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Abstract

The use of error spending functions and stopping rules has become a powerful tool for conducting
interim analyses. The implementation of an interim analysis is broadly desired not only in
traditional clinical trials but also in A/B tests. Although many papers have summarized error
spending approaches, limited work has been done in the context of large-scale data that assists in
finding the “optimal” boundary. In this paper, we summarized fifteen boundaries that consist of
five error spending functions that allow early termination for futility, difference, or both, as well
as a fixed sample size design without interim monitoring. The simulation is based on a practical
A/B testing problem comparing two independent proportions. We examine sample sizes across a
range of values from 500 to 250,000 per arm to reflect different settings where A/B testing may
be utilized. The choices of optimal boundaries are summarized using a proposed loss function
that incorporates different weights for the expected sample size under a null experiment with
no difference between variants, the expected sample size under an experiment with a difference
in the variants, and the maximum sample size needed if the A/B test did not stop early at an
interim analysis. The results are presented for simulation settings based on adequately powered,
under-powered, and over-powered designs with recommendations for selecting the “optimal”
design in each setting.
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1 Introduction
When presented with accumulating data over the course of an experiment, it is recognized that
multiple testing during the experiment, for instance through interim monitoring, will lead to
inflated type I error rates (Armitage et al., 1969). However, methodology for controlling type
I error rates has been developed so that an experiment can be stopped early if there is strong
evidence of some difference and/or futility during an interim analysis and is commonly applied
to biomedical clinical trials. Ad hoc rules attempt to ensure that study operating characteris-
tics (e.g., power and type I error rates) are maintained through the implementation of interim
analyses (Friedman et al., 2015). Group sequential tests proposed by Pocock (1977), O’Brien
and Fleming (1979); Wang and Tsiatis (1987); Demets and Lan (1994); Jennison and Turnbull
(1999) have all been incorporated into clinical research and maintain the desired study operating
characteristics while incorporating interim evaluations of the data to determine if a study should
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stop early for futility (i.e., not detecting any effect), the difference (i.e., finding superiority or
inferiority), or both.

Ongoing evaluation of accumulating data is not uncommon in an industry setting for A/B
testing, where the ability to make rapid decisions is paramount to company success. Kohavi et al.
(2013) comprehensively and thoroughly discussed online A/B testing at large scale. In addition,
Miller (2010, 2015); Koning et al. (2022); Azevedo et al. (2020) discussed novel methods in
A/B testing to preserve power, control the overall type I error rate, or even meet the need
of some special data distribution. However, the application of interim monitoring methods for
controlling type I error rates is still not widespread in A/B testing in many companies, and the
use of standard inference tools that do not account for repeated looks at the accumulating data
can lead to incorrect conclusions.

One factor which might limit the utility of more sophisticated monitoring methods is that,
within a single company, several dozen or even hundreds of experiments may be running at any
given time, and human bandwidth inhibits the ability to apply customized design and analysis
practices to each of these experiments. Another factor is that, though many novel statistical
methods for A/B testing are developed, they may be too complicated to be implemented on
a large scale by non-statisticians. To overcome this hurdle and make recommendations for a
scalable A/B testing framework with desired statistical properties, it is important to have a
more complete understanding of the performance of standard methods on commonly encountered
scenarios.

In this paper we first review frequently used sequential monitoring boundaries, statisti-
cal approaches to analyzing A/B tests, and general study design considerations in Section 2.
Section 3 then presents the simulation set-up and a novel loss function to use in selecting the
“optimal” A/B test design by considering 16 possible combinations of group sequential meth-
ods and stopping criteria. The results of the simulations with general recommendations are
summarized in Section 4. We conclude with a brief discussion in Section 5.

2 Background
Sequential monitoring designs have been developed and applied in the context of clinical research
studies where regulatory agencies require strict control of the type I error rate α (i.e., concluding
an effect when there is none) while trying to achieve acceptable statistical power (i.e., the ability
to detect an effect if one exists). In the following subsections, we discuss approaches developed
for interim monitoring that we will further examine in simulation studies for optimal A/B test
designs.

