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Abstract

We propose a scalable Bayesian network learning algorithm based on sparse Cholesky decom-
position. Our approach only requires observational data and user-specified confidence level as
inputs and can estimate networks with thousands of variables. The computational complexity
of the proposed method is O(p3) for a graph with p vertices. Extensive numerical experiments
illustrate the usefulness of our method with promising results. In simulation, the initial step in
our approach also improves an alternative Bayesian network structure estimation method that
uses an undirected graph as an input.

Keywords Bayesian networks; robust selection; sparse Cholesky decomposition; structure
learning

1 Introduction
Bayesian network is a type of graphical model which encodes conditional independencies be-
tween random variables as directed acyclic graphs (DAGs) (Pearl, 2014). Bayesian networks al-
low decomposition of the joint distribution into smaller configurations (conditional distributions)
such that the product of all configurations amounts to the full joint distribution. In addition
to compactly representing complex relationships, Bayesian networks also provide computational
efficiency in sampling and inference that would otherwise require intractable summations (Good-
fellow et al., 2016). Bayesian networks find their applications in a wide range of disciplines: speech
recognition (Huang et al., 2001), genetics (Friedman, 2004), computational biology (Sachs et al.,
2005), image understanding (Luo et al., 2005), and many more (Wainwright and Jordan, 2008).

Despite the usefulness of these models, learning the DAG structure from observational data
is challenging. In general, one can identify a Bayesian network only up to a Markov equivalence
class with observational data alone (Verma and Pearl, 2022). Computationally, the number
of possible Bayesian networks grows super-exponentially as the number of vertices increases
(Robinson, 1977), which makes analyzing high-dimensional data beyond hundreds of variables
challenging even for many state-of-the-art methods in the literature. Furthermore, the perfor-
mance of these algorithms heavily depends on initial input and parameter tuning, which are
often not addressed in detail. These challenges necessitate a scalable, simple-to-tune, off-the-
shelf learning algorithm for large Bayesian networks.
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2 Preliminaries
Consider p-variate Gaussian random vector X = (X1, . . . , Xp)T ∼ N(0, �) with covariance
structure �. Then, a Bayesian network can be defined by a pair {G, X} where G is a DAG that
imposes a causal structure over X. G is formed by two sets (V , E) where V = {X1, . . . , Xp} or
simply {1, . . . , p} is a set of vertices and E = {(i, j) : i → j ∀ i, j ∈ V } is a set of directed edges.
paG(j) = {i ∈ V : i → j } denotes the parent set of vertex j in the DAG G.

Assuming linear dependencies between variables of X, structural equation modeling writes

Xj =
∑

i∈paG(j)

βijXi + εj , j = 1, . . . , p (1)

where βij are regression coefficients and εj ∼ N(0, ω2
j ), εj ⊥ εk ∀ k �= j . In matrix form, we can

write
X = BT X + ε (2)

where ε = (ε1, . . . , εp)T and B is the coefficient matrix, i.e., (B)ij = βij whose nonzero patterns
represent the Bayesian network structure. Let � = �−1 denote the precision matrix and � =
diag(ω2

1, . . . , ω
2
p) be the diagonal matrix with error variances. Then it is straightforward to show

that � can be expressed as a function of B and �

�(B, �) = (I − B)�−1(I − B)T . (3)

Since zero correlation implies conditional independence under multivariate Gaussianity, the zeros
of the precision matrix � coincides with the missing edges in the corresponding undirected
graph. Since zero/nonzero patterns in � and B coincide with edges in undirected graph and
DAG, respectively, we will use these terms interchangeably for simplicity.

Furthermore, � can be translated into its canonical candidate DAG by computing its modi-
fied Cholesky factors: � = T DT T , where T = I −B is computed from ordinary Cholesky factors
� = LLT . The lower triangular matrix T with unit diagonal entries is a scaled version of L, and
the diagonal matrix D = �−1 has Dii = L2

ii for i ∈ V as the diagonal entries. Also, notice that
the lower triangular shape of B ensures the acyclicity condition since any variable j is linearly
dependent only on preceding variables i < j , where i, j ∈ V as in (1), and coefficient βij �= 0
implies (i, j) ∈ E (Pourahmadi, 1999).

