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Abstract

Multi-touch attribution (MTA) estimates the relative contributions of the multiple ads a user
may see prior to any observed conversions. Increasingly, advertisers also want to base budget and
bidding decisions on these attributions, spending more on ads that drive more conversions. We
describe two requirements for an MTA system to be suitable for this application: First, it must be
able to handle continuously updated and incomplete data. Second, it must be sufficiently flexible
to capture that an ad’s effect will change over time. We describe an MTA system, consisting
of a model for user conversion behavior and a credit assignment algorithm, that satisfies these
requirements. Our model for user conversion behavior treats conversions as occurrences in an
inhomogeneous Poisson process, while our attribution algorithm is based on iteratively removing
the last ad in the path.

Keywords data driven attribution; poisson process

1 Introduction
One of the promises of online advertising has been the ability to tie together ad clicks with
actual outcomes (e.g., purchases, website visits, etc), also known as conversions. This gives
advertisers the opportunity to understand both the overall effectiveness of their ads and the
relative effectiveness of different types of ads. With the right data, multi-touch attribution
(MTA) aids this second goal by estimating the relative contributions of the various ads a user
may see prior to any observed conversions. This can then be incorporated into the advertiser’s
budget and bidding decisions, increasing spend on ads that drive more conversions.

We propose two key requirements, both related to the effects of time, that this type of
attribution system should satisfy. The first is based on the need for an MTA system to be
compatible with bidding models, which themselves require real-time data to respond to changes
in ad effectiveness, business fluctuations, etc. This requires the MTA system to also ingest real-
time data, which is by its nature incomplete, or more precisely, right-censored. We don’t know
how many users who saw ads yesterday will ultimately convert, only how many have converted
so far. Therefore our first requirement is that our MTA system be capable of handling censored
data.

A second requirement is that an MTA system be sufficiently flexible to capture that an ad’s
immediate effect on a user is likely to be different than its effect several weeks later. In practice,
this tends to mean that conversions occurring soon after an ad are more likely to have been
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caused by the ad (and therefore the ad tends to receive more credit) than conversions occuring
long after the ad.

To handle both requirements, we propose an MTA system with two parts: a model for
users’ conversion behavior that treats conversions as occurrences in an inhomogenous Poisson
process, and an attribution credit assignment algorithm that assigns credit according to how
ads change the estimated intensity of this inhomogenous Poisson process at conversion time.
In the case where a user can convert at most once, our model reduces to the classic Cox pro-
portional hazards model with time-varying covariates (Andersen et al., 2012). More generally,
these types of survival models, including variations allowing for multiple occurrence, are widely
used, particularly in biostatistics, e.g., Cook and Lawless (2007), where they are also known as
time-to-event models, inspiring the name TEDDA (Time to Event Data Driven Attribution)
for our modelling approach. While we do not take a time series approach to modeling a user’s
propensity to convert, our approach to modeling the change in a user’s propensity to convert
bears some resemblance to interrupted time series methods. See Dugan (2011) for a discussion
and comparison of the two methods in the context of criminology research.

The traditional approaches to understanding the relative effectiveness of different types of
ads have focused on Media Mix Modeling (MMM), which typically fits time series models to a
few years of aggregated conversion data in order to compare broad classes of ads, e.g., De Haan
et al. (2016); Kireyev et al. (2016). While this can help in allocating overall marketing spend
between channels, it cannot provide the kind of granular cross- and within-channel insight into
specific types of ads that MTA obtains by leveraging individual user paths.

More recent lines of work focusing on modelling individual user paths can be divided into
models that rely on the sequence of user events and those that incorporate the timestamps
of these events. The former category includes Markov chain methods such as Li and Kannan
(2014) and Anderl et al. (2014), which treat both conversions and each ad channel as states
in a kth-order Markov chain and estimate the probability of a user moving from one state to
the next. Attribution credit in these models is based on the change in conversion probabilities
when a channel is removed from the chain. Dalessandro et al. (2012) and Shao and Li (2011)
are similar in depending only on the sequence of ad events, but they each fit logistic regression
models for a binary conversion outcome. They then use Shapley values to distribute attribution
credit, using the probability of a conversion as the value function in the Shapley algorithm.

There are also several previous papers falling into the latter category, i.e. models that in-
corporate event timestamps to fit continuous time models for user conversion activity. A recent
line of work, including Du et al. (2019), Kumar et al. (2020), and Yao et al. (2021) use recurrent
neural networks combined with various attention mechanisms to estimate conversion probabil-
ities, with various architectures to correct for possible confounding. Most then use the Shapley
value algorithm to distribute attribution credit. Geng et al. (2021) discusses how to incorporate
the attributions generated by Du et al. (2019) into a bidding system.

There is also a line of work using more traditional statistical methods, while still incor-
porating event time stamps. Lewis and Wong (2018) uses exponentially decaying ad effects to
build a model to estimate the incremental effect of ads using experimental data. They use an
attribution methodology similar to the one we will describe to then bid optimally based on that
model. Finally, Zhang et al. (2014) and Xu et al. (2014) take a similar approach to our model by
treating conversions as occurrences in a Poisson process. Both assume an exponentially decaying
ad effect. Zhang et al. (2014) considers a more restricted setting where users can convert at most
once, similar to traditional survival analysis, and then fits an additive model that assumes there
are no interactions between ads. Xu et al. (2014) models both conversion events and ad events
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in different channels as a set of mutually exciting Poisson processes, allowing ad events to affect
not just the conversion probability, but also the probability of future ads. However, they consider
only the aggregate conversion credit over the data set, not the credit per ad.

Our model can be used with either observational data or data from randomized experiments
set up to measure the causal (or incremental) effects of ads. Both types of data can be useful,
depending on the goals and context. Observational data can be interpreted in terms of the corre-
lation between showing ads and conversions, while data from randomized experiments allows for
a causal estimate of the number of conversions caused by ads. The latter is the gold standard,
but these experiments are often difficult to run, and may not be available on an ongoing basis.
In these cases, advertisers may prefer to do MTA on correlational data over not having any sort
of MTA, particularly if they have evidence, perhaps from previous randomized experiments,
that the relative credit assigned to the ad types of interest is unchanged after accounting for
incrementality, even if the absolute credit differs. These are choices that the modeller must make
based on their knowledge of the application area, media types, and brands involved. Rather than
discussing the pros and cons of observational and experimental data, this paper will focus on
the overall system that can be used to model either type of data.

