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Abstract

The reputation of the maximum pseudolikelihood estimator (MPLE) for Exponential Random
Graph Models (ERGM) has undergone a drastic change over the past 30 years. While first re-
ceiving broad support, mainly due to its computational feasibility and the lack of alternatives,
general opinions started to change with the introduction of approximate maximum likelihood
estimator (MLE) methods that became practicable due to increasing computing power and the
introduction of MCMC methods. Previous comparison studies appear to yield contradicting re-
sults regarding the preference of these two point estimators; however, there is consensus that the
prevailing method to obtain an MPLE’s standard error by the inverse Hessian matrix generally
underestimates standard errors. We propose replacing the inverse Hessian matrix by an approx-
imation of the Godambe matrix that results in confidence intervals with appropriate coverage
rates and that, in addition, enables examining for model degeneracy. Our results also provide
empirical evidence for the asymptotic normality of the MPLE under certain conditions.

Keywords Godambe matrix; maximum pseudo-likelihood; parametric bootstrap

1 Introduction
Network data have become ubiquitous in recent years, both in the data science literature and
society generally. The probabilistic modeling of networks has a long history, dating to at least
Erdős and Rényi (1959) and Gilbert (1959), who introduce a model where each tie occurs
independently with probability p. Holland and Leinhardt (1981) are the first to consider tie
dependence within dyads, or node pairs, in their p1 model, a model that is later generalized by
the Markov random graph model of Frank and Strauss (1986). This model assumes that only
dyads that share a common node can depend on each other. The exponential random graph
model (ERGM), or p∗ model as it is called by Wasserman and Pattison (1996), generalizes the
Markov random graph model and is to this day a popular way to model complex dependency
structures of networks.

The ERGM framework may be described as follows: Let a network on N nodes be repre-
sented as an N ×N adjacency matrix y with yij = 1 if there is an edge between i and j , i �= j, i,
j ∈ N = {1, . . . , N} and yij = 0 otherwise. For the sake of simplicity, we will confine ourselves
to undirected networks, i.e., those where yij = yji , and disallow self-edges where yii �= 0. An
extension to directed networks is straightforward. The ERGM assumes that an observed network
yobs is a realization of matrix-like random variable Y with an underlying probability distribution
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defined over all possible networks on N nodes. The ERGM takes the form

Pθ(Y = y) = exp{θ�g(y)}
k(θ)

(1)

for y ∈ Y(N ), where Y(N ) is the sample space of allowable networks on the given set of
nodes and θ ∈ R

q is a vector of parameters. In many applications, Y(N ) denotes the entire
set {(y ∈ R

N×N, yij = yji ∈ {0, 1}, yii = 0} of possible networks on N nodes, while in other
applications Y(N ) may be constrained to be a proper subset of this set. The sufficient statistics
g : Y(N ) → R

q , y �→ (g1(y), . . . , gq(y)) play a central role in the model, since they enable
the inclusion of traditional exogenous covariates like a node’s observable features as well as
endogenous statistics, i.e., statistics that allow for inference on the structure of the network.
Popular endogenous statistics are a network’s number of triangles or the number of ties that
share one common node (two-stars). The normalizing constant

k(θ) :=
∑

y∗∈Y(N )

exp{θ�g(y∗)}, (2)

a weighted sum over all possible networks on N nodes, assures that (1) defines a probability
model.

2 Maximum Pseudolikelihood Estimation
The estimation of the parameter vector θ has been a major focus in ERGM literature. The
challenge lies in the normalizing factor k(θ) that appears in the likelihood function and requires
the calculation of a weighted sum with 2N(N−1)/2 summands for undirected networks. This number
is very large for even relatively small networks, making straightforward calculation and therefore
the computation of the maximum likelihood estimator (MLE) in most cases infeasible.

Frank and Strauss (1986) propose, and Strauss and Ikeda (1990) fully develop, an estima-
tion approach based on the maximum pseudolikelihood estimator (MPLE) first introduced for
lattice models by Besag (1974). The pseudolikelihood is a special form of a composite likelihood
(Lindsay, 1988), an inference function where conditional or marginal densities are multiplied
with one another, irrespective of whether these components are independent of each other or
not in the true probability model. If independence does not hold, the inference function has
the characteristics of a misspecified model’s likelihood (White, 1982). For a detailed review of
composite likelihood methods, we refer readers to the review by Varin et al. (2011).

