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Abstract 

As a robust data analysis technique, quantile regression has attracted extensive 

interest. In this study, the weighted quantile regression (WQR) technique is 

developed based on sparsity function. We first consider the linear regression 

model and show that the relative efficiency of WQR compared with least squares 

(LS) and composite quantile regression (CQR) is greater than 70% regardless of 

the error distributions. To make the pro- posed method practically more useful, we 

consider two nontrivial extensions. The first concerns with a nonparametric model. 

Local WQR estimate is introduced to explore the nonlinear data structure and 

shown to be much more efficient compared to other estimates under various 

non-normal error distributions. The second extension concerns with a multivariate 

problem where variable selection is needed along with regulation. We couple the 

WQR with penalization and show that under mild conditions, the penalized WQR 

en- joys the oracle property. The WQR has an intuitive formulation and can be 

easily implemented. Simulation is conducted to examine its finite sample 

performance and compare against alternatives. Analysis of mammal dataset is also 

conducted. Numerical studies are consistent with the theoretical findings and 

indicate the usefulness of WQR. 
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1 Introduction 

In practical regression analysis, it is common that the collected response data display 

heterogeneity due to either heteroscedastic variance or heavy tails of random errors. As a 

robust analysis technique, quantile regression (QR; Koenker and Bassett, 1978) is now 

routinely adopted to accommodate non-normal data. When the relationship between the 

covariates X and response Y evolves across the distribution of Y , the conditional quantile 

constitutes a natural tool for depicting the whole distribution. To improve over the standard 

QR, the composite quantile regression (CQR; Zou and Yuan 2008) has been proposed. It 

combines strengths across multiple quantile regression models and has been to outperform the 

standard QR. Despite several nice properties of CQR, its computational cost is high due to the 

complexity of its loss function. 

In this study, we develop the weighted quantile regression (WQR) method to further 

improve over QR and CQR. Like CQR, WQR combines strengths across multiple quantile 

regressions efficiently by using data-dependent weights at different quantiles. The weights are 

obtained based on the sparsity function and have practical meanings. The resulted WQR 

estimate can be shown to be more robust, reasonable and efficient. Compared to CQR, WQR 

is computationally more affordable. 

In methodological development, we first investigate the simple linear regression model. To 

fully describe the theoretical efficiency of WQR estimate, we study the relative efficiency 

(RE) of WQR with respect to both LS and CQR. It is shown that the WQR has satisfactory 

efficiency even under the worst case scenario. To make WQR practically more useful, we 

develop two nontrivial ex- tensions of the simple WQR. First, we consider the scenario where 

the linear assumption is not rich enough to describe the underlying relationship between the 

response and covariates. Here we consider a nonparametric regression model, develop the local 

WQR method, and investigate its theoretical properties especially including relative efficiency. 

Second, we consider the scenario with multiple covariates where variable selection is needed 

along with estimation and the penalized WQR selection method is adopted. We show that 

under mild regular conditions, the estimate has the much desired oracle selection and 

estimation consistency property. Thus, WQR can provide a useful alternative to QR, CQR, 

and other robust methods. 

The rest of the article is organized as follows. Methodological development is presented 

in Section 2. We first introduce the WQR method under the simple linear regression and 

study its properties. The nonparametric model and local WQR estimation and the 

multi-variate model and penalized WQR estimation are then developed. In Section 3, we 
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conduct simulation study under different models to investigate the finite sample performance. 

Data analysis example is presented in Section 4. The article concludes with discussions in 

Section 5. Some technical details and additional numerical study results are presented in 

Appendix. 

2 Weighted Quantile Regression Technique and Properties 

First consider the linear regression model 

       ﹐ (1) 

where   (       )
  is the length-n vector of responses,   (       )is the     

covariate design matrix,   (       )
 
 is the length-p vector of unknown coefficients, 

and   (       )
  is vector of random errors. 