2.1 Reasons to Stop Early
There are many reasons one may wish to terminate a study early, including for safety and
efficacy. In general, for studies that compare groups and wish to detect a difference (e.g., an
A/B test) we consider three potential types of stopping rules to use in an interim analysis:

1. Only stop for some detectable difference: In this situation, at each interim analysis, we
determine if we should stop the study because there is evidence of a difference between our
two variants in the A/B test. This may be more descriptively presented as stopping either for
superiority/benefit or inferiority/harm caused by one variant with respect to the other.

2. Only stop for futility: In this situation, at each interim analysis we determine if we should
stop the study because there is evidence that we are unlikely to detect a difference between our
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two variants in the A/B test were the experiment to continue enrolling to its planned maximum
sample size.

3. Stop for either a detectable difference or futility: In this situation, at each interim analysis,
we could stop for either detecting some difference between variants or for futility to detect a
difference based on the accumulating data within the experiment.

2.2 Methods for Interim Monitoring

Once one has considered “why” one wishes to stop an experiment early, we must select stopping
boundaries that identify “how” this decision is made. The different approaches to boundaries
described below represent various trade-offs to study flexibility, the expected trial sample size,
and the overall maximum trial sample size.

2.2.1 Ad Hoc Rules

Ad hoc rules attempt to ensure the conservative interpretation of interim results. For example,
over a total of K analyses Haybittle (1971) uses a large critical value for all interim tests (such as
the standard normal test statistic Zi = 3.0 for any ith interim analysis) and uses the conventional
critical value at the final Kth test. This specific method is ad hoc so that no precise type I error
is guaranteed. This is a precursor for methods developed to explicitly control the overall type I
error rate.

2.2.2 Group Sequential Boundaries

One such family of methods designed to control the overall type I error rate is known as group
sequential tests, which have predetermined stages for evaluating the data for each desired interim
analysis. For example, Pocock (1977) sets a constant and conservative critical value ZPO for every
interim analysis so that the overall significance level for the experiment will be α. Similarly,
O’Brien and Fleming (1979) use critical value ZOF (α, K)

√
i/K where ZOF (α, K) is determined

to control the overall type I error.
Wang and Tsiatis (1987) demonstrated that Pocock and O’Brien and Fleming are both

special cases of a unified test where the critical value is defined as ZWT (α, K, δ)(i/K)δ−0.5 where
ZWT (α, K, δ) is determined to control the overall type I error. When δ = 0, O’Brien and Fleming
error spending function is produced. When δ = 0.5, Pocock error spending function is produced.
δ may also be set between the Pocock and O’Brien-Fleming boundaries, where intermediate
shapes are produced.

2.2.3 Error Spending Functions

One major limitation of predetermined group sequential boundaries is that the number of interim
analyses must be fixed in advance. If an additional interim analysis is requested or does not meet
the predetermined analysis plan, the trial operating characteristics may not be maintained. To
address this limitation, error spending functions were proposed by Demets and Lan (1994). In
this approach, the type I error rate can be allocated flexibly across interim analyses throughout
the study, so that at the end of the study the overall type I error is still controlled at the
desired type I error rate, α. While it is still ideal to predetermine the expected number of
interim analyses, error spending functions can facilitate unexpected interim looks at the data
and unequal accrual throughout a study.
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The error spending function α(t∗) is a function of t∗, the information fraction observed
at the time of the interim analysis. t∗ is generally defined as the ratio of the inverse of the
variance of the test statistics at a particular interim analysis and at the final analysis (Gordon
Lan et al., 1994). Practically, it is estimated by the fraction of participants enrolled at calendar
time t divided by the maximum number of participants planned for at the end of the study.
For example, when calendar time t = 0, the information fraction t∗ = θ and the error spending
function α(t∗ = θ) = 0. When the study ends, the information fraction t∗ = 1 and the error
spending function α(t∗ = 1) = α.

In the context of error spending function, Pocock boundaries can be approximated by the
function αln[1 + (e − 1)t∗], and for O’Brien-Fleming boundaries the approximate function is
2 − 2θ(Z1−α/2/

√
t∗). The power family of functions is another approach for interim monitoring

proposed by Jennison and Turnbull (1999) that is defined as αt∗ρ , where ρ > 0. For these error
spending functions, they are equal to zero when t∗ = 0 (i.e., no data has been observed) and
equal to α when t∗ = 1 (i.e., all data has been observed).