Some additional notation is necessary for introducing the pseudolikelihood function. Define
yc

ij as the matrix y without its ij (and j i, in the undirected case) entries, often also referred to
as the rest of the network; and let y+

ij and y−
ij be the full matrices that agree with all entries of yc

ij

but where yij is forced to be 1 and 0, respectively. Then based on Equation (1), the conditional
probability of a tie given the rest of the network satisfies

logit[Pθ(Yij = 1|Y c
ij = yc

ij )] = θ�[g(y+
ij ) − g(y−

ij )], (3)

where logit(p) := log p − log(1 − p). We refer to �ij := g(y+
ij ) − g(y−

ij ) as the vector of change
statistics; note its implicit dependence on yc

ij even though we simplify notation by omitting the
y. Equation (3) corresponds to a logistic regression model for Yij , where we assume a linear
relationship between the predictor variables—here, the change statistics—and the log-odds that
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Yij = 1. In the network setting, the assumption of the independence of observations translates
to dyadic independence, i.e., the Yij are mutually independent so that

Pθ(Yij = 1|Y c
ij = yc

ij ) = Pθ(Yij = 1).

If this is the case, the log-likelihood function is

p�(θ) = log

( ∏
ij∈�(N )

Pθ (Yij = 1)yij Pθ (Yij = 0)1−yij

)

=
∑

ij∈�(N )

[
yij (θ

��ij ) − log
(
1 + exp{θ��ij }

)]
, (4)

where �(N ) = {ij | i, j ∈ {1, . . . , N}, i < j } is defined as the set of all undirected dyads and the
maximizer of (4) is equivalent to the MLE of a logistic regression fit of (3). This means that the
maximizer of (4) can be obtained using standard logistic regression software. In many ERGMs,
however, this independence assumption does not hold, making (4) an incorrect log-likelihood
function. In this context, (4) is called the log-pseudolikelihood function and maximizing it results
in what we refer to as the MPLE. Obtaining the MPLE is simple and fast, but this estimator can
be imprecise, since a network’s dependency structure is for the sake of simplicity deliberately
ignored. In addition, even though the MPLE can be obtained using logistic regression software,
the software’s output should be treated with caution. We will demonstrate in the two following
sections that the standard errors obtained from logistic regression software are not appropriate
if the independence assumption does not hold.

Frank and Strauss (1986) and Strauss and Ikeda (1990) were the first to compare the per-
formance of MPLE to MLE for networks. Due to the extreme difficulty of obtaining maximum
likelihood estimators, these authors focus their comparisons on models with a univariate suffi-
cient statistic and constrained the set of possible networks to those with a fixed number of edges.
In these papers, the univariate sufficient statistics that were the attention of this investigation
were the number of two-stars and triangles in a network, respectively. In an undirected network,
a two-star is defined as any pair of edges (i, j) and (i, k) sharing a node, and a triangle is
defined as any set of edges (i, j), (j , k) and (k, i) on the same three distinct nodes. Frank and
Strauss (1986) call the two-star model the cluster model, while Strauss and Ikeda (1990) call the
triangle model the triad model. An approximate MLE is achieved by a trial and error method
that required the simulation of networks from a model defined by a given parameter value and
comparing the simulated network’s sufficient statistic to the sufficient statistic in the original
network. An estimator is defined as the approximate MLE once the simulated networks yielded
the same sufficient statistic as the observed network. The justification of this approach is rooted
in the fact that in exponential family distributions, the expectation of the sufficient statistics
with respect to the MLE equals the sufficient statistic in the observation (Barndorff-Nielsen,
1978). In other words, ERGMs have the appealing property that the MLE is the same as the
method of moments estimator. While Frank and Strauss (1986) solely base their conclusions
on the comparison of the MLE and MPLE point estimators, Strauss and Ikeda (1990) take the
study one step further by also investigating the mean square error (MSE). The conclusion of
this first comparison is that “the two methods appear to give estimators that are about equally
good” (Strauss and Ikeda, 1990, p. 207).