The standard QR estimate is defined as 

( ̂   ̂  )           ∑  (     
    )

 

   

﹐ (2) 

where   ( )     (   )  (   ) (   ) is the check function and   is any given 

quantile.    is the     % quantile of   . When   ’s are iid, under mild conditions,  ̂   is 

asymptotically normally distributed, 

√ ( ̂    )
 
→ 4 ﹐

 (   )

  (   ( ))
   5﹒ (3) 

 ( ) and  ( )denote the distribution and density functions of   respectively, D is a positive 

definite matrix such that     →         , and 
 
→ denotes convergence in distribution. 

As can be seen from (3), the quantity √ (   )  (   ( )) plays a role analogous to 

the standard deviation in the LS estimation with iid normal errors. Thus to combine strengths 

across multiple quantile regressions (which shares a similar spirit as CQR) and to estimate   

more efficiently, we can use datadependent weights to make more effective use of the sample 

information. Consider a set of K quantiles {  ﹐       }. The WQR weights are defined 

as 

    0√  (    )  (   (  ))⁄ 1⁄  
 (   (  ))

√  (    )
﹐       ﹒ (4) 
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The quantity    (   ( )) has been referred to as the sparsity function (Tukey, 1965) and 

quantile-density function (Parzen, 1979), reflecting the density of observations at the quantile 

of interest. In this paper, we term this quantity sparsity function and denote it as  ( ). Then 

the weight wk can be rewritten as    [ ( )√  (    )]. Intuitively, by adding the 

weights *  + 
  into estimation, sample information can be used more effectively, making 

the weighted estimator more reliable and efficient. Normalized weights are defined as 

  
    ∑    ⁄ ﹐         

With a sequence of   quantiles {  ﹐       }﹐ ̂   is the QR estimate defined in 

(2) with     . We propose the WQR estimate (5) 

 ̂    ∑  
 

 

   

 ̂  ﹒ (5) 

The asymptotic property of  ̂    can be summarized as follows. 

Theorem 1 Assume that conditions C1-C3 (Appendix) hold. Then  

√ ( ̂     )
 
→ (      )﹐ 

where             
          

√  (    )√  (    )
 4  

 .   (  )/

√  (    )
5

 

﹒ 

 

2.1 Asymptotic relative efficiency 

We study the asymptotic relative efficiency (ARE) of WQR with respect to LS estimator 

(ARE1) and CQR estimator (ARE2) by comparing their MSEs. (1). ARE of WQR with 

respect to LS 

(1) ARE of WQR with respect to LS 

As both the WQR aCnd LS estimates are asymptotic unbiased, we only need to compare 

their asymptotic variances. When    ( )      , the asymptotic variance of the LS 

estimate is      . Thus, 

    (         )  
   ( ̂  )

   ( ̂   )
 

  4  
 (   (  ))

√  (    )
5

 

    
          

√  (    )√  (    )

﹒ (6) 
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For the convenience of implementation, we take equally spaced quantiles,    
 

   
﹐

        and denote the corresponding ARE as     (   )﹒ As  →  , the 

    (   ) converges to a limit, denoted by   ( ). The next theorem establishes the lower 

bound of the     . 

Theorem 2 The universal lower bound of      is that 

   
 → 

    
          

√  (    )√  (    )

 4  
 (   (  ))

√  (    )
5

 

 
    

  ( , ( )-) 
﹐ 

And 

  ( )     
 → 

    (   )       (    )( , ( )-) ﹒ 

To get more insights into     , we provide in Table 1     (   ) for some commonly 

assumed error distributions. Several observations can be made. First, when the error 

distribution is  (   ), the LS estimator has the best performance as expected. But when   

is large,      is very close to 1. Second, for all the non-normal distributions listed in Table 

1, WQR has a higher efficiency than LS, particularly when   is small. For the mixture of 

two normal distributions that is often assumed for modeling contaminated and heavy-tailed 

data,      is as large as 7.4. For the skewed    distribution,      is also larger than 1 

regardless of the choice of  . Third, the value of   affects     . We plot      as a 

function of   in Figure 1. 

Table 1:      for commonly assumed error distributions. 