Examples of the boundaries of the different error spending functions discussed are presented
in Figure 1 for a study that considers stopping for either futility or detecting some difference
based on four total analyses with equal sample sizes enrolled in each stage. The statistical test
statistic presented on the y-axis is on the standardized Z-scale (i.e., a normal distribution with
mean 0 and standard deviation 1). To illustrate how these boundaries would be used in practice,
assume we are comparing a binary outcome between two variants A and B so that pA − pB ,
where a positive difference indicates variant A performs better than variant B. At each interim
stage of the A/B experiment, we may conclude one of four outcomes for a two-sided hypothesis
test:
• if the Z-score falls in area 1 in Figure 1, the null hypothesis of no difference between variants

is rejected, and we can conclude that we stop for the superiority of variant A.
• if the Z-score falls in area 5 in Figure 1, the null hypothesis of no difference between variants

is also rejected, but this time we stop for the inferiority of variant A, concluding that variant
B is better.

Figure 1: Example of the stopping boundary shapes for different error spending functions with
three interim analyses. The red line represents O’Brien-Fleming boundary; the purple line rep-
resents Power function (ρ = 3); the yellow line represents Power function (ρ = 2); the blue
line represents Power function (ρ = 1); The green line represents the Pocock boundary. The
solid lines represent the boundaries of stopping for difference, and the dashed lines represent the
boundaries of stopping for futility.
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• if the Z-score falls in area 3 (the “inner wedge”), we fail to reject the null hypothesis and
cannot conclude that variants A and B are different, and we still stop the study for futility.

• if the Z-score falls in area 2 or 4, we do not draw any conclusion and continue the study to
the next stage.

2.3 Statistical Tests to Evaluate Outcomes

In many A/B tests, the outcomes may be represented as a binary variable (e.g., yes/no). When
analyzing dichotomous outcomes between two variants, the chi-squared test without Yates’ con-
tinuity correction (χ2) or the chi-squared test with Yates’ continuity correction (χ2

c ) would be
natural choices. For large sample sizes, the chi-squared test becomes asymptotically equivalent
to a two-sample Z-test. Based on this asymptotic equivalence with larger sample sizes, many
A/B tests with dichotomous outcomes may instead apply the two-sample t-test to compare the
two variants since the t-distribution becomes increasingly normal as the sample size increases.
Others have previously discussed the different behaviors of statistical methods among various
significant levels. D’agostino et al. (1988) concluded that for significance levels of 0.02 and 0.01,
χ2 test performs better than the t-test. For significant levels 0.1 and 0.05, the t-test performs
better than the χ2 test.

3 Simulation Study Design and Evaluation

3.1 A Proposed Loss Function to Identify “Optimal” Designs
To select among multiple candidate designs that facilitate various combinations of stopping
boundaries (e.g., Pocock and power family) and rules (e.g., stopping for futility only, difference
only, or both), in this subsection we propose a loss function to identify what is the “optimal” de-
sign. The loss function for each boundary is a linear combination of the weighted ratio of designs
relative to the fixed sample designs based on their expected sample size under the null hypothe-
sis (ESSnull,boundary), the expected sample size under the alternative hypothesis (ESSalt,boundary),
and the maximum sample size (MSSboundary) if the study does not stop early:

L1 = w1
ESSnull,boundary

SSf ixed

+ w2
ESSalt,boundary

SSf ixed

+ w3
MSSboundary

SSf ixed

(1)

where w1+w2+w3 = 1, and SSf ixed is the sample size of fixed sample size design. The “boundary”
in the loss function refers to any of the fifteen stopping boundaries rather than the fixed design.
The optimal design is one that minimizes L1. With the fixed sample design as the comparator in
the denominator based on sample size, any strategy with L1 < 1 indicates an improvement over
no interim monitoring. An advantage of this loss function is that the wi can be customized for
a given study to identify what the “optimal” design for the A/B test is based on the emphasis
placed on the expected and maximum sample sizes.