The remainder of this paper is organized as follows: Section 2 goes into further detail about
the key issues an MTA system must solve. In Section 3 we present our system, describing both the
model for conversion occurrences and the attribution credit assignment methodology. Section 4
discusses how to evaluate the quality and accuracy of the system. Section 5 presents a simulation
study of our approach (with additional simulations in the supplementary material). Section 6
discusses possible future improvements to this system.

2 Attribution Requirements
We propose two key requirements we believe an MTA system should satisfy, both related to how
the system should consider the effects of time.

2.1 Requirement #1
MTA provides critical insights about the relative value of ads. In the context of digital advertis-
ing, where advertisers compete in an auction to determine whose ad is shown, the fastest way
to incorporate these insights is to allow them to affect the advertiser’s bid. This requires an
MTA system with nearly real-time (e.g., daily) updates, in order to allow the advertiser to bid
in accordance with the attribution results without sacrificing their responsiveness to business
fluctuations, changes in their ads’ effectiveness, or other novel trends.

Real-time user path data is fundamentally incomplete: If an ad was shown this morning at
10am, and it’s now 6pm and there was no conversion, that does not mean that this ad resulted
in 0 conversions. Rather, it resulted in 0 conversions over the first 8 hours. We do not know what
will happen over the next day or week. Instead of treating this observation as a 0 or negative
response, we should treat this observation as being right-censored. Thus our first requirement is
that our system be able to handle incomplete or censored data.

To illustrate the importance of this principle, consider the toy example in Figure 1. If our
attribution system treats the data as being complete, so that the conversion outcome is binary
for each user, with no censoring, and we run it now, it will likely find that having ad type 2 is
not associated additional conversions: paths with and without ad type 2 convert at equal rates.
However, in four hours, it would find that ad type 2 is associated with 50% more conversions.
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Figure 1: An example of the effects of incomplete or censored data.

Such strongly conflicting results can cause unstable and problematic behavior when used in
bidding algorithms. To avoid this, our system needs to recognize that after 4 hours, we not only
have new values for the response, but we also have more overall information about the rate of
conversions because we have observed the user’s post-ad paths for longer. In other words, we
need to recognize that we have incomplete observations due to censoring.

This leads us to consider modeling the number of conversions over time, which would natu-
rally capture that our estimates are more uncertain “now” than in 4 hours. The next requirement
leads us further in this direction.

2.2 Requirement #2
An ad’s contribution to any potential conversion should be allowed to differ depending on the
time between the ad exposure and the conversion, typically decreasing as the time between the
ad exposure and the conversion increases. Similarly, ad credit shouldn’t just depend on the order
of the ads in the path.

Many advertisers already recognize this in an informal way, setting “lookback windows”
of N = 7 or 30 days and only distributing conversion credit to ads in the N days before the
conversion. However, an ad’s influence likely decays more continuously, so that even within the
lookback window, ads further in time from the conversion deserve less credit than those close
to it, if all else is equal. While this implies that the order in which ads occur should affect the
relative conversion credit that ads receive, the order is not sufficient: if two identical ads occur
within hours of each other, we’d expect them to receive similar levels of credit for any subsequent
conversions, whereas if they are separated by 30 days, we’d expect the later ad to receive more
credit. How fast or steeply this decay occurs will depend on the individual advertiser and the
type of ad, and should be learned from the data, but our model should be flexible enough to
treat ads differently based on not just their order, but when they occurred.

We illustrate this with another toy example in Figure 2. To distinguish this issue from
Requirement #1, let’s suppose that the data is complete in this case, e.g., this data is from long
enough ago that no further conversions are possible/expected. If we look only at the order in
which ads occur, we would learn that ad type 2 is associated with having 50% more conversions.
But if we look at just users 1 and 2 and consider the timestamps, we will instead learn that the
effect of ad type 2 decays fast enough that it deserves little credit for conversions far from it.
However, looking at users 3 and 4, we will see that ad type 2 is actually associated with all the
conversions that occur soon after it is shown. This is a simplified example, but it nevertheless
illustrates that a model that looks only at the order of the ads and the binary conversion label



60 Shender, D. et al.

Figure 2: An example of the importance of considering event timestamps.

can reach a very different conclusion compared to a model that takes into account the times at
which ads and conversions occur.

Together these two requirements imply that we should model not just the sequence of ad
events and binary (or even integer) conversion outcomes for each path, but rather the times
when conversions occur given when ads occur. A natural option for this type of modeling is
survival analysis. In this framework, conversions are viewed as occurrences of a Poisson process.
The conversion intensity function, also known as the instantaneous occurrence rate or the hazard
rate or just the intensity function, is allowed to vary with time, and in our case depends on the
times at which a user has previously seen ads. Attribution credit is then based on the effect of
an ad on a user’s instantaneous conversion rate at the time of the conversion.

In the next section we detail our model for conversions and how we use it for attribution.

3 Proposed Model
Our attribution system has two parts: a model for users’ conversion behavior, and an attribution
credit assignment algorithm that assigns credit in accordance with this model. We will focus
the bulk of our exposition on the former. Given a model for user conversion behavior, there are
many reasonable credit assignment algorithms. While we will discuss options and the algorithm
that we use, the best choice depends on the goals of the system.

3.1 Modeling User Conversion Behavior

As discussed in the previous section, in order to capture how ad effects vary over time, as well as
handle incomplete data, we will model conversions as a realization of a Poisson counting process
with a time-varying intensity function, λ(t). In particular, if we define Yi(t) as the number of
occurrences (conversions) for user i up until time t , then

Yi(t) − Yi(s) ∼ Poisson
(∫ t

s

λ(t)dt

)

for any 0 � s � t . We will use a log-linear model for the intensity, and allow it to depend on user
features (e.g., the country the user is located in), the time since previous ads were seen, as well
as other ad features (e.g., format of the ad). We will start with an overly simplified model for
λ(t) and gradually add these complexities. This model formulation treats data from randomized
experiments in the same way as observational data, but with an additional feature for treatment
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Figure 3: Conversion intensity over time for a user with a single ad event.

group assignment. We will discuss specifics in Section 3.1.5. We will end the conversion modeling
section with a brief discussion on options for estimating this model.