Error Distribution 
    (   ) 

                      

 (   ) 0.8589 0.9150 0.9516 0.9731 0.9849 

Laplace 1.5538 1.4781 1.4337 1.4090 1.3957 

T distribution with df=3 1.8580 1.8631 1.8441 1.8193 1.7974 

T distribution with df=4 1.2387 1.2421 1.2294 1.2128 1.1983 

  
  1.3713 1.5905 1.8025 2.0030 2.2274 

     (   )       (    ) 1.0269 1.1637 1.1959 1.2063 1.1986 

     (   )       (    ) 1.2169 1.3528 1.3727 1.3656 1.3455 

     (   )       (     ) 4.2278 4.7208 4.7945 4.7579 4.6404 

     (   )       (     ) 6.8877 7.3963 7.2898 6.9536 6.8037 
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(2) ARE of WQR with respect to CQR 

For WQR and CQR, the assumption of      can be relaxed. For any error distribution, 

the relative efficiency between WQR and CQR, denoted by     , is 

    (         )  
   ( ̂   )

   ( ̂   )
 

.   ( 
  (  ))/

 
4  

 (   (  ))

√  (    )
5

 

(              )

(

     
          

√  (    )√  (    ))

 

﹒ 

Still take     (   )⁄         . Denote the limit of     (   ) as    when 

 →  . By the conclusion in Zou and Yuan (2008) that the asymptotic variance of the CQR 

estimate is     →  2  [ ( ( ))]
 
3. Then we have 

Theorem 3 Denote F as the collection of all density functions. 

      
   

   
 → 

    (         )  
 

 (    )
        

That is, regardless of the error distribution, the     , is bounded below by 0.7132. It 

indicates that WQR does not incur a serious loss in efficiency even under the worst case 

scenario. To gain more insights, in Figure 1, we show     , for four error distributions. In 

this figure, we fix      for CQR, as suggested by Zou and Yuan (2008) and vary the   

value for WQR. Results are consistent with Theorem 3. 

2.2 Local WQR for the nonlinear regression model 

  

Figure 1:      and      for different error distributions. 
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In this section, we further develop the WQR approach for the nonlinear regression model. 

For simplicity of notation, assume that the covariate is onedimensional. Extension to the 

additive model for multiple covariates is simple.Suppose that we have a sample *(     )   

     + satisfying the model 

    (  )    ﹒ (8) 

  (  )   (  |  ) is a smooth function, error εi can be heteroscedastic or have infinite 

variance. Consider estimating  ( ) at a fixed covariate value   . We approximate  (  ) 

locally by a linear function  (  )   (  )    (  )(     ), and then fit a linear model 

in the neighborhood of   . Let  ( )be a smooth kernel function. The local linear quantile 

regression estimate at the      quantile can be obtained from 

( ̂  ̂)           ∑  (      (     ))

 

   

 .
     

 
/﹐ (9) 

where h is the smoothing parameter.  ̂   ̂   ̂ (     ). Yu and Jones (1998) show that 

Bias ( ̂ (  ))  
 

 
    ( )  (  )  ｏ(  ) ,    ( ̂ (  ))  

 (   ) ( )

   (  ) 
 (   ( ))

 

 (    )﹒ 

  ( )      ( )    ( )     ( )   , and  ( ) denotes the design density. Following a 

similar rationale as in the last section, we propose the local-WQR estimate as 

 ̂   (  )  ∑ ̂ 
  ̂  (  )

 

   

  (10) 

The asymptotic properties of  ̂   (  ) can be summarized as follows. 

Theorem 4 Assume the same conditions as in Fan et al. (1994). As  →       ( ) →   

and   →  , then 

√  ( ̂   (  )   (  ))
 
→ (

 

 
    ( )  (  )      )﹐ 

Where           
          

√  (    )√  (    )
 4  

 .   (  )/

√  (    )
5

 

   (  )﹒ 

Remark: For the above result to hold,    cannot be “too close” to the boundaries, and 

smoothness conditions on  ( ) are needed. The proof can be obtained by combining results 
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in Yu and Jones (1998) and Theorem 1, is omitted here. 