Dahmström and Dahmström (1993) compare the MPLE to the MLE on the cluster and
triad models for networks with 12 edges and N = 7 nodes, a sample space small enough to allow
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computation of the exact MLE. Comparing only the point estimates, these authors conclude
that the MPLE and MLE can differ significantly.

Corander et al. (1998) compare the two estimation methods for the cluster and triad models
based on mean squared error for networks of 40 to 100 nodes, approximating the MLE in a
fashion similar to Strauss and Ikeda (1990). The authors conclude that the MLE has a smaller
MSE for networks up to size N = 40, but that for larger networks both methods perform nearly
equivalently well. Corander et al. (1998) also mention that unlike the MLE, the MPLE is not a
function of the sufficient statistics, which means that different networks with the same sufficient
statistics yield the same MLE but may have different MPLEs. This in turn implies that the
MPLE violates the likelihood principle (Barnard et al., 1962; Birnbaum, 1962) according to
which two networks with the same sufficient statistics should yield the same estimator. Schmid
and Hunter (2020) further discuss the use of MPLE as a method for aiding the search for an
approximate MLE based on a stochastic algorithm, sometimes called Markov chain maximum
likelihood estimation (MCMLE).

All potential sufficient statistics as well as the boundary of the corresponding convex hull
can be obtained in R using ergm.allstats() in the ergm package (Handcock et al., 2022) and
gConvexHull() in the rgeos package (Bivand and Rundel, 2020). The convex hull of a set of
vectors, which has an important role in determining the existence of maximum likelihood esti-
mators for exponential family models as we shall see later, is defined as the unique intersection
of all convex sets containing all of the vectors or, equivalently, the smallest convex set containing
all the vectors. Directly computing all possible sufficient statistic combinations can take several
hours for a network on only 9 nodes, with computation increasing exponentially for each ad-
ditional node. Code that implements this calculation is found in the Supplementary Material
section.

The top panel of Figure 1 visualizes every possible 2-dimensional vector of number of edges
and triangles of a network on N = 9 nodes, along with the convex hull of these vectors. Standard
exponential family theory shows that the MLE for an ERGM using these sufficient statistics
exists for all observable networks except those whose statistics lie on the boundary of the convex
hull. This theory does not apply to the MPLE. Having 26 edges and 25 triangles, the network
depicted in the bottom left panel of Figure 1 has statistics lying inside the convex hull, which
guarantees the existence of an MLE, but interestingly one can show that the MPLE for this
network does not exist. Konis (2007) shows that if the data may be separated, in the sense that
there exists a vector β such that

β�[g(y+
ij ) − g(y−

ij )]
{

< 0 when yij = 0,
> 0 when yij = 1,

then the MPLE does not exist. Konis (2007) argues that finding such β can be posed as a linear
programming problem. In particular, consider the program

maximize (e�X̄)β

subject to X̄�β � 0, (5)

where e� is a vector of ones and X̄ is the design matrix g(y+
ij ) − g(y−

ij ) modified so that each
element in a row corresponding to a dyad with no tie, i.e., for which yij = 0, is multiplied by −1.
If (5) has a nonzero solution, then the data are separable and the MPLE does not exist.

The network depicted in the bottom left of Figure 1 results in separated data, and hence
does not yield an MPLE. However, this does not consequently mean that all networks with the
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Figure 1: Top: Convex hull and potential sufficient statistics for a network of size N = 9 ac-
counting for the number of edges and triangles. Bottom left: A network with 26 edges and 25
triangles that has no MPLE. Bottom right: A network with 26 edges and 25 triangles that has
an MPLE.

same sufficient statistics do not have an MPLE. On the contrary, the network depicted in the
bottom right of Figure 1 has 26 edges and 25 triangles just as the network to its left, with the
difference of having an MPLE.

From version 4.0 onward, the ergm package automatically tests for the existence of the
MPLE using the rcdd package (Geyer and Meeden, 2019). Code that creates the network depicted
in the bottom left panel of Figure 1 and tests it for the existence of the MPLE is included in
the Supplementary Material.