3.1.1 No User Features, no Ad Features, Single Ad per User

To start with, consider a model that has no user features, no ad features (other than time), and
where we assume that each user sees at most one ad. This is an overly simplified view of the
world, particularly the assumption of just a single ad per user, but it is useful for exposition.
Suppose that the single ad occurs at t1; in principle this should also be indexed by user, but we
will drop the user subscripts for brevity. In this set-up, our model becomes

log(λ(t)) = α0 + f (t − t1).

α0 represents the log of the conversion rate before ads are shown, while f (t − t1) represents the
effect of an ad on the user’s conversion rate. A user’s conversion intensity over time might then
look as in Figure 3. The baseline rate before the ad is exp(α0), while after the ad the intensity is
exp(α0) × exp(f (t − t1)). Since this model is log-linear, ads have a multiplicative effect on users’
conversion rates.

In general, f is a function of time that we would like to estimate. We restrict ourselves to
functions such that f (x) = 0 whenever x � 0, i.e. there is no ad effect before the ad is actually
seen. There are many ways to parameterize f in order to do estimation; we will review a few
concrete options, but many other parameterizations are also possible.

One option is to treat f as a continuous function. Since we often expect the ad effect to decay
rapidly, modeling f as a mixture of exponentials is a natural choice. We can consider a linear
combination of exponential decay functions {exp(−θlt)}l=1,...,L, where the choices of θl determine
the span of the linear combinations and the speed of the decay. Then we can parameterize the
intensity as

log(λ(t)) = α0 +
L∑

l=1

βl exp(−θl(t − t1)),

where βl are parameters to be estimated. The above equation is consistent with a proportional
hazards model and essentially implies a doubly exponential decay for λ(t). Lewis and Wong
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(2018) and Zhang et al. (2014) proceed in a similar fashion, but set the right-hand side of the
above equation equal to λ(t) rather than log(λ(t)), essentially assuming an additive hazards
model.

Another option for estimating f as a continuous function is to use splines. Letting b1, . . . , bL

be the functions in the spline basis, the model becomes

log(λ(t)) = α0 +
L∑

l=1

βlbl(t − t1).

We can then optimize for α0 and β1, . . . , βL, possibly with a regularization constraint or prior
on the βl values. Splines are commonly used for approximating continuous functions. However,
if the true intensity does decay very rapidly, then for a fixed basis size, an exponential function
“basis” might perform better than a spline basis. We do not make a specific recommendation
here; rather, this is an area for future study.

A third option might be to approximate f as a step function, estimating a separate ad
effect for each step. For example, we might choose to estimate the jump in conversions in the
first 24 hours, the next 24 hours, and the subsequent 28 days. Then if t is measured in hours,
and using I to denote indicator functions, the log-intensity becomes:

log(λ(t)) = α0 + β1I {t − t1 � 24} + β2I {24 < t − t1 � 48} + β3I {48 < t − t1 � 24 × 30}. (1)

Again, we can now optimize for α0, β1, β2, and β3, perhaps placing a prior on the coefficients
or applying other types of regularization. As we add additional features to the model or if we
wish to pool data across advertisers, treating these coefficients as random effects may also be
attractive.

3.1.2 Ad Features

Staying for now in the single ad setting, we can also consider how to add ad features, such
as the format of the ad, whether it was shown on a mobile device, and so on, to the model.
For example, perhaps certain ad formats or campaigns are associated with a larger change in
conversions than others. To capture this, we want to allow the ad effect to vary depending on
these features. One way to do this with K total features is to write:

log(λ(t)) = α0 + f (t − t1) +
K∑

k=1

gk(t − t1, x1k).

Here k indexes the features in our model and x1k is the value of the kth feature for the first ad.
Like f , gk is a function of time to be estimated. One option is to constrain gk to be constant
over time, so that changing the feature value simply shifts the intercept for f . Conceptually,
this corresponds to a change in an ad’s initial effect, but not its decay rate. In the example
above where f is a linear combination of spline basis functions, we could take gk to be a linear
combination of lower-order spline basis functions. This would change both the ad’s initial effect
and the effect’s decay rate. While we would generally expect to choose gk to be simpler than f ,
even this is not required.

As written, if for each level of each feature k we allow a non-zero value for gk, the model is
overparameterized. This can be handled in the usual ways, e.g., setting gk = 0 for some reference
level and interpreting f as the ad effect for when all ad features are at their reference level, or
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Figure 4: Conversion intensity over time for a user with multiple ad events.

by adding a constraint so that the gk average to 0 for each k and interpreting f as the average
ad effect. Alternatively, if we are applying regularization when we fit the model, then that may
be enough for all the parameters to be well-defined. Our model is flexible with respect to these
choices and so we leave the notation general.

3.1.3 Multiple Ads

The motivation for MTA is the case where users see multiple ads, making the models so far of
expository, rather than practical, interest. Suppose now that a user sees multiple ads at times
t1, . . . , tJ . As a starting point, we consider the following model:

log(λ(t)) = α0 +
∑

j

f (t − tj ) +
∑
j,k

gk(t − tj , xjk),

where xjk is the feature value for the kth feature for the jth ad. At a high level, this model
says that ads with identical features have the same decay curve, but ads with different feature
values may still have different decay curves. This is illustrated in Figure 4, which shows what
an intensity curve for a user who sees three ads, each with different features values, might look
like.