The Cholesky factor L is dependent on the ordering of rows and columns of �, so it is often
desired to estimate the DAG representing the distribution with minimal number of edges called
minimal-edge I-MAP (Van de Geer et al., 2013). In fact, in the noiseless Gaussian setting, re-
covering the minimal-edge I-MAP amounts to finding a variable ordering π so that the Cholesky
factor in �π = LπLT

π is the sparsest (Raskutti and Uhler, 2018). Figure 1 illustrates the im-
pact variable ordering of � has on the zero/nonzero patterns in the resulting Cholesky factor.
Recently published methods such as ARCS (Ye et al., 2020) and RFD (Squires et al., 2020)
perform DAG recovery by estimating the permutation ordering π along with the corresponding
Cholesky factor L.

However, even when the variable ordering is known, the quality of the precision matrix �

greatly affects the performance of DAG estimation. This is due to the sequential procedure of
Cholesky decomposition that is prone to accumulate errors. We will illustrate empirical evidence
of this in Section 3 and introduce distributionally robust optimization to tightly control the
number of false edges in �.
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Figure 1: The top row represents an unordered sparse undirected graph and its Cholesky factor
while the bottom row represents those ordered by sparse Cholesky decomposition. nz indicates
the number of nonzero entries.

As discussed, the performance of DAG estimation from data hinges on the quality of the
precision matrix � and the permutation ordering π . Based on these observations, we propose a
novel algorithm for DAG structure learning that we call FROSTY in Section 3. Two distinct fea-
tures/advantages of FROSTY are its tuning simplicity and scalability to high-dimensional data.
In Section 4, FROSTY is empirically evaluated in comparison to other recent DAG structure
learning methods.

3 FROSTY for DAG Structure Learning
We propose a scalable Bayesian network learning algorithm for scale-free graphs, which we
call scale-Free Bayesian network learning with RObust Selection Tuning and sparse choleskY
(FROSTY).1 At a high-level, FROSTY consists of two steps: input undirected graph � estima-
tion step and DAG G recovery step using a sparse Cholesky decomposition. The pseudo-code for
FROSTY is given in Algorithm 1. In the remainder of this section, we discuss the components
of FROSTY in detail.

1The term “scale-free” in the title will be motivated in latter part of this section.
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Algorithm 1: FROSTY algorithm.
Input : Dataset X, confidence level α

Output: Coefficient matrix of Bayesian network B

Step 1: Estimate undirected graph �

1 Set λα = RobSel(X, α) using Algorithm 2.
2 Estimate � = �(λα) with graphical lasso.

Step 2: Recover Bayesian network B

3 Compute Cholesky factor and permutation matrix, Lπ, Pπ = AMD(�).
4 B = P T

π (diag(Lπ) − Lπ)diag(Lπ)−1Pπ .
5 return B

3.1 Distributionally Robust Optimization for Cholesky Factor

First, we introduce a distributionally robust estimate of Cholesky factor. Consider the Gaussian
negative log-likelihood function

�(S;L) = trace(SLLT ) − 2 log |L|
where L is the Cholesky factor of the precision matrix as in � = LLT and S is the sample
covariance matrix. Then, a distributionally robust estimate of L is obtained by solving

min
L∈Lp

sup
P∈S

EP [�(S;L)]

where Lp is the set of p × p lower triangular matrices with positive diagonal and S is called an
ambiguity set. Let S = {P : Dc(P,Pn) � λ}, the collection of measures such that some notion
of distance between plausible distribution P for the true probability measure P0 and empirical
distribution Pn is bounded by an ambiguity size λ. Let Dc(·, ·) be the optimal transport cost
function between two distributions defined by

Dc(P1, P2) = inf {Eπ [c(U, V )] : π ∈ P(Sp × Sp), πU = P1, πV = P2}
where Sp is the set of p × p symmetric matrices and P(Sp × Sp) is the set of joint probability
distributions π on (U, V ) supported on Sp × Sp. πU and πV are the marginal distributions of U

and V , respectively. Let vec(A) ∈ R
p2 be a vectorized form of a matrix A ∈ R

p×p in row-major
order, then the following is the cost function of our choice

c(U, V ) = ‖vec(U) − vec(V )‖∞.