2.3 Penalized WQR for the multivariate model 

Still consider model (1). When p is moderate to large, variable selection can be needed 

along with estimation. Here we use a penalty function for variable selection. Let   ( ) be 

the penalty function with tuning parameter  . For a sequence of quantiles *          +, 

the penalized WQR (PWQR) estimate is defined as 

 ̂          ∑   (     
  )  ∑   (|  |) 

 

   

 

   

         

 ̂     ∑  
  ̂  

 

   

﹐  (11) 

where      are the tuning parameters for each quantile regression models. The weights 

  
    have the same definition as in the previous sections. 

A large number of penalty functions have been developed, including the Lasso family, 

SCAD, MCP, and others. Many (if not all) of them are potentially applicable here. As a 

demonstration, we adopt the adaptive Lasso penalty for its simplicity. In this study, we focus 

on the relatively simpler case with a fixed p and  →  . 

For a sequence of quantiles *    (   )⁄         +, consider the following 

PWQR procedure. First for each   , fit the regular QR using all predictors and denote the 

estimate as  ̂  
( )

. Note that under mild conditions, this estimate is √  estimation consistent. 

Compute the adaptive Lasso estimate 

 ̂  
         ∑    (     

  )   
     ∑

|  |

| ̂    
( )

|
 

 
    ﹒ 

The final PWQR estimate is 

 ̂     ∑  
  ̂  

 

 

   

﹒  (12) 

Let    (   
     

 )  denote the true value of  , where     is a s-vector. Without loss of 

generality, assume that       and     contains all the nonzero components of   . 

Denote  ̂       and  ̂       as the components of  ̂     corresponding to     and    . 

Properties of the PWQR estimate are summarized 

as follows. 
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Theorem 5 Assume that the regularity conditions in Theorem 3 hold. If    √ →   and 

  →          , then  ̂
    

 satisfies 

(a) Sparsity, that is,  ̂        , with probability tending to one; 

(b) Asymptotic normality, that is, 

√ ( ̂        ̂  )
 
→(        )﹐ 

where 

          
      

          

√  (    )√  (    )
 4  

 .   (  )/

√  (    )
5

 

 ﹐ 

and     is the submarix of D with the first s elements in both columns and rows. 

That is, the PWQR estimate has the oracle consistency properties. Theorem 5 establishes the 

asymptotic rate of    . Following Wang (2007), in data analysis, we use a BIC-type criterion 

to select    . Practically the optimal   is selected for each    separately. More specifically, 

the criterion is defined as 

   (     )     .
 

 
∑    .     

  ̂  
 (  )/

 
   /  

   ( )

 
     , 

           is the number of nonzero coefficients in the fitted model. 

3 Simulation Study 

We use Monte Carlo simulation studies to examine the finite sample performance of 

WQR estimator and compare against LS and CQR estimators. We consider two examples 

here, Local-WQR and Penalized-WQR. For all examples , the weights are estimated using 

the plug-in method and 400 data-sets are generated , each consisting of       

observations. 

(1) Example 1 : Nonparametric regression model 

We examine WQR in nonparametric scenario. We consider the same five error 

distributions as in the previous section. In estimation, the bandwidth is selected by a plug-in 

bandwidth selector (Ruppert et.al, 1995), and we employ the Guassian Kernel. The 

performance of  ̂( ) is assessed by the average squared errors ASE, defined by 

   ( ̂)  
 

     
∑ * ̂(  )   (  )+

      
   

﹐ 

where {              } are the grid points evenly distributed over the interval at which 

 ( ) is estimated. We set           and summarize our simulation results using the 

ratios of average squared errors     ( ̂)     ( ̂  )    ( ̂   ) and     ( ̂)  

   ( ̂  )    ( ̂   ). 
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Consider the model 

     (  )       (     )       ﹐ 

where X follows  (    ). To estimate the mean regression function ( )     (  )  

     (     ) , local linear WQR estimator, local CQR estimator (Kai and Li, 2010) and 

local linear LS method are employed, and we estimate  ( ) over [−1.5, 1.5]. For the local 

linear WQR estimator, we consider         , and for the local CQR estimator, we set 

    following Kai and Li (2010). To see how the estimates behave at a typical point, we 

present the biases and standard deviations of  ̂(  ) at         in Table 2.The mean and 

standard deviation of RASE over 400 simulations are also summarized. 

