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Abstract

Causal inference can estimate causal effects, but unless data are collected experimentally, statis-
tical analyses must rely on pre-specified causal models. Causal discovery algorithms are empirical
methods for constructing such causal models from data. Several asymptotically correct discovery
methods already exist, but they generally struggle on smaller samples. Moreover, most methods
focus on very sparse causal models, which may not always be a realistic representation of real-life
data generating mechanisms. Finally, while causal relationships suggested by the methods often
hold true, their claims about causal non-relatedness have high error rates. This non-conservative
error trade off is not ideal for observational sciences, where the resulting model is directly used
to inform causal inference: A causal model with many missing causal relations entails too strong
assumptions and may lead to biased effect estimates. We propose a new causal discovery method
that addresses these three shortcomings: Supervised learning discovery (SLdisco). SLdisco uses
supervised machine learning to obtain a mapping from observational data to equivalence classes
of causal models. We evaluate SLdisco in a large simulation study based on Gaussian data and
we consider several choices of model size and sample size. We find that SLdisco is more con-
servative, only moderately less informative and less sensitive towards sample size than existing
procedures. We furthermore provide a real epidemiological data application. We use random
subsampling to investigate real data performance on small samples and again find that SLdisco
is less sensitive towards sample size and hence seems to better utilize the information available
in small datasets.
Keywords causal learning; causality; deep learning; neural network; observational data;
structure learning

1 Introduction
Questions of cause and effect are prevalent in many scientific applications: Why is the global
temperature rising? What are the economic consequences of raising a tax? How can we pre-
vent the development of depression? Classic scientific methodology suggests that such questions
ought to be answered by relying on experimentation, controlling the supposed cause in order
to quantify its effect. However, many interesting and important questions do not allow for such
experimentation – it may be impossible, too costly or not ethically permissible. In such cases,
empirical sciences generally rely on theory for constructing causal models and use observational
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data for causal inference, i.e. causal effect estimation. While this methodology has provided many
useful results, relying on theoretical specifications of causal models induces risk of confirmation
bias and greatly limits the scope of topics that can be studied.

Causal discovery provides an empirical alternative to theory-driven causal model specifica-
tion. Here, causal models are inferred from observational data by use of conditional indepen-
dence tests or model scoring. Exhaustive searches among candidate causal models are generally
not computationally feasible, and hence, existing causal discovery algorithms rely on either
sequential testing, greedy search procedures or a combination of both. While several existing
algorithms have been proven to be asymptotically correct (including the Peter-Clark (PC) algo-
rithm (Kalisch and Bühlman, 2007) and greedy equivalence search (GES) (Chickering, 2002)),
their finite sample properties are compromised by the sequential nature of the procedures. Each
algorithmic step involves one or more statistical decisions, which will then inform subsequent
steps. But statistical decisions are of course subject to statistical error, and these statistical
errors propagate in an unfortunate manner, which makes the algorithms questionable for small
or moderate sample sizes.

Moreover, existing algorithms have generally been developed and evaluated with focus on
sparse causal models, that is, causal models where there are only few cause-effect links between
the involved variables. This makes computations simpler, but sparsity of causal mechanisms
may not be a meaningful or natural assumption in many sciences relying on observational data
for causal inference. For example in epidemiology, causal etiological models often include nu-
merous complexly intertwined cause-effect relationships that can hardly be described as sparse
(De Stavola et al., 2006).

Finally, causal discovery methods have traditionally been evaluated with focus on their per-
formance for positive findings: It has been prioritized to ensure that causal mechanisms claimed to
be present are truly present. This focus has been useful for informing experimental sciences where
such claimed causal relationships can then afterwards be tested and quantified using controlled
experiments. However, in truly observational sciences, such as epidemiology, where no interven-
tions are feasible, this evaluation metric may not be as useful. A major concern in epidemiology
is the presence of confounding and selection variables for a given causal inference task and there-
fore, a causal discovery procedure that provides good guarantees on negative findings may be
more useful: Knowing that a certain causal effect is for example not confounded will help inform
what statistical procedures can be used to estimate it, and avoids conditioning on variables that
will bias the estimation of this target (i.e. inadvertently conditioning on mediators or colliders).

To address these problems, we propose a new approach for causal discovery using supervised
machine learning, supervised learning discovery (SLdisco). We train a machine learning model
on simulated data, where the true causal model is known, thereby obtaining a classification
function that takes in new observational data and outputs a causal model suggestion. SLdisco
is non-sequential in the sense that it learns the full causal model jointly, and hence it is less
sensitive to statistical error occurring from small or moderate sample sizes. It seeks to estimate
the true model density, and hence it has no built-in preference towards sparse (or dense) causal
model. This agnosticism gives it relatively better performance on dense data generating mecha-
nisms. Finally, the construction of the classification function includes a classification threshold,
which will provide a direct means to control trade off between different error types, and hence
SLdisco can be optimized to focus on correctly identifying negative rather than positive causal
relationships.

Our proposed method assumes no latent confounding or selection variables, and seeks to
learn the Markov equivalence class of the causal model, as represented via a completed partially
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directed acyclic graph (CPDAG). This article is the first to propose to use supervised machine
learning for this task.