One strength of this loss function is its adaptability to company goals. Departments may
adjust the weights according to their objectives, such as reducing the maximum sample size by
increasing w3 to remain within budget constraints or increasing w2 to decrease the expected
sample size under the alternative hypothesis when testing a new variant. If a department does
not have a specific preference for minimizing a particular type of sample size, they may select
the stopping boundary with the minimum loss function value for most weight combinations.
By leveraging our loss function, companies can experiment with various weight combinations
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and determine the stopping boundary that minimizes the loss function value, allowing them to
achieve their desired outcome.

To illustrate the use and interpretation of this loss function more clearly we provide two
examples. When designing an A/B test, if one wants to minimize the maximum sample size,
they can set w3 = 1, and w1 = w2 = 0. In this context, the loss function becomes:

L1 = MSSboundary

SSf ixed

(2)

This means the design with the smallest maximum sample size among all maximum sam-
ple sizes from other designs will minimize the loss function and be selected as “optimal” by
implementing this weighting for the loss function.

Another example can be shown when one is agnostic on how to split the weights. In this
situation, the weights can be equally assigned to each component and the loss function becomes:

L1 = 1

3

ESSnull,boundary

SSf ixed

+ 1

3

ESSalt,boundary

SSf ixed

+ 1

3

MSSboundary

SSf ixed

(3)

In this situation, the design with the smallest sum of expected sample sizes under the null
and alternative hypothesis, and maximum sample size among all other designs will minimize the
loss function, and thus be selected as the “optimal design”. From the two examples, it can be
seen that the optimal design may change when different weights are specified in the loss function
depending on what the study team believes is important.

3.2 Simulation Design
A common A/B scenario is simulated to compare the proportion responding in the “A” variant
(θA) and the “B” variant (θB) under the null hypothesis of no difference versus the alternative
hypothesis that there is some difference in variants. In our motivating industry context, t-tests
are most frequently used for A/B testing experiments, regardless if the outcome is continuous
or binary. In addition, Zhou et al. (2023) demonstrates that when the sample size per arm is
at or above 500, the t-test and the chi-squared test for two proportions comparison have nearly
identical power, type I error rates, and expected sample sizes, even when interim analyses are
incorporated. Therefore, a two-sample two-sided t-test is used as our primary benchmark. We
also considered the chi-squared test χ2 and Yates’s chi-squared test χ2

c , however nearly similar
results to the t-test were observed and are not presented here.

Five different stopping boundaries (O’Brien-Fleming, Pocock, and power families with ρ =
1, 2, and 3) are evaluated under three stopping strategies (futility only, difference only, or both
for some difference or futility), for a total of fifteen combinations. A sixteenth approach is
considered with no interim monitoring to reflect that some contexts may not optimally benefit
from stopping early. The effects of increasing the number of interim looks at the data are
examined across simulations with 1-, 3- or 19-interim analyses for a maximum number of 2-, 4-,
or 20-looks at the data, respectively.

Assuming a constant response in variant “A” of θA = 0.5, five different effect sizes are
simulated for θB : 0.589 (large effect), 0.528 (moderate effect), 0.509 (small effect), 0.504 (tiny
effect), and 0.500 (no effect). These effects were driven to reflect A/B tests that would enroll
approximately 500, 5,000, 50,000, or 250,000 per variant to detect the decreasing effect sizes,
respectively, in a fixed sample design without interim monitoring. However, in practice, stake-
holders may either request a larger sample size than deemed necessary by a statistical power
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Table 1: Simulation settings.

θA − θB SS
per arm

Alternative scenarios: θB > θA = 0.5 Null scenarios:
θB = θA

0.089 0.028 0.009 0.004 0

500 Adequately
Powered

Under-
powered

Under-
powered

Under-
powered

For type I error

5000 Over-
powered

Adequately
Powered

Under-
powered

Under-
powered

For type I error

50,000 Over-
powered

Over-
powered

Adequately
Powered

Under-
powered

For type I error

250,000 Over-
powered

Over-
powered

Over-
powered

Adequately
Powered

For type I error

calculation or alternatively be limited by external factors and are unable to enroll the neces-
sary sample size. To address these potential settings, we also examine the choice of optimal
interim monitoring strategy when a study is under- or over-powered. The simulation design and
evaluation are shown in Table 1 and Figure S7 in the supplementary material.