While this is not easily illustrated in a figure, notice that our model formulation also en-
codes that the effects of multiple ads are multiplicative (and therefore additive on a log-scale).
This does not entirely match with our intuition: if showing a user an ad doubles their instan-
taneous conversion rate in the short-term, we wouldn’t expect showing them 50 ads within 10
minutes (perhaps with multiple ads per site) to increase their conversion rate by a factor of 250.
Simultaneously, it’s intuitive that there might be a synergy between ads, such that seeing ad
A might increase conversions by 2x, seeing ad B might increase conversions by 1.5x, but that
seeing both ads increases conversions by 5x rather than 3x. In other words, interactions between
ads are possible and our model needs to be flexible enough for the user to fit interaction effects,
should they choose to.

One way to accomplish this is to generalize our notation slightly and allow xjk to depend
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not only on ad j , but also on ads j ′ < j , as well as the subscript value j itself. In other words,
the features can depend not only on the current ad, but on previous ads and the ad index.

This allows us to add an effect for being the jth ad. For example, assuming for simplicity that
we have no other ad features, we could define a single ad feature g1(t−tj , j) = fj (t−tj )−f (t−tj ),
where fj is the effect function for the jth ad and f is the “default” or average ad effect function.
Then our model formulation is equivalent to letting

log(λ(t)) = α0 +
∑

j

fj (t − tj ), (2)

i.e. a model where the ad effect differs for each ad.
Allowing the feature vector for an ad, xj = (xj1, . . . , xjK), to depend on previous ads also

allows us to encode interactions between different ad formats or the timing of different ads. For
example, we could add a feature I (tj − tj ′ < � for j ′ < j) as an indicator for whether there was
a preceding ad in the previous � hours. This can be desirable if we only want to consider ad
interactions if the two ads are within � hours of each other. Assuming for notational simplicity
that this is the only feature we model, we have

log(λ(t)) = α0 +
∑

j

f (t − tj ) +
∑

j

g1(t − tj )I (tj − tj ′ < � for j ′ < j), (3)

where, without loss of generality, we have set I (tj − tj ′ < � for j ′ < j) = 0 as the “default” or
reference level.

The complexity of the model and any included interactions are necessarily application-
dependent. In the case of an advertiser with a large amount of data and many ads shown per
user, we may be able to make detailed estimates of the marginal effect of successive ads, as
well as their interactions. On the other hand, when data is scarcer, it may be more practical to
assume all ads have the same effect. The key point here is that this framework is flexible enough
to allow for many different specifications of the factors that affect the conversion rate.

3.1.4 User Features

User features that affect conversion rates can be handled in one of two ways. If the feature only
changes the user’s overall conversion rate, but not how they react to ads, then we can treat it
as a shift in α0. Taking as an example the case of a model with a single user feature, a user’s
bucketized age, we write

log(λ(t)) = α0 + αage +
∑

j

f (t − tj ) +
∑
j,k

gk(t − tj , xjk).

The standard identifiability restrictions for a regression with both an intercept and one or more
categorical variables apply: we can either drop one of the coefficients for the age buckets, so that
the interpretation of α0 changes to be the average conversion intensity before any ads are shown
for the dropped bucket or equivalently, drop α0. Alternatively, we can require that

∑
αage = 0,

where the sum is over all possible age buckets, and the interpretation of αage changes to be the
deviation, for that age bucket, from the average conversion intensity before ads are shown.

If instead we believe that the user feature changes the ad effect, then we can incorporate
it into the model in the same way as any other ad feature, xjk, thinking of the feature as “age
when this ad was shown.” Of course, unlike other ad features, which may vary amongst ads on
the same path, this one will not, but that does not change how we write our model. As long as
this feature varies across users, it will still be estimable.
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3.1.5 Experimental Data

So far we have considered a general model, which is applicable to all data and which, absent
additional assumptions or prior experimental data, estimates the correlational effect of ads on
conversion intensity. However, as mentioned in the introduction, with experimental data we can
measure the causal effect of ads on conversion rates. These can be incorporated into our model.

The design of experiments measuring the causal effects of ads is highly dependent on the
details of the media type and ad serving environment. For our discussion, we assume a generic
design in which some ads are shown (“exposed”), while others are withheld (“unexposed”), but
where we still log when an advertiser’s ad would have been shown had we not withheld it. We
call the event where we receive a request for an ad a query event, and an event where the ad is
actually returned an ad event. Thus when ads are shown, there are two simultaneous events, an
ad event and a query event, while when ads are not shown there is a single query event.

Then, letting B(j) be an indicator function that is 1 when ad j is shown and 0 otherwise,
consider the model

log(λ(t)) = α0 + αage +
∑

j

f (t − tj )B(j) +
∑
j,k

gk(t − tj , xjk)B(j)

+
∑

j

m(t − tj ) +
∑
j,k

nk(t − tj , xjk), (4)

where, analogously to fj , mj(t − tj ) = m(t − tj )+∑
k nk(t − tj , xjk) represents the observed change

in a user’s conversion rate (on a log scale) after the jth query. Note that as with the previous
observational data, this query effect is not necessarily a causal effect: being targeted for an ad
does not lead to you then making a purchase. If you use a search engine to search for “sneakers”,
you’re more likely to buy sneakers after the query than a user who doesn’t do that search, but it
probably wasn’t the query that caused that difference. Rather, you were interested in sneakers,
and then you did the search.

The ad effect, separate from any query effects, for the jth ad is given by fj (t − tj ) =
f (t − tj )+∑

k gk(t − tj , xjk). This is the additional increase (on a log scale) in a user’s conversion
intensity if the ad is actually shown. Figure 5 shows the intensity curves for a user who saw
ads (solid line) and a user who had the same queries but for whom ads were withheld. Their
difference would represent the ad effect.

Whether our experiment is such that fj , the ad effect for a user’s jth query, is causally
identifiable depends on the details of our experiment, as well as how ads are served in our setting.
In the generic design described above, the overall causal effect of all the ads subject to ablation,
i.e. the number of incremental conversions, is clearly identifiable. However, if there are multiple
types of ads (e.g., comparing effects of first and second ad or search ads and display ads), then
either changes in the experimental design (e.g., randomly ablating subsets of ads for each user)
or additional assumptions (e.g., order of ads doesn’t matter) may be needed for all the effects
to be causally identifiable. The details of this kind of experimental design are out of scope for
this paper. However, in our experience, quite often some function of the fj has a valid causal
estimator that can be derived from our model.

