103).

Independent ρ = 0.5 ρ = 0.7 ρ = 0.9

Error ESS Error ESS Error ESS Error ESS

AC 0.030.01 47185 0.030.02 46238 0.050.02 44746 0.060.02 44746

AC+ 0.020.01 0.030.02 0.040.02 0.040.01

HH 0.030.02 50074 0.030.02 50065 0.040.02 50005 0.060.02 49525

HH+ 0.020.01 0.030.01 0.030.03 0.050.02

Figure 4: Time comparison in dense cases. Time comparison (in seconds) for drawing
104 MCMC samples via algorithms AC, AC+, HH, HH+ for (n, p, ζ ) = (102, 103, 5) and ρ ∈
{0.0, 0.5, 0.7, 0.9}. We typically observe that AC+ (HH+) incurs 5 − 10% extra computational
expense in terms of time compared to AC (HH), while enjoying significantly improved miss-
classification error rates .

averaged over the repetitions and the corresponding standard errors under various simulation
scenarios in Table 1. The classifiers equipped with the data-driven choice of the cut-off parameter
α compared to the default choice α = 0.5, still slightly improve the performance and remains to
be more robust to the presence of co-linearity in the design matrix. In particular, the effective
sample size of AC/AC+ drops by 5% as the ρ changes from 0 to 0.9, whereas the drop is only
about 1% for HH/HH+. Moreover, the alternative implementation of the data augmentation
Gibbs sampler enjoys significantly higher effective sample size. Although, the gain is only about
1% for the independent design, we observe a more pronounced improvement of more than 10%
at ρ = 0.9 that still demonstrates that HH/HH+ may render more efficient when the design
matrix is highly correlated.

4 Micro-array Gene Expression Cancer Data Analysis

4.1 Leukemia Data

Leukemia data from high-density Affymetrix oligonucleotide arrays were previously analyzed in
Golub et al. (1999), and is freely available on the website data.mendeley.com. There are p = 7129
genes and n = 72 samples coming from two classes: 47 in class ALL (acute lymphocytic leukemia)
and 25 in class AML (acute mylogenous leukemia). Before classification, we standardize each

https://data.mendeley.com/
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Figure 5: Leukemia data: box plots of miss-classification error rates of AC, AC+, HH, HH+
over 50 random splits of 72 samples, where 100 × γ % of the samples are set as training samples.
The three plots from left to right correspond to γ = 0.5, 0.6, 0.7, respectively.

sample to zero mean and unit variance.
To complete the specification of the compression mechanism, we set the dimension m of the

linear subspace to compress to at 40, the sparsity parameter of the compression matrix � at 5,
and the number of random projections R = 25. For MCMC based model implementations, we
discard the first 5000 samples as a burn-in and draw inference based on the next 5000 samples.

To evaluate the performance of the classifiers, we randomly split the 72 samples into training
and test sets. Specifically, we set approximately 100×γ % of the observations as training samples,
and the rest as test samples. The various version of our algorithm are used to the training data,
and their performances are evaluated by the test samples. The above procedure is repeated 50
times for γ = 0.4, 0.5, 0.6, respectively, and the distributions of miss-classification errors in
Figure 5. The classifier AC+(HH+) equipped with the data-driven choice of the cut-off parameter
α, significantly improve the performance compared to the classifier AC (HH) across all the set
ups. Further, as γ increases, i.e, we use more and more training samples, the miss-classification
error rates decrease. Moreover, the alternative implementation of the data augmentation Gibbs
sampler (HH, HH+) enjoys 3–6 times higher effective sample size compared to AC, AC+.

4.2 Lung Cancer Data

We evaluate our method by classifying between malignant pleural mesothelioma (MPM) and
adenocarcinoma (ADCA) of the lung, freely available on data.mendeley.com. Lung cancer data
were analyzed by Gordon et al. (2002). There are 181 tissue samples (31 MPM and 150 ADCA).
Each sample is described by 1626 genes.

As in the Leukemia data set, we first standardize the data to zero mean and unit variance,
and then apply various classification methods to the standardized data set. We follow the same
procedure as that in Leukemia example to randomly split the 181 samples into training and test
sets, and utilize the same compression and MCMC specifications. Various classification methods
are applied to the training data, and the test errors are calculated using the test data. The
procedure is repeated 50 times with γ = 0.4, 0.5, 0.6, respectively, and the distributions of
miss-classification errors in Figure 6. The classifier AC+(HH+) equipped with the data-driven
choice of the cut-off parameter α, quite dramatically improve the performance compared to
the classifier AC (HH) across all the set ups. Moreover, the alternative implementation of the

https://data.mendeley.com
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Figure 6: Lung cancer data: box plots of miss-classification error rates of AC, AC+, HH, HH+
over 50 random splits of 181 samples, where 100×γ % of the samples are set as training samples.
The three plots from left to right correspond to γ = 0.5, 0.6, 0.7, respectively.