Another popular estimation approach for models with intractable normalizing constants is
Markov Chain maximum likelihood estimation (MCMLE), first proposed by Geyer and Thomp-
son (1992) and then adapted to the ERGM framework by Snijders (2002) and Hunter and
Handcock (2006). This family of estimation techniques attempts to approximate the MLE by
estimating the normalizing constant through networks that were sampled using MCMC meth-
ods. The idea is that for any chosen θ0 ∈ R

q one can approximate the log-likelihood function
by

�(θ) − �(θ0) ≈ (θ − θ0)
�g(y) − log

(
1

L

L∑
i=1

exp
{
(θ − θ0)

�g(yi)
})

,
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where y1, . . . , yL are networks sampled from the distribution defined by θ0.
The introduction of MCMLE opened further possibilities for the evaluation of the MPLE.

Analyzing two data sets (Sampson, 1968; Krackhardt, 1987) and comparing MCMLE and MPLE
and the resulting standard errors, Snijders (2002) conclude that the MPLE has a tendency to
underestimate standard errors and should therefore not be trusted. Robins et al. (2007) and
Lubbers and Snijders (2007) come to the same conclusion. These results are to be expected,
especially since Strauss and Ikeda (1990) already clarify that “the quoted standard errors of
the estimated parameters do not apply, because the [. . . ] observations in the regression are
certainly not independent” (p. 207). Despite the warning, Snijders (2002), Robins et al. (2007),
and Lubbers and Snijders (2007) all appear to draw their conclusions from the standard output
from logistic regression-based estimates of the standard errors, which are based on an incorrect
model.

van Duijn et al. (2009) investigate the efficiency, bias, standard errors, and confidence
interval coverage rates of MPLE and of MCMLE for an undirected network on 36 nodes (Lazega,
2001) in natural and mean value parameter space. The mean value parameter space is defined
by the bijective mapping μ : R

q → C, μ(θ) = Eθ [g(Y )], with C denoting the interior of the
convex hull of the sample space of sufficient statistics. For their simulation studies, van Duijn
et al. (2009) treat a model’s estimated MLE as the true parameter value and simulate networks
from the corresponding probability distribution. Regarding the estimators’ efficiency, the authors
conclude that “the MLE is substantially more efficient than the MPLE” and that the difference
is even more pronounced in mean value parameter space. In their studies, the MLE has larger
bias in natural parameter space, while the MPLE has larger bias in mean value parameter space.
The MPLE standard errors obtained from the logistic regression output lead to MPLE-based
confidence intervals with coverage rates far below the nominal confidence level, confirming the
conclusion of Snijders (2002) that they are in general underestimated.

3 Estimating Standard Errors for MPLE
Although Strauss and Ikeda (1990) as well as van Duijn et al. (2009) acknowledge that MPLE
standard errors obtained from logistic regression output are unsuitable, to the best of our knowl-
edge, no one has yet formally introduced a correct way to specify standard errors for the MPLE
in ERGMs.

Based on the log-pseudolikelihood (4), let us define s(θ) to be the vector of first derivatives,

sk(θ) = ∂

∂θk

p�(θ) =
∑

ij∈�(N )

(
Yij�ijk − exp{θ��ij }

1 + exp{θ��ij }�ijk

)
, (6)

and J (θ) the negative Hessian matrix,

Jkl(θ) = − ∂

∂θl

sk(θ) =
∑

ij∈�(N )

(
exp{θ��ij }[

1 + exp{θ��ij }
]2 �ijk�ijl

)
, (7)

where k, l ∈ {1, . . . , q} and �ijk denotes the kth coordinate of the vector �ij . While �ijk may
depend on Y c

ij , for now we follow standard convention in considering �ijk to be nonrandom by
defining the change statistics based on the observed network yobs. This convention is justified
in the case where the log-likelihood coincides with the log-pseudolikelihood, since in this case
the edge indicators Yij are all mutually independent and �ijk does not depend on Y c

ij . Thus, the
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Hessian matrix does not depend on the random variable Yij , as is standard in an exponential
family model. We conclude that J (θ) = −∇s(θ) = −Eθ [∇s(θ)], i.e., the negative Hessian matrix
is both the Fisher information and the observed Fisher information. Furthermore, J (θ)−1 is the
approximate covariance matrix used by logistic regression software to estimate standard errors.