Theorem 3.1. The �1-regularized optimization problem of L can be recasted as the Distribu-
tionally Robust Optimization (DRO) formulation,

min
L∈Lp

sup
P :Dc(P,Pn)�λ

EP [�(S;L)]
︸ ︷︷ ︸

DRO formulation

= min
L∈Lp

{�(S;L) + λ‖vec(LLT )‖1}︸ ︷︷ ︸
�1-regularized formulation

. (4)
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Theorem 3.1 shows the equivalence of parameter λ between the amount of regularization
(right-hand side) of (4) and the ambiguity size of the DRO formulation (left-hand side). Utilizing
this equivalence, we suggest a selection criterion for λ based on (1 − α)-confidence level for L by
modifying the derivation found in Cisneros et al. (2020). First, let us construct the confidence
region for L. For any L ∈ Lp, O(L) denotes the set of all probability measures that make the
gradient vanish, i.e.,

O(L) =
{
P : EP

[
∂

∂L′ �(S;L′)
∣∣∣∣
L′=L

]
= 0p,p

}
.

where 0p,p is a p × p zero matrix. Then we consider the set of plausible Cholesky factors for L

by

Cn(λ) = {L ∈ Lp : ∃ P ∈ O(L) ∩ {P : Dc(P,Pn) � λ}}.
In fact, since Pn weakly converges to the true probability measure P0 for any λ, Cn(λ) is a
confidence region for L. Define the Robust Wasserstein Profile (RWP) function Rn as follows:

Rn(L) = inf {Dc(P,Pn) : P ∈ O(L)},
which represents the minimum distance between the empirical distribution and any plausible
distribution that satisfies the first-order optimality condition for L.

The following theorem demonstrates that the optimal amount of regularization λα for �1-
regularized optimization problem of L can be completely determined by a user-specified error
tolerance α as in (1 − α)-confidence level for L.

Theorem 3.2. The RWP function for L is

Rn(L) = ‖vec(S − (LLT )−1)‖∞,

and a robust selection for the ambiguity size λ of the DRO formulation for L in (4) is

λα = inf {λ > 0 : P0(‖vec(S − (LLT )−1)‖∞ � λ) � 1 − α} (5)

where P0 is the measure of the Cholesky factor of the random matrix (XXT )−1 induced by the
true probability law for X.

The implication of Theorems 3.1 and 3.2 is that estimating L can be achieved in two stages
as in Algorithm 1: Step 1 is the sparse estimation of �, and Step 2 is the Cholesky factorization
of � = LLT . Since the DAG structure in L corresponding to an undirected graph structure in
� depends heavily on variable ordering as discussed in Section 2. A natural question to ask is
whether λα is invariant under variable ordering permutations.

In the following lemma, we show that λα does not depend on variable ordering.

Lemma 3.3. Let π be a variable ordering consistent with the minimal-edge I-MAP Bπ and Lπ

be the corresponding Cholesky factor, i.e., Bπ = (diag(Lπ) − Lπ)diag(Lπ)−1. For the precision
matrix �, suppose Pπ is a permutation matrix such that Pπ�P T

π = �π = LπLT
π . Then, the RWP

function for Lπ is equivalent to the RWP function for �, i.e,

Rn(Lπ) = ‖vec(Sπ − (LπLT
π )−1)‖∞ = ‖vec(S − �−1)‖∞ = Rn(�). (6)
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A direct consequence of Lemma 3.3 is that � only needs to be estimated once independent
of the variable ordering π since Rn(Lπ) = Rn(�). Additionally, Lemma 3.3 justifies estimation
λα by Robust Selection (RobSel) algorithm of Cisneros et al. (2020) given in Algorithm 2.