Table 2 presents some information. When the error follows normal distribution, the 

RASEs of the WQR estimator are slightly less than 1, especially for heteroscedastic errors. 

For non-normal distributions, the RASEs of the WQR estimator are greater than 1, indicating 

a gain in efficiency. For estimating the regression function ,      and      seem to 

have better overall performance than      . For cauchy errors, the LS estimator totally 

breaks down, while the WQR estimator remains reliable, and the RASEs can be as very large. 

We plot the WQR, CQR, and LS estimates for mean regression function  ( ) under 

Cauchy errors in Figure2. We consider      and         for WQR. It is clear that while 

the LS estimator breaks down, both the CQR and WQR estimators remain well behaved. 

(2) Example 2: Multivariate regression model 

Consider the linear model 

        ﹐ 

Table 2: Result of Simulation example 1. 

Distribution 

RASE and  ̂ at        , Bias (standard deviation) 

LS                      

 (   )        (     )        (     )       (     )       (     )        (     ) 

RASE —       (     )      (     )      (     )       (     ) 

          (     )        (     )       (     )       (     )        (     ) 

RASE —       (     )      (     )      (     )       (     ) 

Laplace        (     )        (     )       (     )       (     )        (     ) 

RASE —       (      )      (     )      (     )       (     ) 

  
        (     )       (     )      (     )      (     )       (     ) 

RASE —       (     )      (     )      (     )       (     ) 

Cauchy        (     )        (     )        (     )        (     )        (     ) 

RASE —       ( )        ( )       ( )        ( ) 
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Figure 2: Estimated regression function under Cauchy distribution. First panel: CQR9 (green 

dashed), W QR9 (red dashed) and LS (dotted) estimates and the true parameter (solid). Last two 

panels: WQR (red dashed) and CQR (dotted). 

where   (                 ). Predictors X follows a multivariate normal distribution 

with correlation matrix        |   | , for     ,    . Six error distributions are 

considered: (   ),  (   ),   distribution with     , Laplace, Cauchy, and mixture of 

normals     (   )      (     ). To obtain the PWQR estimator, tuning parameter    is 

selected via BIC-like criterion. 

Performance of  ̂     ,  ̂    and  ̂  . To examine the performance of the proposed 

 ̂    , we consider       and 19 and take     and  ̂     for comparison. Means and 

standard deviations of estimates for nonzero coefficients   ,    and    over 400 

simulations are summarized in Table 3. 

Performance of variable selection. We use generalized mean square error (model error) 

    ( ̂ )  ( ̂   )
 
 (   )( ̂   )  to assess the performance of variable selection 

procedures. We use notations “C” and “IC” to measure the model complexity. Specifically, 

column C shows the average number of zero coefficients correctly estimated to be zero, and 

IC denotes the average number of nonzero coefficients incorrectly estimated to be zero. 

Further, we use “U- fit” (under-fit) to denote the trial which excludes nonzero coefficients. 

“C-fit” (correct-fit) represents the correct model, and “O-fit” (over-fit) is the trial which 

selects irrelevant predictors besides the three significant predictors. Results over 400 

simulations are summarized in Table 4. For each column, we report the mean and standard 

deviation. 
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Table 3: Simulation example 2: summary of estimation. 