One feature of a correctly specified likelihood �(θ) is that the Bartlett identities,

Eθ [�′(θ)] = 0, (8)
Varθ [�′(θ)] = −Eθ [�′′(θ)], (9)

hold, which justifies J (θ̂)−1 as the covariance matrix of θ̂ according to standard asymptotic
theory for maximum likelihood estimators. However, the pseudolikelihood is a form of misspec-
ified likelihood, where (8) and (9) do not apply anymore, which consequently makes J (θ̂)−1 an
incorrect covariance matrix for an estimator θ̂ .

A more suitable method to estimate MPLE standard errors is by the calculation of the
Godambe matrix (Godambe, 1960), also known as the sandwich information matrix, as demon-
strated for example by Okabayashi et al. (2011) for Potts models. The Godambe matrix is

G(θ) = J (θ)−1V (θ)J (θ)−1, (10)

where J (θ) is referred to in this context as the sensitivity matrix and V (θ) = Varθ [s(θ)] is called
the variability matrix. We can justify the Godambe matrix by usual Taylor approximation

s(θ̂) ≈ s(θ) + J (θ)(θ̂ − θ),

where since s(θ̂ ) = 0 we obtain

θ̂ − θ ≈ [−J (θ)]−1 [s(θ)] . (11)

The usual derivation of the Godambe matrix relies on the multivariate central limit theorem.
However, s(θ) is not the sum of independent and identically distributed random vectors Indeed,
Shalizi and Rinaldo (2013) show that many ERGMs are not consistent under sampling. Here,
“consistent” refers to the context in which the number of nodes N increases without bound,
rather than the context where we observe independent networks yobs

1 , yobs
2 , . . . on the same fixed

set of nodes. In fact, both MLE and MPLE are consistent and asymptotically normal in the latter
context, as shown by Arnold and Strauss (1988). However, it is not the prevailing situation that
multiple networks are being sampled from a common distribution; it is more common to observe
a subnetwork from a hypothesized larger population network whose size we conceptualize as
growing without bound.

Although standard asymptotics do not apply here, we may obtain Equation (10) as an
approximation to the variance of the MPLE by simply taking the variance of Equation (11):

Var(θ̂) ≈ [−J (θ)]−1 Var [s(θ)] [−J (θ)]−1 .

The variability matrix V (θ) cannot in general be directly computed for an ERGM. For this
reason, we propose to approximate V (θ) by simulating R networks y1, . . . , yR from the distri-
bution defined by the MPLE and then to calculate the vector of first derivatives of the pseudo-
likelihood function s1(θ), . . . , sR(θ) for each of the simulated networks. Here, the superscript r
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indicates the vector of first derivatives of the rth simulated network. Let s(θ) = R−1
∑R

r=1 sr(θ)

be the sample mean vector. Then

V̂ (θ) = 1

R − 1

R∑
r=1

[
sr(θ) − s̄(θ)

][
sr(θ) − s̄(θ)

]T
. (12)

If θ̃ denotes the MPLE, then the Godambe matrix can be estimated as

Ĝ(θ̃) = J (θ̃)−1V̂ (θ̃ )J (θ̃)−1. (13)

The estimation based on the Godambe matrix therefore requires the simulation of networks,
which may appear to be a disadvantage. However, Schmid and Desmarais (2017) point out
that the simulation of networks serves the dual purpose of helping assess model degeneracy as
discussed by Schweinberger (2011), among others: Simulated networks operate as a potential
warning sign if the estimated probability distribution does not produce networks that appear to
be sampled from the same distribution as the observed network. As we will illustrate later, the
MPLE is especially prone to defining probability distributions that put most mass on networks
that do not resemble the observed network.

The ergm package can also handle an offset in the model, i.e., a model of the form

logit[Pθ(Yij = 1|Y c
ij = yc

ij )] = θ�[g(y+
ij ) − g(y−

ij )] + β[t (y+
ij ) − t (y−

ij )],

where β : Rd → R is a function of δij = t (y+
ij ) − t (y−

ij ), the change statistic corresponding to
a d-dimensional statistic vector t (y) defined for the offset. Common forms of the β function
are log(δij ) in the case d = 1 and γ �δij for a known γ ∈ R

d . If an offset is present, then the
calculation of the inverse Hessian matrix and the estimation of the Godambe matrix have to be
adjusted. In particular, the score function (6) changes to

sk(θ) = ∂

∂θk

p�(θ) =
∑

ij∈�(N )

(
yij�ijk − exp{θ��ij + β(δij )}

1 + exp{θ��ij + β(δij )}�ijk

)
,

and the negative Hessian matrix (7) becomes

Jkl(θ) = − ∂

∂θl

sk(θ) =
∑

ij∈�(N )

(
exp{θ��ij + β(δij )}[

1 + exp{θ��ij + β(δij )}
]2 �ijk�ijl

)
.