3.1.6 Further Refinements

So far the model has assumed that only ads, queries, and user features change the conversion
rate. However, there are other factors which can also change conversion rates. In general, our
model is flexible enough to accommodate many of these.
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Figure 5: Conversion intensity over time for a user who saw ads (solid line) vs a user with the
same queries for whom ads were held back (dashed line).

One common factor is seasonal effects, such as holidays, or more granular effects due to
time of day or day of week. Modeling these can be as simple as adding indicators for each hour
of day, or as complex as fitting additional spline functions to capture the pattern.

Another factor is that conversions themselves affect future rates of conversion. At one
extreme are cases where only a single conversion is possible for each user, such as if the conversion
represents signing up for a service or downloading an app. In those cases we can treat the
model as a single-occurrence survival model and estimate it accordingly. In less extreme cases a
conversion might decrease the likelihood of future conversions (e.g., someone buying a vacation
package is probably less likely to buy a second one right away), but it can also increase the
likelihood of a conversion (e.g., someone buying clothes from a retailer might be more likely to
purchase from them again in future). Thus treating conversions themselves as events that can
change the post-conversion intensity may improve the model. This is done by Xu et al. (2014),
which models both ad clicks and conversions as mutually exciting Poisson processes, where the
intensity of each process depends on both itself and the other processes. While we may not want
to model the ad clicks explicitly in our setting, we may consider a similar approach of letting
the conversion intensity depend on the number or timing of past conversions.

3.1.7 Estimation

There are different ways to estimate the intensity function of a Poisson process. If f , gk are
either piecewise constant or can be approximated as such, then by breaking each user’s path
into intervals where the intensity, λ(t), is constant, we can treat each interval as an observation
in a Poisson regression problem. The number of conversions in the interval is then the response,
and the length of the interval is the offset.

There is a large literature on fitting these types of large-scale regression problems, Poisson
and otherwise. The details are outside the scope of this paper and we will not attempt to
survey the existing technologies, but point to Johnson et al. (2016) as one example of a practical
solution. There the authors place a prior on the parameters and use Bayesian machine learning
methods to estimate the parameters and their prior variances, essentially treating the parameters
as random effects.
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If we do not want to assume that f , gk are (approximately) piecewise constant, then we
can use the likelihood for an inhomogeneous Poisson process directly. Suppose we observe users
for the time interval [0, τ ]. Let λi(t) be the conversion intensity for user i at time t , and let
Tij , j = 1, . . . , Ci be the conversion times for user i. The log-likelihood is

N∑
i=1

⎡
⎣−

∫ τ

0
λi(t)dt +

Ci∑
j=1

log(λi(Tij ))

⎤
⎦ .

See Andersen et al. (2012) for a detailed derivation. In the case where f , gk (and therefore λ)
are piecewise constant, this reduces to the log-likelihood for the Poisson regression approach
above. Without the piecewise constant assumption, one could instead try standard optimization
techniques, such as gradient descent, to estimate the parameters for f and gk.

3.2 Credit Assignment Algorithm
Even given a model for conversions, there are still many ways to distribute credit for the observed
conversions to preceding ads. Different methodologies with different properties may be desirable
depending on the context. The method we propose, which we call backwards elimination, differs
from existing methods in how it distributes credit for conversions (or changes in conversion
intensity) that only occur because users were shown multiple ads. Our algorithm tends to give
this credit to later ads, while Shapley value-based methods, commonly used in the existing
literature, divide this credit evenly amongst the ads. Both methods are reasonable, but they
solve different problems, as we will discuss later.

We focus on introducing backwards elimination in detail, including considerations for at-
tribution with experimental data. We leave a more detailed examination of how backwards
elimination distributes credit due to synergies between ads and comparison to Shapley values
to Appendix B.

3.2.1 Backwards Elimination

To illustrate the backwards elimination algorithm, consider a user path with three ads followed
by a conversion at time t∗, and whose estimated conversion intensity is plotted in Figure 6.

We define the contribution from the last ad before the conversion to be the difference in the
estimated conversion intensity at t∗ with all ads minus the estimated intensity at t∗ if the last ad
is dropped. The contribution from the second-to-last ad is the difference in conversion intensity
at time t∗ if the last ad is dropped minus the intensity if the last two ads are dropped. More
generally, we proceed backwards through the path, removing an additional ad and attributing
credit to the removed ad in proportion to the resulting change in intensity.

More formally, let A(n) = {(Xj , tj ) : j = 1, . . . , n} denote the first n ads on user i’s path,
where we have dropped the index i for convenience, and where Xj = (xj1, . . . , xjk, . . . , xjK) is
the vector of ad features in our model. Without loss of generality, suppose that tn < t∗ < tn+1,
i.e. that the conversion of interest occurs after the nth ad but before the n+1st ad. Let λ̂(t,A(j))

be the estimated conversion intensity at time t for a user who sees the ads in A(j). Let Craw(j)

denote the raw credit from our algorithm. This raw credit equals

Craw(j) = λ̂(t∗,A(j)) − λ̂(t∗,A(j − 1)),

where we let A(0) = ∅. We can also define the baseline credit as Craw(baseline) = λ̂(t∗, ∅).
Notice that the total raw credit given to ads equals λ̂(t∗,A(n)) − λ̂(t∗, ∅)), which in turn equals
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Figure 6: Attributed contribution of each ad to a user conversion occurring at t∗.

the difference in the instantaneous conversion rate at t∗ if all ads are dropped. This follows
straightforwardly from the telescoping nature of the formula above.

As an example, suppose the estimated model for λ̂(t) is of the form

log(λ̂(t)) = α̂0 + α̂age +
∑

j

f̂ (t − tj ) +
∑
j,k

ĝk(t − tj , xjk).

Then for the lth ad, we have

log(λ̂(t∗,A(l))) = α̂0 + α̂age +
l∑

j=1

f̂ (t∗ − tj ) +
l∑

j=1

∑
k

ĝk(t
∗ − tj , xjk).