Figure 7: Prostate cancer data: box plots of miss-classification error rates of AC, AC+, HH,
HH+ over 50 random splits of 102 samples, where 100 × γ % of the samples are set as training
samples. The three plots from left to right correspond to γ = 0.5, 0.6, 0.7, respectively.

data augmentation Gibbs sampler (HH, HH+) enjoys 1.5–2 times higher effective sample size
compared to AC, AC+.

4.3 Prostate Cancer Data

The last example uses the prostate cancer data studied in Singh et al. (2002), also freely available
on data.mendeley.com. The training data set contains 102 patient samples, 52 of which (labeled
as “tumor”) are prostate tumor samples and 50 of which (labeled as “Normal”) are prostate
samples. There are around 329 genes.

As in the Leukemia data set, we first standardize the data to zero mean and unit variance,
and then apply various classification methods to the standardized data set. We follow the same
procedure as that in Leukemia example to randomly split the 102 samples into training and test
sets, and utilize the same compression and MCMC specifications. Various classification methods
are applied to the training data, and the test errors are calculated using the test data. The
procedure is repeated 50 times with γ = 0.4, 0.5, 0.6, respectively, and the distributions of
miss-classification errors in Figure 7. The classifier AC+(HH+) equipped with the data-driven

https://data.mendeley.com/
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choice of the cut-off parameter α, tend to improve the performance compared to the classifier AC
(HH) across all the set ups. Moreover, the alternative implementation of the data augmentation
Gibbs sampler (HH, HH+) enjoys 2.5 − 3 times higher effective sample size compared to AC,
AC+.

5 Extension: Sparse Binary Logistic Regression
Maintaining parity with the section (2.3), we very briefly consider compressed logistic regression
models having the form

yi ∼ Bernoulli(1, Logit([�xi]Tβ) ), β ∼ π(β), (5.1)

where Logit : t → log(t/1−t), 0 < t < 1; � is an m×p projection matrix with m < min(n, p); and
β = (β1, ..., βm)T are coefficients on the compressed predictors which a priori are from some distri-
bution π(·). The data augmentation mechanism that we adapt here, known as the Polya-Gamma
data augmentation scheme (Polson et al., 2013) enjoyed the most empirical success in practice.
To introduce the methodology, we first present the following definitions of Polya-Gamma family
of distributions. In particular, the Polya-Gamma distribution PG(b, 0), b > 0 (Polson et al.,
2013) is defined as the distribution with the characteristic function: t → (cosh

√
t/2)−b, b > 0.

The general form PG(b, c), b > 0 of the Polya-Gamma distribution (Polson et al., 2013) has the
probability density function:

π(z | b, c) = exp(− c2

2 z) π(z | b, 0)

Ez

{
exp(− c2

2 z)
} .

This family of distributions has been carefully constructed to yield a simple Gibbs sampler for
the Bayesian logistic-regression model. We assume π(β) ≡ N(μ, �), and to sample from the
posterior distribution using the Polya-Gamma method, simply iterate two steps:

zi | β ∼ PG(1, [�xi]Tβ), β | y, z ∼ N(Vz(X
T�Tκ + �−1μ), Vz) (5.2)

where Vz = (XT �T��X+�−1)−1, κ = (y1 −1/2, . . . , yn−1/2)T, and � is a diagonal matrix with
�ii = zi . Noteworthy, the two basic differences in the sampler described in (5.2) from the AC
sampler in (2.4)–(2.5) for probit regression are that the full conditional distribution of [β | ·] is a
scale mixture of Gaussian distributions rather than a location mixture; and the full conditional
distribution of [zi | ·] are the Polya-Gamma latent distribution instead of the truncated normals.
From here on, we refer to the data augmentation based Gibbs sampler in (5.2) by Algorithm 3:
PG. As an alternative, we also consider PG equipped with the adaptive choice of cut-off α in
(2.5), referred to as PG+.