We conducted a total of 10,000 simulated studies in R v4.2.0 (Vienna, Austria) for each
combination of effect size and stopping boundary, assuming equal accrual between each interim
analysis. We determined the stopping boundaries and sample size required to detect a given
effect size for sequential designs using PROC SEQDESIGN in SAS (Cary, North Carolina).
Subsequently, we calculated key statistics, including the effective sample size under the null hy-
pothesis (ESSnull,boundary), effective sample size under the alternative hypothesis (ESSalt,boundary),
maximum sample size (MSSboundary), power, and type I error.

3.2.1 Approaches to Determine Early Stop

For example, in 2-total analysis, approximately 500 participants per arm, O’Brien-Fleming with
early stop for both has stopping boundary at the 1st analysis (260 per arm): 0.00154, 0.28149,
0.71851, 0.99846. This means that, if the one-sided p-values from simulated studies fall below
0.00154 or above 0.99846, those studies will stop early and claim a difference between B and
A. If the one-sided p-values fall between 0.28149 and 0.71851, those studies will stop early and
claim that there is a lack of evidence to show that B and A are different. For other p-values,
studies will continue to the final analysis.

The boundary at the final analysis (519 per arm) is 0.02651 and 0.97349. If the p-values
from simulated studies fall below 0.02651 or above 0.97349, those studies will stop early and
claim a difference between B and A. If the p-values fall between 0.02651 and 0.97349, those
studies will claim that there is a lack of evidence to show that B and A are different.

3.2.2 Approaches to Calculate Key Statistics

To calculate the ESSnull,boundary , we extracted scenarios with θB = θA = 0.5 for 16 stop-
ping boundaries and computed the average sample sizes for all 16 stopping boundaries among
10,000 simulated datasets. Similarly, to calculate ESSalt,boundary , we extracted scenarios with
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θB = 0.589, 0.528, 0.509, 0.504 for 16 stopping boundaries and computed the average sample
sizes for all 16 stopping boundaries among 10,000 simulated datasets for each effect size.

MSSboundary was determined as the maximum sample size that could be attained if no early
stop occurred during the study with interim analysis. We calculated the power for each simulated
study by extracting scenarios with θB = 0.589, 0.528, 0.509, 0.504 for 16 stopping boundaries and
computing the proportion of studies that successfully claimed B was different from A (either
superior or inferior since we used two-sided t-test) among 10,000 simulated datasets for all
16 stopping boundaries. Similarly, we determined the type I error for each simulated study
by extracting scenarios with θB = θA = 0.5 for 16 stopping boundaries and computing the
proportion of studies that claimed B was different from A (either superior or inferior) among
10,000 simulated datasets for all 16 stopping boundaries.

For each simulation scenario, we identify what would be chosen as the “optimal” design
for 5151 unique combination of weights across settings where our restriction w1 + w2 + w3 = 1
is met with weights defined across a grid from 0 to 1 in increments of 0.01. Since there are
three weight components, we present the results graphically in a 2-D plot that is colored by
the design considered optimal for each weight combination. To further generalize the optimal
stopping rules, we also present a 2-D plot where we ignore the specific stopping boundary type
and present if the optimal design recommends no interim stopping, stopping for futility only,
stopping for difference only, or stopping for either futility or difference. The step-by-step process
of how plots are generated is presented in the supplementary materials: An example to illustrate
how loss functions are calculated and plotted.

4 Results
In this section, we present the results for what is selected as the “optimal” design based
across our different simulation scenarios. Given that the conclusions are similar across scenarios
(adequately-, under-, or over-powered) and number of total analyses (i.e., 2-, 4-, and 20-total
looks), we present a subset of scenarios with 4-total looks in this section with complete results
in the supplementary materials. The ESSnull,boundary , ESSalt,boundary , and MSSboundary of each
stopping boundary are summarized in Table S1-S12 in the supplementary.