Method 
Mean(Standard Deviation) 

 ̂ (    )  ̂ (    )  ̂ (    ) 
Standard Normal   

LS 3.004 (0.079) 1.485 (0.084) 1.994 (0.076) 

     3.004 (0.099) 1.480 (0.136) 1.991 (0.089) 

      3.015 (0.089) 1.465 (0.091) 1.988 (0.076) 

      3.018 (0.089) 1.465 (0.089) 1.985 (0.075) 

       3.018 (0.089) 1.458 (0.089) 1.984 (0.074) 

  (   )    

LS 3.006 (0.148) 1.465 (0.155) 1.980 (0.131) 

     3.009 (0.170) 1.463 (0.190) 2.001 (0.145) 

      3.017 (0.154) 1.423 (0.175) 1.973 (0.133) 

      3.019 (0.152) 1.414 (0.175) 1.970 (0.169) 

       3.023 (0.152) 1.413 (0.174) 1.970 (0.129) 

                           

LS 2.998(0.134) 1.479 (0.146) 1.981 (0.123) 

     3.017 (0.127) 1.471 (0.152) 1.999 (0.110) 

      3.012 (0.120) 1.456 (0.128) 1.990 (0.102) 

      3.014 (0.120) 1.455 (0.127) 1.990 (0.102) 

       3.013 (0.119) 1.455 (0.127) 1.990 (0.102) 

Laplace    

LS 2.999 (0.120) 1.483 (0.122) 1.987 (0.109) 

     3.022 (0.129) 1.465 (0.154) 2.009 (0.101) 

      3.017 (0.108) 1.462 (0.114) 1.980 (0.096) 

      3.017 (0.108) 1.462 (0.114) 1.980 (0.096) 

       3.017 (0.108) 1.462 (0.114) 1.980 (0.096) 

     (   )       (     ) 

LS 2.999 (0.270) 1.425 (0.291) 1.934 (0.257) 

     3.016 (0.134) 1.475 (0.170) 1.989 (0.113) 

      3.013 (0.122) 1.459 (0.126) 1.990 (0.104) 

      3.013 (0.122) 1.460 (0.126) 1.990 (0.104) 

       3.013 (0.122) 1.460 (0.126) 1.990 (0.104) 

Standard Cauchy 

LS 1.743 (1.753) 0.708 (1.409) 1.110 (3.510) 

     3.012 (0.185) 1.490 (0.211) 1.988 (0.174) 

      3.021 (0.162) 1.440 (0.188) 1.983 (0.133) 

      3.020 (0.161) 1.441 (0.183) 1.983 (0.133) 

       3.021 (0.162) 1.440 (0.188) 1.983 (0.132) 
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Table 4: Simulation example 2: performance of variable selection 

Method 
GMSE  No. of zeros  Proportion of fits 

Mean (SD) Median (MAD)  C IC  U-fit C-fit O-fit 

Standard Normal          

LS 0.017 (0.015) 0.013 (0.011)  4.908 0.000  0.000 0.918 0.082 

     0.028 (0.133) 0.014 (0.012)  4.970 0.000  0.000 0.975 0.025 

      0.019 (0.016) 0.014 (0.011)  5.000 0.000  0.000 1.000 0.000 

      0.019 (0.015) 0.015 (0.012)  5.000 0.000  0.000 1.000 0.000 

       0.019 (0.015) 0.014 (0.012)  5.000 0.000  0.000 1.000 0.000 

N (0, 3)          

LS 0.056 (0.046) 0.043 (0.035)  4.903 0.000  0.000 0.910 0.090 

     0.072 (0.087) 0.047 (0.041)  4.543 0.000  0.000 0.818 0.182 

      0.061 (0.053) 0.048 (0.039)  4.993 0.000  0.000 0.993 0.007 

      0.062 (0.058) 0.047 (0.039)  4.990 0.000  0.000 0.990 0.010 

       0.080 (0.064) 0.061 (0.057)  4.988 0.000  0.000 0.988 0.012 

                         