In addition to offset models, the ergm package can estimate models with a wide range of
sample space constraints. One particular sample space constraint, which applies for example to
citation networks, is that a document that has been published before another document can not
cite the latter; see Schmid et al. (2021) for a citation-network application. Let 
(N ) ⊂ �(N )

be the constrained sample space of a network on N nodes. Then the pseudolikelihood simplifies
to

p�
(θ) =
∑

ij∈
(N )

[
yij (θ

��ij ) − log
(
1 + exp{θ��ij }

)]
, (14)

and the score function (6) and the negative Hessian matrix (7) are similarly modified.
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4 Simulation Studies
We calculate MPLE confidence intervals based on the Fisher information and Godambe matrices
and study the coverage rates of both methods. In addition, we compare coverage rates of MCMLE
confidence intervals (Hunter and Handcock, 2006) and 95% parametric bootstrap confidence
intervals of the MPLE as introduced by Schmid and Desmarais (2017). The parametric bootstrap
confidence intervals are obtained by simulating 500 new networks from the distribution defined
by the MPLE, and then estimating the MPLEs for each of the 500 simulated networks. The
standard error obtained from the 500 MPLEs is taken as the standard error that results in the
bootstrap confidence interval.

We compare the coverage rates of all four methods in a simulation study and on a real-
life network. For the simulation study, we follow Desmarais and Cranmer (2012) and consider
the undirected (ρ, σ, τ )-model as introduced by Frank and Strauss (1986), where θ = (ρ, σ, τ )

represent the parameters for a network’s numbers of edges, two-stars, and triangles, respectively.
We set ρ = −0.25, σ = −0.2, and τ = 0.5 and simulate 500 undirected networks for four different
sizes: N = 50, 100, 200, and 300. ERGMs with triangle statistics and/or two-star statistics are
well-known to be subject to problems of degeneracy (see, for instance, Robins et al., 2007;
Handcock et al., 2008). While a full discussion of degeneracy is beyond the scope of this article,
we reiterate that, as noted in Section 3, the fact that our studies require multiple simulated
networks from this model using these parameter settings—which reflect settings used in previous
work on MPLE—provides strong evidence that degeneracy is not a practical concern in these
tests.

For each simulated network, we obtain the MCMLE with its corresponding 95% confidence
interval as well as the MPLE with 95% confidence intervals estimated by the Fisher matrix, the
Godambe matrix, and parametric bootstrapping. Code used to implement these tests is included
in the Supplementary Material. The results are summarized in Table (1).

As expected, MCMLE confidence intervals yield coverage rates close to the anticipated 95%
regardless of network size. On the other hand, the Fisher intervals are nowhere close to the

Table 1: Coverage rates of 95% confidence intervals for the (ρ, σ , τ )-model for four different
network sizes (N = 50, 100, 200, 300).

N=50 Edges Two-stars Triangles

MCMLE 0.952 0.956 0.964
Fisher 0.744 0.742 0.770
Godambe 0.952 0.948 0.964
Bootstrap 0.902 0.902 0.962

N=100 Edges Two-stars Triangles

MCMLE 0.940 0.948 0.940
Fisher 0.676 0.702 0.750
Godambe 0.954 0.952 0.936
Bootstrap 0.918 0.926 0.942

N=200 Edges Two-stars Triangles

MCMLE 0.960 0.948 0.946
Fisher 0.610 0.620 0.746
Godambe 0.952 0.954 0.946
Bootstrap 0.920 0.924 0.936

N=300 Edges Two-stars Triangles

MCMLE 0.950 0.946 0.956
Fisher 0.608 0.620 0.762
Godambe 0.950 0.950 0.942
Bootstrap 0.912 0.922 0.938
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desired coverage rate, with results ranging between 60% and 76%. These results, however, are
not surprising, since an improper method to obtain standard errors was applied. Interestingly,
the coverage rate for this method appears to worsen as the network size increases. Calculating the
MPLE standard errors based on the Godambe matrix, however, yields confidence intervals that
perform just as well as MCMLE confidence intervals. The fourth method, confidence intervals
by parametric bootstrap, clearly outperforms the logistic regression results, but also appears to
not quite reach the anticipated coverage rates.