RobSel algorithm only requires bootstrapped sample covariance matrices to determine λα,
without requiring computationally expensive cross-validation. Furthermore, in the recent work
of Tran et al. (2022), it has been shown that α in RobSel is the upper bound of the asymptotic
family-wise error rate of estimating at least one erroneous nonzero in �. Since the DRO formula-
tion is to minimize the worst-case scenario, RobSel tends to be conservative even for large values
of α, and, in fact, a large value of α is recommended, e.g., α = 0.99 was routinely used with good
results. We remark that using RobSel-tuned � as inputs might also improve other methods. In
our numerical experiments, RFD (Squires et al., 2020) estimates improve when RobSel-tuned �

is provided as input.

3.2 Recovering Variable Ordering

To ultimately recover the minimal-edge I-MAP Bπ from the precision matrix �, we also need to
estimate a variable ordering π that leads to the sparsest Cholesky factor Lπ . Since recovering
such a permutation π is known to be NP-complete (Yannakakis, 1981), a heuristic method called
Approximate Minimum Degree ordering (AMD) (Amestoy et al., 1996) is used in FROSTY.
AMD algorithm is a more efficient variant of the minimum degree ordering (Rose, 1970) method
in which the upper bound of the vertex degree is approximated instead of an exact one.

For Gaussian distribution, the relationship between the Cholesky factor of the precision
matrix and the ordered conditional independence is well known (Rue and Held, 2010). Fur-
thermore, the minimum fill-in problem, i.e. sparse Cholesky decomposition, is equivalent to the
minimum chordal problem (Rose, 1972), and, coincidentally, scale-free graphs are natural candi-
dates for the problem (Sioutis and Condotta, 2014). In applications, many networks are believed
to have scale-free structure, which motivates our selection of AMD as a method to recover the
minimal-edge I-MAP from �.

3.3 Computational Complexity

Let b be the number of bootstrap samples in RobSel. RobSel only requires to compute b sample
covariance matrices, whose computation time is O(bnp2). Then, we estimate undirected graph
with graphical lasso with O(p3), which is the computational cost of FROSTY. However, the

Algorithm 2: RobSel algorithm (Cisneros et al., 2020).
Input : Dataset X, confidence level α

Output: Graphical lasso regularization parameter λα

1 for k ← 1, . . . , b do
2 Obtain bootstrap sample X∗

1k, . . . , X
∗
nk by sampling uniformly with replacement.

3 Compute R∗
n,k = ∥∥A∗

n,k − An

∥∥
q
, with empirical covariance A∗

n,k of bootstrap sample.
4 end
5 Set λα as bootstrap order statistic R∗

n,((b+1)(1−α)).

6 return λα
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computation time of graphical lasso is known to be significantly shorter for sparse problems
(Friedman et al., 2008).

Lastly, the computational complexity of AMD is

O

( p∑
k=1

|Lk∗| · |(P�P T )k∗|
)

≈ O(|L|) � O(p2)

where L is the Cholesky factor and the subscript k∗ indicates nonzero elements in row k. AMD is
a semi-deterministic algorithm that is efficiently implemented in sksparse.cholmod. We observe
that the computation time of AMD is almost ignorable compared to graphical lasso. Hence, the
computational complexity of FROSTY is O(p3).

4 Simulations
To test FROSTY, we generate two synthetic random graphs, scale-free graphs and Erdos-Renyi
graphs, with varying graph sizes p ∈ {50, 100, 150, 200}. Scale-free graphs are generated by the
preferential attachment model (Barabási and Albert, 1999) with m = 1 where m is the number
of random edges to add for each vertex. The edge direction is chosen from an existing vertex to
a newly added vertex. For Erdos-Renyi graphs, we first generate undirected Erdos-Renyi graphs
whose expected number of edges are p and 2p, and take their lower triangular matrix. Then,
for each graph, its corresponding precision matrix is obtained by the equation (3) whose edge
weights are chosen from Uniform(0.25, 1) with equal probability of its sign being positive or
negative. Symmetry and positive definiteness of the precision matrix are ensured by averaging
with its transpose and scaling it to be diagonally dominant. Multivariate Gaussian data are
generated from the inverse of the precision matrix with two different sample sizes proportional
to the graph size: n ∈ {0.5p, 2p}. Note that even if a Bayesian network is sparse and follows
scale-free degree distribution, its undirected graph can be dense due to a large number of v-
structures. We investigate the performance of FROSTY when a scale-free Bayesian network
has a significant number of v-structures. Such a scale-free graph is obtained by generating the
preferential attachment model with m = 1 and randomly reversing edge directions. For our
simulation, we randomly reverse 25% of the edges.