We consider simulated examples to demonstrate the efficacy of the proposed extension. We
generate observations from the high-dimensional Probit Regression model, with specifications
described in sections (3.1)–(3.2). Note that, we do not generate data from a high-dimensional
logit regression model in order to assess our methodology under mild model misspecification.
To conduct inference, we consider the Gibbs sampler augmented with the Polya-gamma scheme
in the latent space. We continue to utilize the compression and MCMC specifications in the
simulations presented in sections (3.1)–(3.2). We present the miss-classification error rates of
the classifiers averaged over the repetitions and the corresponding standard errors under vari-
ous simulation scenarios in Table 6. While all the versions of our methodology enjoyed similar
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Table 6: (Sparse and dense cases) median miss-classification error proportions / effective
sample size (ESS) and between repetition standard error in the subscript for (n, p) = (102, 103).
ζ Method Independent ρ = 0.5 ρ = 0.7 ρ = 0.9

Error ESS Error ESS Error ESS Error ESS

5 PG 0.020.01 1294131 0.010.01 1138123 0.010.01 972156 0.030.02 549166

PG+ 0.000.01 0.010.01 0.010.01 0.020.01

10 PG 0.020.02 1263102 0.020.01 108666 0.010.01 873143 0.020.02 404195

PG+ 0.010.01 0.010.01 0.010.01 0.020.01

1000 PG 0.010.01 1262110 0.010.01 1048127 0.020.01 769122 0.010.01 13260

PG+ 0.000.01 0.010.01 0.010.01 0.010.01

accuracy, the classifier equipped with the data-driven choice of the cut-off parameter α com-
pared to the default choice α = 0.5, seems to slightly improve the performance. We also present
the effective sample sizes of the classifiers averaged over the repetitions and the corresponding
standard errors under various simulation scenarios. The effective sample size of PG/PG+ drops
drastically as the ρ changes from 0 to 0.9. In order to maintain the focus of the document on
high-dimensional probit regression, and given non-robust simulation results with respect to co-
linearity in this set up, we leave this as an avenue for future enquiry aimed at designing MCMC
schemes robust to presence of co-linearity in the design matrix.

6 Conclusions
In this article, we presented efficient data augmentation based Gibbs samplers for Bayesian high-
dimensional Probit and logit models. Focusing on high-dimensional Probit regression model, we
demonstrate that the naive implementation of the data augmentation based Gibbs sampler is
not robust to the presence of co-linearity in the design matrix– a set up ubiquitous in n < p

problems, and considered a simple fix based on joint updates of parameters in the latent space
that seems to circumnavigate this issue. With a computationally efficient MCMC scheme in
place, we introduced an ensemble classifier via first creating R (25 to 50) projected copies of the
design matrix, and then running R classification models with the R projected design matrix in
parallel. Finally, we combine the output from the R replications via an adaptive voting scheme
reminiscent of leave one out cross validation. Notably, each of the projected design matrix is
n×m, compared to the actual design matrix which is n×p. Since m � p, each of the projected
design matrix induces significantly less storage burden. Moreover, perhaps more importantly,
since our scheme is inherently parallelable, it’s extremely computationally convenient and is
capable of taking advantages of modern multiple cores computing environments.

In principle, ensembles of data augmentation based Gibbs samplers like ours can be devel-
oped for high-dimensional multinomial Probit or logit models with ordinal as well as nominal
categories. Ensuring the stability of the resulting samplers is an interesting alley for future en-
quiry. For the sake of brevity of presentation in this article, we do not explore such extensions
here. Moreover, a criticism of the compressed regression frameworks is it’s inability to carry out
variable selection, and this too provides a scope for future exploration.
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Supplementary Material
Software implementation of the methodologies developed in the article is available for use at
zovialpapai/Bayesian-classification-with-random-projection. Here, we present a short descrip-
tion about the directories in the repository, as follows: (1) functions: The directory contains
utility functions in two R scripts, that are utilised in the repeated simulations and real data
analysis conducted in the paper. (a) “BCC_Functions.R” contains functions for compression
matrix generation; Probit regression via Albert & Chib and Holmes & Held data augmenta-
tion schemes; Logit regression via Polya-Gamma data augmentation scheme; hyper-parameter
tuning; and associated helper functions. (b) Probit_HH_cpp.R contains Probit regression via
Holmes & Held data augmentation scheme, written in Rcpp. (2) repeated simulations: The
directory contains three R scripts, named BCC_sims.R, Weakleaners.R, and time_compari-
son.R. (a) BCC_sims.R can be utilised to carry out the simulations presented in Section 3 on
High-dimensional Probit regression, and Section 5 on High-dimensional Logit regression, along
with hyper-parameter tuning. (b) Weakleaners.R can be utilized to study the effect of number
of replications of compression matrix (or number of weak classifiers) on the accuracy of classi-
fiers AC, AC+, HH, HH+. The results are presented in Section 3. (c) time_comparison.R can
be utilised to study comparative computional time of our classifiers. The results are presented
in Section 3. (3) data: Micro-array gene expression cancer data sets utilized in the article is
freely available on the website data.mendeley.com. Copies of the data sets are available in the
data directory in the our repository. (4) real data analysis: The directory contains the a R
script named BCC_data.R that can be utilised to carry out the analysis of micro-array gene
expression cancer data sets (Leukemia, Lung Cancer, Prostate cancer), presented in Section 4
of the paper.
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