Next we apply the four methods on the same data used by van Duijn et al. (2009), a
collaboration network between 36 partners within a New England law firm (Lazega, 2001). We
treat this network as an undirected network and only consider an edge between two partners if
both sides indicate to have collaborated with each other. The model we use is specified by Hunter
and Handcock (2006) and only slightly modified by van Duijn et al. (2009). The endogenous
statistics consist of the number of edges, which is equivalent to the intercept in a logistic model,
and the geometrically weighted edgewise shared partners statistic (GWESP), a statistic used to
model the tendency towards triangles and clustering (Hunter and Handcock, 2006). The decay
parameter for the GWESP statistic has been fixed at its MLE of 0.7781. Among the exogenous
statistics, we include seniority, each partner’s seniority rank divided by 36, and practice
(corporate or litigation) as nodal attributes, as well as practice, gender, and office as dyadic
homophily attributes.

As usual for real data sets, the true parameter θ is unknown. Therefore, we obtain a MCMLE
and treat this estimate as the truth. At this point we conduct another simulation study, where
we simulate 1000 networks from the distribution defined by the MCMLE and calculate 95%
confidence intervals for all four methods. Finally, we test whether the true value falls within a
computed interval. Coverage rates for the four methods are reported in Table 2.

The coverage rates for the MCMLE as well as for the MPLE using the Fisher matrix align
with the results of van Duijn et al. (2009). While the MCMLE yields coverage rates close to 95%,
MPLE coverage rates appear to overestimate standard errors with the exception of the GWESP
statistic, whose coverage rate is clearly too small. MPLE coverage rates that were obtained
using an approximated Godambe matrix provide similarly satisfying results as the MCMLE
rates for structural and nodal variables. However, standard errors of variables accounting for
homophily appear to be too small. The fourth method, parametric bootstrap intervals for the
MPLE, provides adequate results.

The third simulation study investigates the performance of the inverse Hessian and Go-
dambe matrix as estimates of the covariance matrix changes as the network size increases. We

Table 2: Coverage Rates for the Lazega Law Firm Collaboration Network.

Structural Nodal Homophily

Edges GWESP Seniority Practice Practice Gender Office

MCMLE 0.944 0.920 0.937 0.940 0.958 0.954 0.957
Fisher 0.981 0.763 0.980 0.976 0.978 0.982 0.982
Godambe 0.942 0.922 0.944 0.933 0.939 0.917 0.922
Bootstrap 0.930 0.982 0.966 0.960 0.962 0.943 0.928
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Figure 2: 95% confidence ellipses of the edges-triangle model with n nodes calculated using the
inverse Hessian matrix (dashed) and Godambe matrix (solid). The ‘x’ indicates the parameters
of the true model distribution, and every gray dot represents the MPLE of a network that was
sampled from that distribution.

follow Krivitsky et al. (2011) by adding an offset to the model to adjust for network size ensuring
that a node’s mean degree remains the same as the network size increases. Since the number of
edges is proportional to the density of a network, which must tend to zero as N → ∞ if the
mean degree of a node remains fixed, the parameter for the edges statistic must depend on N .
For a given network size N , we simulate an initial network from the ERGM consisting of the
number of edges and the number of triangles with parameters set to 4 and −0.2, respectively.
The offset is set to log(1/N) as in Krivitsky et al. (2011). Next, we obtain the MPLE of the
simulated network, treat the MPLE as the truth, and simulate 1000 networks. Since the model
defined by the MPLE represents the true underlying model, we can calculate the actual inverse
Hessian matrix J (θ) using equation (7). For the estimation of the variability matrix V (θ), we
calculate the MPLE for each of the 1000 simulated networks and apply Equation (12).