With this model for successive ads λ̂(t∗,A(l)) will differ from λ̂(t∗,A(l − 1)) by a multiplicative
factor of exp(f̂ (t∗ − tl) + ∑

k ĝk(t
∗ − tl, xlk)) so that

Craw(l) = λ̂(t∗,A(l)) − λ̂(t∗,A(l − 1))

= λ̂(t∗,A(l − 1))

(
exp

(
f̂ (t∗ − tl) +

∑
k

ĝk(t
∗ − tl, xlk)

)
− 1

)
.

There are two natural ways to normalize the raw credit. We can consider either a version
that normalizes by the total credit

Cnorm(j) = λ̂(t∗,A(j)) − λ̂(t∗,A(j − 1))

λ̂(t∗,A(n))

or a version that normalizes only by the ad credit

C ′
norm(j) = λ̂(t∗,A(j)) − λ̂(t∗,A(j − 1))

λ̂(t∗,A(n)) − λ̂(t∗, ∅)
.
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If we use Cnorm(j), and normalize Craw(baseline) in a similar way, then the total ad credit plus
the baseline credit will equal the number of conversions. If we instead use C ′

norm(j), then the
total ad credit will equal the total number of conversions.

It can be shown that, assuming our estimated intensity is correct, the total expected credit
from all conversion occurrences in the path is

E[Cnorm(j)] =
∫ (

λ̂(t,A(j)) − λ̂(t,A(j − 1))
)

dt (5)

or the difference in the expected number of conversions for a user seeing the ads in A(j) versus
a user seeing the ads in A(j − 1). See Appendix A for details. Thus the expected ad credit for
ad j is the expected number of additional conversions gained when it was added to the end of
the path, without considering gains due to combining ad j with later ads.

One implication of this is that for a path with multiple ads, credit for “extra” conversions
that occur because the ads are shown to the same user, rather than each ad being shown to
different users, goes to the later ads, at least in expectation. In fact, this holds not just in
expectation and is actually a property of the raw credit, not just the normalized credit. The
details are in Appendix B, where we give an example and compare how backwards elimination
and Shapley values divide these “extra” conversions.

3.2.2 Incremental Attribution

Suppose that we have built a model for λ̂(t) with experimental data and separate ad and query
effects. In this case we want to attribute credit to ads based only on the increase in conversion
intensity caused by ads and not the query effect. For concreteness, suppose the model is the
same as equation (4), i.e.:

log(λ(t)) = α0 + αage +
∑

j

f (t − tj )B(j) +
∑
j,k

gk(t − tj , xjk)B(j)

+
∑

j

m(t − tj ) +
∑
j,k

nk(t − tj , xjk).

We define the attribution credit in the same way as before, removing a single ad at a time and
observing the change in λ̂(t∗), but now we keep all the query effects throughout. Assuming, as
before, that there are exactly n ads before the conversion, we have

log(λ̂(t∗,A(l)) = α̂0 + α̂age +
l∑

j=1

f̂ (t − tj )B(j) +
l∑

j=1

∑
k

ĝk(t − tj , xjk)B(j)

+
n∑

j=1

m̂(t − tj ) +
n∑

j=1

∑
k

n̂k(t − tj , xjk).

That is, the summations for f̂ and ĝk, the ad effects, consider only the ads in A(l), while
the summations for m̂ and n̂k, the query effects, consider all of the n events preceding the
conversion. The overall raw credit given to ads is therefore the difference between the estimated
conversion intensity at t∗ and the estimated conversion intensity for a counterfactual path with
the same queries, but where ads were always withheld. As with the non-incremental credit, it
can be shown that the expected value of the total normalized ad credit for each user equals the



70 Shender, D. et al.

expected number of incremental conversions (i.e. the expected difference in conversions with and
without ads) for that path. See Appendix A for details. Thus while it may seem strange to have
an ad’s credit depend on features of later queries, this actually leads to the most intuitive value
of the individual and total ad credit.

4 Evaluation
To evaluate this system, we use standard model fit metrics for a Poisson regression, such as the
log-likelihood or Poisson loss. There is also the prediction bias: predicted conversions / observed
conversions – 1. We can also consider sliced versions of these metrics to aid in model comparison
for feature selection.

With experimental data, we can estimate the ground truth number of incremental con-
versions that are caused by ads without needing a model by simply comparing the number of
conversions in the exposed and unexposed groups. To evaluate our model, which is fit using both
the exposed and unexposed users, we can compare this ground truth estimate to the predicted
incremental conversions obtained by comparing the model’s predicted number of conversions in
the exposed and unexposed groups. If our goal is to correctly model incrementality, comparing
the ground truth and predicted versions of incremental conversions (i.e the difference between
groups) may be of greater interest than comparing the actual and predicted conversions in each
group. As a way of evaluating both our model and credit assignment methodology, we can also
compare the ground truth incremental conversions to the normalized version of the ad credit.
To justify this comparison, recall that as discussed in Section 3.2.2, the expected value of the
ad credit should equal the expected number of incremental conversions, assuming the model
estimates are correct.

The exact estimators for these metrics depends on the details of how the experiment is
run, which in turn depend on the details of the media type and ad serving environment. For
simplicity and specificity, suppose again that the experiment splits users for the duration of the
experiment into either an exposed group, which sees ads as normal, or an unexposed group, for
whom ads are withheld, but that we are able to observe the conversions of both groups. Then
we can consider the following ground truth metric, which we call incremental conversions per
user:

ICPU = conversions in exposed group
users in exposed group

− conversions in unexposed group
users in unexposed group

.

This is essentially the observed difference in the average conversion rate between exposed and
unexposed groups. A closely related metric is the rate of incremental conversions per unit time:

ICPT = conversions in exposed group
total observation time for users in exposed group

− conversions in unexposed group
total observation time for users in unexposed group

,

where the total observation time is defined as

total observation time for users in X group =∑
i:i∈X

total time that user i is observed in the experiment.
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If all users are observed for the same length of time in the experiment, then ICPT differs from
ICPU by a constant factor. However, if the average time that each user is observed for differs
between exposed and unexposed, then the difference is more complicated and ICPT may be a
more useful metric.

We can also consider ICPE or incremental conversions per exposed conversion:

ICPE = ICPU × users in exposed group
conversions in exposed group

.