4.1 Adequately Powered Simulation Scenarios

4.1.1 Optimal Boundaries

The stopping boundaries that minimized the loss function for each set of loss function weights
w1, w2, and w3 were plotted for each of the four adequately powered effect size scenarios with
the percentage of every boundary selected as optimal among the 5151 weight combinations is
presented in Figure 2. To illustrate how an “optimal” design is chosen for each combination
of weights, Table 2 provides the estimated loss function value if we set w1 = w2 = 0.33 and
w3 = 0.34 for the scenario with a small effect size (n = 50, 000 per variant in the fixed sample
design). In this example, the O’Brien-Fleming design that allows stopping for both futility or a
difference had the smallest loss function value (L1 = 0.876), therefore it was selected as optimal
based on this weight combination (i.e., see the ⊕ in Figure 2). Figure 2 also showed that: Near the
area w1 = w2 = 0.33, there was a large black-colored region, which means that O’Brien-Fleming
was also selected as optimal for other combination of w1 and w2 near 0.33. Specifically, the
O’Brien Fleming boundary that allows stopping for both is selected as optimal 24.75% among
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Table 2: Equal weights for the adequately powered scenario with small effect size (50,000 per
variant), 4-total analysis.

Error spending function Stopping rule ESSnull ESSalt MSS L1

O’Brien-Fleming Stop for Both 36702 40789 53661 0.876
Power (rho = 2) Stop for Both 38927 38601 54088 0.879
Power (rho = 3) Stop for Both 40401 39996 52049 0.884
Power (rho = 1) Stop for Both 38185 37808 59251 0.904
Power (rho = 2) Stop for Futility 38115 49485 51456 0.927
Power (rho = 1) Stop for Futility 36470 50025 52801 0.929
O’Brien-Fleming Stop for Futility 36655 50068 52827 0.931
Pocock Stop for Both 35345 37150 68026 0.940
Power (rho = 3) Stop for Futility 42143 49430 50340 0.946
Power (rho = 3) Stop for Difference 51017 41066 51390 0.956
O’Brien-Fleming Stop for Difference 50724 41954 51024 0.958
Power (rho = 2) Stop for Difference 52288 40133 52837 0.968
Pocock Stop for Futility 34397 53413 58933 0.979
Fixed sample size No Early Stopping 50042 50042 50042 1.000
Power (rho = 1) Stop for Difference 55859 39948 56900 1.018
Pocock Stop for Difference 58570 40477 59865 1.060
Note: w1 = w2 = 0.33, w3 = 0.34. Take O’Brien-Fleming with stop for both for example: (0.33 x 36702 + 0.33 x
40789 + 0.34 x 53661)/50042 = 0.876

all 5151 weight combinations.
More generally, from Figure 2 the fixed sample size is only the “optimal” design if most of

the weight is placed on the maximum sample size (i.e., a large w3 value) across all effect sizes.
If the weight of ESSalt,boundary was set near 0 (e.g., w2 < 0.05), the optimal designs for various
weights on ESSnull,boundary (w1) favor designs that only stop for futility. In contrast, if w1 < 0.05
and w2 < 0.4, many optimal designs favor stopping for the difference. As w2 increases, many
optimal designs start to favor stopping for both futility and detecting any difference. If similar
values were given to all three weights, all optimal designs favor stopping for both futility and
difference, with the O’Brien-Fleming boundary being optimal with the power boundary with
ρ = 2 and ρ = 3 also near this weight combination. As shown in Table 2, w1 = w2 = 0.33 and
w3 = 0.34, the loss function values of O’Brien-Fleming, power boundary ρ = 2 and 3 were all
between 0.87 to 0.89. While there are subtle differences across the scenarios in Figure 2, the
general trends are largely the same for each adequately powered study design.

It is worth noting, some designs were never or rarely chosen as optimal in some scenarios.
For example, the Pocock boundary and Power (ρ = 1) stopping for only a difference were never
selected as optimal across all scenarios. Results, as noted previously, were similar if we had 2-
or 20-total looks at the data. On exception is that the power (ρ = 2) that allows stopping only
for a difference was selected as optimal for a very small range of w1, w2, and w3 when there are
2-total analyses, but not for any adequately powered design with 4- or 20-total analyses.
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Figure 2: Optimal boundaries for four effect sizes from the 4-total analysis. Upper left: large effect size (n = 500 per variant in a
fixed sample design); Upper right: moderate effect size (n = 5000 per variant in a fixed sample design); Lower left: small effect size
(n = 50, 000 per variant in a fixed sample design); Lower right: tiny effect size (n = 250, 000 per arm in a fixed sample design). The
⊕ represents the point when the three loss function weights are equally allocated, OBF is O’Brien-Fleming.
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4.1.2 Optimal Stopping Rules

While the specific design boundaries are important in selecting the truly “optimal” design based
on the chosen loss function weights, it is also helpful to generalize the results in Figure 2 to
summarize the broad stopping rules (i.e., no early stopping, stopping for only futility, stopping
for only difference, or stopping early for both) to understand the potential reasons to stop a
study early. In Figure 3, the optimal stopping rules for the four different adequately powered
effect size scenarios are presented.