LS 0.048 (0.047) 0.035 (0.033) 4.893 0.000 0.000 0.903 0.097 

     0.060 (0.269) 0.023 (0.022) 4.945 0.000 0.000 0.970 0.003 

      0.034 (0.027) 0.026 (0.021) 5.000 0.000 0.000 1.000 0.000 

      0.033 (0.027) 0.026 (0.021) 5.000 0.000 0.000 1.000 0.000 

       0.033 (0.027) 0.027 (0.021) 5.000 0.000 0.000 1.000 0.000 

Laplace        

LS 0.036 (0.031) 0.028 (0.025) 4.883 0.000 0.000 0.895 0.105 

     0.051 (0.176) 0.019 (0.016) 4.963 0.000 0.000 0.983 0.017 

      0.028 (0.026) 0.021 (0.019) 5.000 0.000 0.000 1.000 0.000 

      0.028 (0.026) 0.021 (0.019) 5.000 0.000 0.000 1.000 0.000 

       0.028 (0.026) 0.021 (0.019) 5.000 0.000 0.000 1.000 0.000 

     (   )         (     ) 

LS 0.223 (0.206) 0.166 (0.154) 4.873 0.003 0.003 0.877 0.120 

     0.034 (0.066) 0.019 (0.018) 4.953 0.000 0.000 0.983 0.017 

      0.033 (0.029) 0.025 (0.022) 5.000 0.000 0.000 1.000 0.000 

      0.033 (0.029) 0.026 (0.021) 5.000 0.000 0.000 1.000 0.000 

       0.033 (0.029) 0.026 (0.021) 5.000 0.000 0.000 1.000 0.000 

Cauchy        

LS 25.18 (155.2) 8.255 (10.30) 4.828 1.870 0.840 0.007 0.153 

     0.094 (0.177) 0.048 (0.045) 4.383 0.000 0.000 0.777 0.223 

      0.060 (0.095) 0.040 (0.034) 5.000 0.000 0.000 1.000 0.000 

      0.059 (0.088) 0.040 (0.034) 5.000 0.000 0.000 1.000 0.000 

       0.059 (0.089) 0.042 (0.035) 5.000 0.000 0.000 1.000 0.000 
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4 Real Data Analysis 

As an illustration, we apply the proposed WQR methods to analyze the mammals data set. 

First we employ local WQR estimator to a mammals data set, consisting of 107 samples. Of 

interest is the relationship between the running speed of mammal species and their body mass. 

The data was collected by Garland in 1983. We applied the local WQR, CQR estimator and 

local LS estimator to fit the data, we take the response Y to be the logarithm of speed, and the 

predictor   is the logarithm of weight. First we depict the scatter plot and estimate the 

regression function using full data, depicted in Figure3. We present the local WQR estimates 

and CQR estimates with    , actually the estimates are very similar with different   . It 

is interesting to see from Figure 3 that the overall pattern of these three estimates are the 

same. The difference between these three estimates becomes slightly larger only when   is 

around 2. Interesting enough is that several possible outliers can be detected from the scatter 

plot when   is about 2. To analyze the influence of the outliers, we re-estimated the 

regression function after excluding these outlier observations. Results are depicted in Figure4, 

to make comparisons we also present the estimates of the full observations in each panel of 

Figure4. We can see that the local WQR estimate remains almost the same, the local CQR 

estimate changes a little, whereas the LS estimate changes dramatically. 

 

  

Figure 3: Analysis of the Mammals data using WQR, CQR and LS. The left panel is the scatterplot, 

the right is the estimated regression functions. 
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5 Discussion 

In this paper, we have proposed weighted quantile regression and proved its nice 

theoretical properties. We have shown that the weighted quantile regression techniques are 

easy to implement and are very flexible. The weights, derived based on sparsity function, can 

automatically combine the optimal strength of each quantile into the final model, thus 

significantly improve the efficiency of WQR estimator. It is shown that the relative 

efficiency of WQR estimator with respect to both LS and CQR estimator is always larger 

than 70%. In regularization framework, the penalized WQR can be employed to conduct 

variable selection. Results of simulation indicate that the penalized WQR estimator have the 

extraordinary ability to select relevant variables. 

 

   

Figure 4: Estimated regression function with original data and data removed several possible outliers. 

(− − − Original; —- Removed) 
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