Comparison metrics – structural hamming distance (SHD), false discovery rate (FDR),
Matthews correlation coefficient (MCC) – are evaluated on the adjacency matrix of the Com-
pleted Partially Directed Acyclic Graph (CPDAG) computed from the estimated DAGs. We use
the CPDAG to avoid favoring a structure over another when they are statistically indistinguish-
able (Spirtes et al., 2000).

Since RFD requires � as an input, we provide two different estimate schemes: RS and
CV indicate estimated � by RobSel and estimated � by Cross-Validation, respectively. For
RFD (CV), we used a 5-fold CV with a 20 evenly spaced grid of λ on a log-scale where the
maximum value of the grid was chosen by the maximum of the absolute values of the sample
covariance matrix excluding diagonal entries. The minimum value was chosen to be 0.05 times
of the maximum value. It is important to note that, for FROSTY, we simply chose α = 0.99
throughout the entire simulation without any parameter tuning. All performance metrics in
figures are averaged over 20 randomly generated datasets unless otherwise noted.
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Figure 2: The effect of false edge control of RobSel on DAG estimation. For RobSel, a grid of
λrs = [λ0.1, λ0.3, λ0.5, λ0.7, λ0.9] is used.

4.1 Empirical Motivation for RobSel

Figure 2 illustrates the benefits of tightly controlling the number of false edges in � by RobSel,
which in turn leads to greater accuracy in DAG estimation. Based on Gaussian data generated
from a scale-free Bayesian network of size p = 100 and sample size n = 200, �’s are estimated
with graphical lasso given two grids of λ. λrs = [λ0.1, λ0.3, λ0.5, λ0.7, λ0.9] are chosen by RobSel
where the subscripts represent the values of α used, and λother = [λ1, . . . , λ10] are 10 evenly spaced
values between (0, λ0.9). However, only the 6 largest values in λother are shown in Figure 2 for
visual clarity. For DAG recovery, ordinary Cholesky decomposition is applied when the variable
ordering is known while AMD is applied when the ordering is unknown.

When the regularization parameter λ is chosen by RobSel, graphical lasso conservatively
estimates � resulting in low FDR with relatively high MCC on its CPDAG. However, notice
that FDR surges and MCC drops rapidly when we select λ smaller than the smallest one chosen
by RobSel, i.e. λ0.9. This empirically motivates one to choose RobSel over cross-validation, which
always selects smaller λ than RobSel (Cisneros et al., 2020) and has a tendency toward overfitting
(Hastie et al., 2009).

4.2 Synthetic Graphs

Scale-Free Graph Figure 3 shows that FROSTY overall obtained higher scores than ARCS
and RFD (CV) when the underlying graph structure has scale-free degree distribution while
FROSTY and RFD (RS) were nearly identical. This indicates that RFD can be significantly
improved by carefully selecting undirected graph with RobSel. There was virtually no difference
in performance between FROSTY and RFD (RS) even though the RFD algorithm utilizes
additional DAG-specific structure on top of vertex degrees for its permutation recovery. This
addition increases the computational complexity of RFD resulting in O(p4) in the best case
scenario (when the depth parameter is chosen to be 1) while AMD, which only utilizes vertex
degree information, boasts almost linear complexity. The fact that FROSTY is computationally
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Figure 3: Performance comparison for various graph structures.
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Table 1: Runtime analysis.