Among the four considered stopping rules, early stopping for both was selected as optimal
in over 80% of weight combinations. Only when w2 < 0.1, is early stopping for futility favored.
Stopping for the difference was the least optimal except for small w1 and w2 around 0.25. Only
when w3, the maximum study sample size, was given the most weight was a fixed sample size
design with no early stopping favored. These findings suggest that most adequately powered
studies would be optimal when allowing stopping for both futility or a difference, except under
A/B studies with fairly imbalanced loss function weights.

4.2 Over-powered Simulation Scenarios

In some contexts, a stakeholder may wish to implement an intentionally over-powered design if
sufficient resources are available. Figure 4a and 4c presents the results for an overpowered study
to detect our moderate effect where we enroll 50,000 per variant instead of the 5000 needed for
the fixed sample design to be adequately powered.

The patterns for overpowered scenarios were very similar to the patterns in adequately
powered scenarios. The fixed sample size would still only be the best option when most of the
weight was put on the maximum sample size (w3). If the weight of ESSalt,boundary was set near
0 (e.g., w2 < 0.05), the optimal designs for various weights on ESSnull,boundary (w1) still favored
designs that only stop for futility. Further, if similar values were given to all three weights,
all optimal designs favored stopping for both futility and difference, with the O’Brien-Fleming
(black, 20.38 %), and power boundaries with ρ = 2 (grey, 26.17 %) and ρ = 3 (light pink,
32.91 %), selected as optimal. For overpowered scenarios, designs that stop only for detecting a
difference were selected if w1 < 0.05, which is less often than in adequately powered designs.

4.3 Under-powered Simulation Scenarios

In other contexts, a stakeholder may not be able to enroll the necessary sample size for an
A/B test but still desires to implement an under-powered experiment. Figure 4b and 4d present
the results for the tiny effect size if only 50,000 per variant are enrolled instead of the needed
250,000.

The pattern of stopping boundaries in Figure 4b and 4d were very different from the pattern
in the adequately powered design. Given that we are intentionally running an under-powered
A/B test, approximately 60% of the weight combinations identify stopping for futility only. This
intuitively makes sense, because we are implementing an intentionally under-powered study that
is unlikely to detect the desired difference. However, as w2 increased above 0.5, weight combi-
nations began favoring optimal designs the stop for both futility and a difference. In practice,
the choice of “optimal” designs for under-powered studies may require additional considerations
about not stopping for futility since the design is expected to be futile.
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Figure 3: Optimal stopping rules for four effect sizes from the 4-total analysis. Upper left: large effect size (n = 500 per variant in a
fixed sample design); Upper right: moderate effect size (n = 5000 per variant in a fixed sample design); Lower left: small effect size
(n = 50, 000 per variant in a fixed sample design); Lower right: tiny effect size (n = 250, 000 per arm in a fixed sample design). The
⊕ represents the point when the three loss function weights are equally allocated.
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Figure 4: Optimal stopping boundaries and rules for 4-total analysis. (a), (c) Over-powered design, 50,000 per variant in the fixed
sample design for moderate effect size which only needs 5000 per variant in the fixed sample design. (b), (d) Under-powered design,
50,000 per variant in the fixed sample design for tiny effect size which needs 250,000 per variant in the fixed sample design. The ⊕
represents the point when the three loss function weights are equally allocated, OBF is O’Brien-Fleming.
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5 Discussion
The intention of this article was to evaluate the feasibility of applying the existing sequential
monitoring methodology developed primarily for use in clinical trials to the setting of A/B
experimentation in large-scale environments. After first reviewing some of these methods for
interim monitoring, we implemented a rigorous simulation study to determine if general guidance
could be given for A/B experimentation. The effect of decreasing or increasing the number of
interim analyses on the data was examined as well. Given the large number of potential designs
one could consider, we also proposed a novel loss function that evaluated the sample size demands
under expected and maximum values.