This represents the proportion of conversions in the exposed group that are incremental, after
normalizing for any differences in the sizes of the exposed and unexposed groups. As with ICPT
compared to ICPU, if the average time that each user is observed for differs between exposed
and unexposed, we may prefer a version of ICPE that accounts for this:

ICPE’ = ICPT × total observation time for users in exposed group
conversions in exposed group

.

We can compare each of these with their counterparts predicted by the model, which we
call PICPU (predicted incremental conversions per user) and PICPPE (predicted incremental
conversions per predicted exposed conversion). Their definitions are the same, but with “conver-
sions” replaced by “predicted conversions”. We can also evaluate our attribution methodology by
considering the attribution credit, normalized by λ̂(t∗), given to ads for conversions that occur in
the exposed group. This metric, which we call AICPE (attributed incremental conversions per
exposed conversion), represents the proportion of credit for exposed conversions that is given to
ads and is comparable to PICPPE and ICPE. Comparing PICPPE and AICPE against ICPE
is therefore an appropriate validation metric for our model and attribution methodology, re-
spectively. Confidence intervals for these metrics can be obtained by bootstrapping over users.
Alternatively, we could incorporate the uncertainty over the model itself by bootstrapping or
using a block jackknife to refit the model and compute the evaluation metrics per block and
then compute the variability of this estimate over the blocks.

For feature selection, it can be helpful to compare these metrics on various slices of users,
however we must be cautious in choosing features to slice on. In particular, we must avoid any
confounding between a user’s treatment assignment, slice value, and conversion outcome. For
example, if ad exposure increases the length of a user’s path, perhaps because seeing ads leads
to increased activity, then slicing by the total number of queries in a path leads to incomparable
sets of exposed and unexposed users. However slicing on user features that are unaffected by the
experiment, such as city or gender, is still valid and can be useful both for feature selection and
understanding user behavior.

5 Simulation Study
We simulate user paths and show that our system performs well on this data. In general, sim-
ulating user paths and conversion behavior requires strong assumptions about the generating
process for both ad exposures and conversions. These assumptions are necessarily much simpler
than actual user behavior. Nevertheless, simulations can still provide confidence by showing that
the model is working as expected in these cases. We will focus on a single scenario here, leaving
the remainder to the supplementary materials.

In each scenario, we simulate 500 distinct data sets (“advertisers”), each with 1 million users
and 30 days of data per user. For each dataset, we also create 1000 bootstrap replicates and
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fit the model on both the original and replicated datasets. We compute the “basic” or reverse
percentile bootstrap interval (Davison and Hinkley, 1997) for the model coefficients:

(2θ̂ − θ̂∗
1−α/2, 2θ̂ − θ̂∗

α/2),

where θ̂ is the estimate of the parameter using the original dataset and θ̂∗
α is the α quantile of

the bootstrap estimates for the parameter. We take α = 0.05 and also compute the coverage of
the resulting CIs over the 500 distinct datasets.

5.1 Scenario 1
We will consider two possible types of ads, each with a different effect on conversions, and
simulate each user as having exactly one ad of each type (for a total of two ads). We simulate the
ad occurrence times as uniform in our 30 day observation window, i.e. [0, 30.0] and independent
of each other. The first ad type doubles the conversion rate on the first day after the ad, increases
it by a factor of 1.5 on the second day, and increases it by a factor of 1.2 after that. We refer
to these as the short, medium, and long term effects, respectively. The second ad type increases
the conversion intensity by a factor of 1.5 on the first day, 1.2 on the second day and 1.0 (or no
increase) after that.

We can then simulate a user’s conversion events as a Poisson process where the intensity is

log(λ(t)) = α0 + β1I {0 < t − tad type 1 � 1} + β2I {1 < t − tad type 1 � 2}+β3I {2<t−tad type 1�30}
+ β4I {0 < t − tad type 2 � 1} + β5I {1 < t − tad type 2 � 2}+β6I {2<t−tad type 2�30},

where tad type i is the occurrence time for the ad of type i for this user and the βi ’s are as
described above; the values are also listed in Table 1. There are a number of ways to simulate this
Poisson process; we follow Algorithm 5 in Pasupathy (2010). This algorithm becomes particularly
straightforward in our case because the intensities are piecewise constant. An example of a
simulated dataset for 1 advertiser with 1 million users is included in the supplementary materials.

Table 1 shows the ground truth parameters, an example estimate and bootstrap 95% CI
for a single advertiser (to help with the reader’s intuition about the typical width of the CI’s),
as well as the coverage percentage of the 95% CI’s over the 500 datasets. As we can see, we get
reasonably close to the nominal 95% coverage.

We can use our attribution methodology and normalize by λ̂(t∗) to get AICPE. This model
was not fit on simulated experimental data and no query effect was fit, so there is technically
no ICPE to compare this to. However, we can compare it to what the ICPE would be if we
assumed there was no query effect and we simulated additional users who have an ad query
but don’t see an ad, i.e. users whose conversion intensity is equal to the baseline for the entire
observation window. This is equivalent to an experimental model where there is no query effect:
i.e. where the observed and incremental effect of ads is the same. While computing E[ICPE] and
E[AICPE] in this scenario is somewhat involved, by leveraging equation (5), it can be shown
that under very mild assumptions E[ICPE] = E[AICPE]. Thus we define the additive error as
AICPE− ICPE and the relative error as AIPCE/ICPE−1 and consider whether their CI’s cover
0. The results are in Table 2 and show that we achieve the nominal coverage.

6 Discussion
We have presented a data-driven attribution system based on estimating the effect of ads on a
user’s conversion rate per unit of time. This system satisfies our previously outlined requirements,
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Table 1: Ground truth, estimated model coefficients, and coverage % for Scenario 1.