Figure 2 visualizes the 95% confidence ellipses calculated from covariance matrices for N =
9, 50, 100, and 500. The small ‘x’ at the center represents the true MPLE, while every gray dot
represents the MPLE of one of the 1000 simulated networks. The dashed lines indicate the 95%
confidence ellipses calculated from the inverse Hessian covariance estimate, while the solid lines
indicate the 95% confidence ellipses obtained from the estimated Godambe matrix. The code
for creating the N = 50 panel in Figure 2 is included in the Supplementary Material.

The multiplier to create confidence ellipses are obtained from a χ2(2)-distribution, based on
standard asymptotic theory, and the corresponding cdf is depicted as solid line in Figure 3. In
addition, Figure 3 depicts the empirical coverage rates of the confidence ellipses that were ob-
tained using the Godambe matrix (dashed line) and inverse Hessian matrix (dotted line). Based
on this figure, we can compare the expected coverage rates of a correctly specified confidence
ellipse with the empirical coverage rates.
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Figure 3: Empirical coverage rates of confidence ellipses obtained by covariance matrix estimates
based on the Godambe matrix, depicted by the dashed line ( ), and the inverse Hessian matrix,
depicted by the dotted line ( ), as a function of the usual χ2

2 -based multiplier governing the size
of the ellipses. The solid gray line shows the true distribution function of a χ2

2 distribution.

The results underline the conclusions made in the previous simulation studies that confi-
dence intervals that are based on the inverse Hessian matrix are not reliable: Coverage rates
of the inverse Hessian confidence ellipses are not close to the intended coverage rates, and the
situation does not appear to improve as sample size increases. In contrast, coverage rates of Go-
dambe matrix ellipses are similar to the intended coverage rates for networks except for the small
value N = 9. Furthermore, it appears that the MPLEs are approximately normally distributed,
which opens the question as to whether this framework, with its offset term for correcting for
the overall density of the network, could yield a provably asymptotically normal distribution.

5 Discussion
This paper proposes to estimate MPLE standard errors for ERGMs using an estimated Godambe
matrix. Even though the exact calculation of the Godambe matrix is infeasible for most ERGMs,
the approximated Godambe matrix performed exceptionally well for moderately-sized networks
in our simulation studies. Since the approximation requires the simulation of networks from the
ERGM defined by the parameter values specified by the MPLE, this method potentially provides
a simple check of model degeneracy—a trait all-too-easily ignored when using MPLE due to the
ease of obtaining a point estimate.

It seems there is still a lot to learn about the behavior of MPLEs in the context of ERGMs
for networks. The possibility that the MPLE in the model used in the edges + triangles model
of Section 4 might be provably asymptotically normal is particularly interesting. This is because
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Shalizi and Rinaldo (2013) demonstrate that the model in question, because its triangle term
destroys the probabilistic independence of the Yij edge indicators, cannot enjoy a property called
projectivity; that is, given an ERGM for a large network, it cannot be the case that the induced
model for any sub-network must be the same. This means among other things that standard
asymptotic results cannot hold. However, our results suggest that when parameters are allowed
to depend on N , as they do when we use an offset term in Section 4 to control for the overall
density of the network, asymptotic results may yet be provable since in this framework, the
main result of Shalizi and Rinaldo (2013) does not apply. More study is clearly warranted.
Furthermore, if the MPLE may be shown to be asymptotically normal for, say, an edges +
triangles model when an offset term is employed, perhaps the MLE too enjoys asymptotic
normality in this context.

We conclude by pointing out that our work does not directly compare maximum pseudo-
likelihood and maximum likelihood as methods of estimation in cases when the two methods
do not coincide. Certainly each method has its advantages: MPLE is much simpler to compute,
whereas MLE satisfies the likelihood principle mentioned in Section 2 among many other theo-
retical properties of maximum likelihood estimators that apply to all exponential family models.
Because of the theoretical advantages enjoyed by MLE, we feel that if computation were irrel-
evant and if it were possible to easily maximize the likelihood function in all situations, then
estimation based on pseudolikelihood would probably be superfluous. Indeed, MPLE has often
been used merely as a starting point for stochastic algorithms designed to approximate the MLE,
a subject explored in much greater detail elsewhere (e.g., Schmid and Hunter, 2020). On the
other hand, this article illustrates that MPLE, when its covariance is properly estimated, holds
promise as an estimation method in its own right.

Supplementary Material
The R code file and the ergm package that implements the new methods.
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