In terms of general approaches to “optimal” designs in A/B test designs, we recommend
based on our simulation results for adequately powered studies that designs with sequential
monitoring that allow stopping for both some detectable difference between variants or for
futility could be used across most combinations of weights for the loss function. When no strong
preference exists for minimizing either the expected sample size or maximum sample size we
recommend that it may be most efficient to use O’Brien-Fleming boundaries that allow stopping
for both. Since the power boundary with ρ = 2 or ρ = 3 have loss function values similar to
the O’Brien-Fleming, they could also be the other two good choices, but in practice we have
seen more familiarity with O’Brien-Fleming boundaries when presented to stakeholders. While
not strictly “optimal” in all scenarios, recommending a single boundary choice could facilitate
easier implementation and scalability in A/B testing environments to the choice of design based
on the proposed loss function.

When considering designs that were implemented while being intentionally over-powered,
the conclusion is similar to adequately-powered scenarios. However, for under-powered designs,
it is more challenging to provide a general conclusion based on the proposed loss function. It
is not unexpected that our simulation results suggest stopping early for futility is optimal in
approximately 60% of the presented scenario’s weight combinations, given that an under-powered
design is naturally a “futile” study that is unlikely to detect the desired difference. In practice,
it may be ideal to choose a fixed sample design to ensure other data, such as safety signals, may
be collected in the presence of an underpowered primary outcome.

While we proposed a single loss function based on sample size parameters, others may
also think about developing more kinds of loss functions. For example, loss functions could be
proposed to include the type I error rate or power. If these terms are added to our existing loss
function, there would be more than three weights and the results would not be easily plotted in
a static 2-D figure. Further, as long as each stopping boundary accounts for the corrections to
multiple interim looks, the power and type I error rates should already be similar across each
approach with minimal difference.

This research has limitations worth discussing with room for further research. The simu-
lations included only binary outcomes. While commonly used in A/B testing, other types of
outcomes would be worth considering. However, given the large sample sizes simulated, it is
likely that continuous outcomes would have similar results since a t-test was used in our sim-
ulation studies. A second limitation is that we considered only one outcome in an A/B test,
but many experiments have multiple metrics that may be of interest. This would represent an
additional layer of multiple testing that is not examined in our simulations. A third limitation
is that large-scale data environments may have multiple, competing experiments running simul-
taneously that may not be independent. Our methods and simulations do not consider the case
for potentially correlated experiments that are occurring during overlapping time periods.
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It is worth noting that many novel methods have already been developed for sequential
monitoring, and many of them are specifically designed for A/B testing. Johari et al. (2022,
2017, 2015) came up with always valid p-values and confidence intervals that are robust to the
inflated type I error rate from continuous monitoring, which let users try to take advantage
of data as fast as it becomes available. Balsubramani and Ramdas (2015) proposed a novel
algorithmic framework for sequential hypothesis testing. Sample size can even be boosted at
the penultimate stage in the sequential monitoring that achieves specified power against an
alternative hypothesis (Gao et al., 2008). Tamburrelli and Margara (2014) investigated a novel
approach to automate A/B test on a large scale. Those methods, however, may still not be
easily scaled or implemented for hundreds of ongoing A/B tests, since involve what may be
perceived as intensive mathematical background and complicated algorithms. Conversely, our
recommended designs and stopping rules in this paper are simpler and easy to be implemented
on a large scale and build off a rich history in biomedical clinical trials research.

This article provided an overview of fundamental concepts and a reference of choice of
optimal study designs with interim monitoring for A/B testing. Future work will extend the
proposed design and loss function to non-inferiority and equivalence studies, as well as experi-
ments with multiple outcomes. Additional considerations will be given to the design of flexible
platform trials that have emerged in biomedical research, to see if adaptations can facilitate
the design of an optimal sequence of studies to arrive at an optimal product via sequential and
potentially simultaneous A/B experimentation.

Supplementary Material
All tables and Figures are uploaded as Supplementary Materials.
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