Ground Truth Example Estimate
[Example CI]

95% CI Coverage
(over 500 datasets)

Baseline (per day)
[exp(α0)] 0.0333 0.0333

[0.0332, 0.0334] 95.4%

Ad Type 1

Short term
[exp(β1)] 2.0 2.006

[1.990, 2.023] 94.4%

Medium term
[exp(β2)] 1.5 1.512

[1.498, 1.526] 92.8%

Long term
[exp(β3)] 1.2 1.199

[1.194, 1.203] 95.2%

Ad Type 2

Short term
[exp(β4)] 1.5 1.504

[1.492, 1.517] 93.8%

Medium term
[exp(β5)] 1.2 1.207

[1.196, 1.219] 94.8%

Long term
[exp(β6)] 1.0 1.000

[1.000, 1.003] 91.6%

Table 2: Additive and relative error of AICPE for Scenario 1.
Example Estimate

[Example CI]
95% CI Coverage

(over 500 datasets)

Additive Error × 1e − 2
0.05

[−0.25, 0.35] 94.8%

Relative Error × 1e − 2
0.34

[−1.81, 2.49] 94.8%

namely that it can handle incomplete or censored data as well as take into account the times
as which ads occur, not just their order, when assigning credit. These features of our system
make it appropriate for use in real-time bidding, although the details are beyond the scope
of this paper given the many application-specific considerations. We have also discussed some
examples of how to use covariates to model the conversion intensity over time, although again
the detailed choice of covariates is highly application-dependent. In this section, we will discuss
two areas of potential future work. The first relates to the relationship between ads, while the
second concerns the effect of modeling assumptions on attribution outcomes.

Thus far, we have assumed that ads are independent of each other, in addition to the
standard Poisson process assumption that conversions are independent of each other. However,
for some types of media seeing an ad can lead to a user seeing more ads in the future. This can
be a direct result of a user’s interactions with an ad, such a click on a display ad that then leads
to the user seeing further related ads. It can also occur as a result of more indirect interactions,
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such as when seeing an ad prompts a user to search for a related term, leading to them seeing
additional related search ads. In these cases, to the extent that the later ads are caused by the
earlier ads, some of the credit for the later ads should arguably be redistributed to the earlier
ads. Our system does not currently account for these effects when allocating credit. One way to
remedy this might be by having a multi-stage model, where we first use all the ads to predict
conversions. Consider the earlier example where display ads can cause search ads. Suppose that
in our original model, the search ad gets 0.6 credit and the display ad gets 0.4. We can fit a
second model where we use display ads as the events and search ads (rather than conversions)
as the response. We can then allocate credit for the search ad between the preceding display ads
and a baseline. If, for example, in this second model 30% of the credit for the search ad occurring
goes to the display ad, with the remaining 70% going to the baseline, then we can reallocate
30% of the conversion credit attributed to the search ad in the first model to the display ad,
keeping 70% of the credit with the search ad. As a result, the total credit for the display ad
would be 0.4 + 0.3 × 0.6 = 0.58 and the credit for the search ad would be 0.7 × 0.6 = 0.42. In
practice however, this requires a rich dataset in order to be able to detect these interactions and
thus may not always be possible.

While we have discussed a few examples of features and structure for modeling λ(t), we
have not discussed in detail how the model structure influences attribution results. Consider a
simpler version of the model from our simulation, where all ads have he same effect but where
the user may have many ads:

log(λ(t)) = α0 + β1I {0 < t − ti � 1 for some i}
+ β2I {1 < t − ti � 2 for some i}
+ β3I {2 < t − ti � 30 for some i}.

If there were two ads in the 24 hours before a conversion, the second ad would not change the
estimated conversion intensity at conversion time and would therefore get 0 credit, i.e. if we
assume there are only two ads in the path, λ̂(t∗,A(2)) − λ̂(t∗,A(1)) = 0. If we find it unrealistic
to distribute all the credit to the first ad rather than the second, then in this particular case we
can simply model the marginal effects of an additional ad in each time bucket (this is similar to
simulation Scenario 4, considered in the supplementary materials):

log(λ(t)) = α0 + β1I {0 < t − ti � 1} + β2I {1 < t − ti � 2} + β3I {0 < t − ti � 30}
+ β4I {0 < t − ti � 1 for two distinct values of i}
+ β5I {1 < t − ti � 2 for two distinct values of i}
+ β6I {0 < t − ti � 30 for two distinct values of i}.

More generally, we can consider a model where we estimate a separate ad decay function for
each ad as in Equation (2):

log(λ(t)) = α0 +
∑

j

fj (t − tj ).

However, we cannot model an infinite number of ads in each term. At some point either data
sparsity or regularization will lead to some of the later ad effects being estimated as 0. As a
result, in some cases the last ads before a conversion may get 0 credit. One alternative to avoid
this is to pool data and estimate some ads as having the same effect. This can be done by
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assuming that all ads j > j ′ have the same effect:

log(λ(t)) = α0 +
j ′∑

j=1

fj (t − tj ) +
J∑

j=j ′
fj ′(t − tj ).

Or we could pool in a more sophisticated way, by e.g., supposing that an ad with no other ads
in the preceding X days “resets” the counter and has the same effect as the very first ad. This
pooling makes it more likely that the last ads before a conversion will get non-zero attribution
credit.

The larger point here is that the model structure and the way in which we pool data
to estimate the different ad decay curves has repercussions on the results of the attribution
algorithm. We can of course use overall model fit metrics to guide our choices, but this points to
the necessity of considering a wide range of models. Care may also be needed, since attribution
results may differ most for long paths, where we most care about MTA, while overall model fit
may be comparable, if long paths are relatively rare. As with most modeling choices, the right
approach depends on the context and requires careful consideration from the modeller.

Supplementary Material
The supplementary material contains three files. The first is a PDF with additional technical
material: In Appendix A we prove a result about E[NormalizedCredit (j)] mentioned in section
3.2.1 of the main text. In Appendix B we give a detailed discussion of the similarities and differ-
ences between Backwards Elimination (our proposed attribution method) and Shapley Values,
another commonly used method. In Appendix C, we present additional simulation scenarios and
their results.

The other two files are a data file, data.csv, with sample data used in our simulations, and
a README file with a detailed description of the data. We do not include code to replicate
the simulation results. While our method can be applied using standard Poisson regression
methods, our simulation framework is tightly integrated with our production environment and
our proprietary data format. This makes sharing the code impractical.
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