Method Runtime (sec.)

p = 100 p = 200 p = 500 p = 1000 p = 2000

FROSTY 0.12 0.28 1.39 5.52 33.69
RFD (RS) 0.86 6.52 168.62 2180.04 –
RFD (CV) 33.59 177.88 1817.85 14250.32 –
ARCS 57.52 101.47 562.56 5721.50 14581.00
Note: For p = 2000, RFD did not run in the computing resource available to us (due to out of memory)

Figure 4: Log-scale runtime comparison between methods with varying graph sizes. The results
are averaged over 20 runs except for the cases of p = 1000 and 2000, each of which is run only
once.

more efficient than RFD (RS) whilst being able to estimate as accurate CPDAGs demonstrates
FROSTY could be a better choice of algorithm under the scale-free assumption on large-scale
graphs. Table 1 and Figure 4 show the superb scalability of FROSTY.

Erdos-Renyi Graph While the deviation from scale-free degree distribution and denser
Erdos-Renyi graphs resulted in poorer performance of FROSTY shown in Figure 3, FROSTY
still showed more favorable performance especially when the underlying graph is sparse. Also,
notice that ARCS suffers significantly when the sample size is small and that RFD (CV) shows
no improvement in FDR when the sample size increases. However, FROSTY remains competitive
in both cases.

4.3 Real Networks

We also investigate a various real networks. The flow cytometry data (Sachs et al., 2005) is
a frequently used real dataset in Bayesian network literature, which contains 11 proteins and
phospholipids in human immune system cells (p = 11) and 7466 measurements (n = 7466).
Its network structure is considered to be known from experiments. We also consider Hailfinder
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Figure 5: Consensus network (as in CPDAG) of flow cytometry data and estimated CPDAGs.

and Pathfinder networks from bnlearn repository. Hailfinder is a weather forecast system based
on meteorological data with expert judgment (Abramson et al., 1996), and Pathfinder is an
expert system that assists in diagnosing lymph-node pathology (Heckerman and Nathwani,
1992). Network sizes are p = 56 and 109, respectively. Gaussian data are generated in the
same manner as the synthetic graph simulation except that here we try a variety of sample
sizes: n ∈ {0.5p, 2p, 10p}.

Flow Cytometry Network Since the original flow cytometry dataset hardly follows Gaussian
distribution, log transformation was applied. All estimated CPDAGs and corresponding accuracy
metrics are given in Figure 5. All three methods estimated similar CPDAGs, and, in fact,
FROSTY and RFD estimated an identical CPDAG. The CPDAG estimated by ARCS differed
by a couple of missing edges, both of which exist in the consensus network.

Hailfinder & Pathfinder Networks Throughout various sample sizes, FROSTY attained
consistently better MCC along with RFD (RS) as shown in Figure 6. On the other hand, RFD
(CV) suffered from overfitting when the sample size gets large with noticeable increase in FDR,
which is more clearly shown in Figure 7. Furthermore, Figure 7 also shows that FROSTY
estimated true edges more consistently compared to ARCS. We can observe the estimated edges
of ARCS for the true edges are lighter than those of FROSTY.

5 Conclusion
FROSTY estimates an undirected graph and converts it to a directed acyclic graph. The key
contribution comes from the undirected graph estimation with computationally efficient param-
eter tuning that tightly controls false edges. It is interesting that FROSTY outperforms RFD
whilst being essentially a subset class of RFD seeded with cross-validated input undirected graph
indicates that many algorithms that take an undirected graph as an input can be significantly
improved by adapting FROSTY’s undirected graph estimation step. Furthermore, FROSTY is
extremely scalable. For a large graph size of 2000 vertices, it estimates a Bayesian network less
than a minute while it takes several hours for the other methods. FROSTY is also simple. There
is practically one tuning parameter α, as in (1 − α)-confidence level for the Cholesky factor L,
which can be chosen informatively without the need for computationally expensive and arbitrary
grid-search with cross-validation.
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Figure 6: Performance comparison for Pathfinder and Hailfinder networks with varying sample
sizes.

Figure 7: True and estimated CPDAGs for Hailfinder and Pathfinder networks. The edge inclu-
sion percentage is represented by the grayscale. The results are based on sample size of n = 10p.

Supplementary Material
Supplementary material includes proofs of the theorems and the Python code for simulation.
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