We provide a proof-of-concept showcase of the potential of SLdisco. We use simple convo-
lutional neural networks as the machine learning model and we train these models on simulated
linear Gaussian data. The choice of linear Gaussian data is theoretically attractive, since several
existing classical causal discovery algorithms are asymptotically correct for this type of data.
This implies that we can directly measure and compare differences in performance due to finite
samples, because we know that the involved methods will produce perfect results in the large
sample limit.

The article is structured as follows: We first introduce key concepts in Section 2. In Section 3
we provide a thorough exposition of the three issues mentioned above for two popular existing
causal discovery methods, the PC and greedy equivalence search (GES) algorithms. In Section 4
we present our proposed methodology, SLdisco. Section 5 describes which metrics we use to
evaluate the performance of the different discovery algorithms. We evaluate SLdisco in a large
simulation study in Section 6, and in a real epidemiological data application in Section 7. Finally,
we discuss strengths and limitations of our method in Section 8 and provide suggestions for future
research.

1.1 Related Work

This article is the first to propose using supervised machine learning for CPDAG discovery. How-
ever, other authors have proposed to use supervised machine learning for other causal discovery
tasks.

Li et al. (2020) look at the special case where the full DAG is identifiable from obser-
vational data (so-called linear non-Gaussian additive noise (LiNGAM) setting and the linear
Gaussian equivariance setting), and applies a neural network to this task. However, they do
not consider influence of sample size or graph density, and their evaluation setup does not in-
form non-conservative performance. They specifically consider only very sparse graphs and all
graphs in each of their training datasets have the same density. Hence their results are condi-
tional on knowing the correct graph density. This is not a realistic assumption in observational
sciences.

Yu et al. (2019) and Xu and Xu (2021) propose methods using neural networks in the same
special case where the full DAGs is identifiable, and they also consider only a fixed average graph
density, and do not study the influence of sample size.

Ke et al. (2022) also address this special case using neural networks, and they furthermore
train their model on a mixture of observational and experimental data. Hence, in observational
sciences, where experimental data is not available, this method cannot be used.

Zheng et al. (2018) and Zheng et al. (2020) tackle the same special case of identified DAGs,
but provide a general framework for formulating the graphical acyclicity criterion as a constraint
for a continuous optimization problem.

Finally, Goudet et al. (2018) propose a neural network based method for learning the
directions of causal relationships. Their method assumes that the graph skeleton is known and
then seeks to orient each edge by looking only at pairs of adjacent variables. While this avoids
error propagation, it does not make use of the full information in the data, and the graph skeleton
would still have to be learned with other approaches.

In conclusion, while the idea of using supervised machine learning in causal discovery is not
new, no other work use this methodology to infer CPDAGs; only DAG discovery and orientation
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classification has previously been addressed. This also means that the models described above
cannot be used for CPDAG discovery and hence are not suitable benchmarks for our task.

2 Representing Causal Models
DAGs and CPDAGs We focus on causal data generating mechanisms that can be described
by directed acyclic graphs (DAGs). We will here only introduce the concepts informally and refer
to Appendix A for formal definitions and an overview of notation. We will use X = X1, . . . , Xp

to refer to a set of p random variables. In a causal DAG, nodes represent random variables,
and edges represent causal links. If Xi → Xj in a DAG, Xi is a cause of Xj , or, equivalently,
intervening on Xi will result in changes in Xj (but not vice versa). Figure 1a provides an example
of a DAG. Causal models that can be represented by DAGs have two important assumptions:
First, we assume acyclicity, which means that there cannot be any feedback loops in the data
generating mechanism. Secondly, we assume that there are no unmeasured variables that are
parents of more than one variable (no latent confounders), nor any unobserved selection (no
conditioning on latent colliders).

The causal statements of a DAG can be related to conditional independence via the Markov
property, which allows us to use the graphical relation d-separation to read off conditional in-
dependencies: If a set S ∈ X \ {Xi, Xj } d-separates Xi and Xj , then it holds that Xi ⊥⊥ Xj | S.
In order to draw causal inference from observational data, we generally need the converse im-
plication as well, namely that conditional independence implies causal unrelatedness. We refer
to this as the faithfulness assumption, and equipped with both the Markov property and the
faithfulness assumption, we obtain a crucial link from testable statistical properties (conditional
independence) to causal statements. However, the full DAG is generally not uniquely identi-
fied from conditional independencies, as more than one DAG can lead to the same conditional
independence statements. All DAGs that entail the same conditional independence statements
comprise an equivalence class, usually denoted the Markov equivalence class, and can be repre-
sented by a completed partially directed acyclic graph (CPDAG) (Peters et al., 2017). A CPDAG
has directed edges wherever all members of the equivalence class agree on the orientation of an
edge, and undirected edges whenever there is ambivalence about the orientation of the edge.
All edge orientations in a CPDAG are related to its v-structures (Pearl, 2009), that is, triplets
of nodes Xi → Xj ← Xk where Xi and Xk are not adjacent. Note that all DAGs in a Markov
equivalence class share the same adjacencies, also known as the graph skeleton (Pearl, 2009).
Hence a CPDAG will have the same skeleton as any of its member DAGs. Figure 1 provides an
example of a DAG and the CPDAG that represents its Markov equivalence class.

Figure 1: An example of a DAG (a) and the corresponding CPDAG (b) which describes its
Markov equivalence class.
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Adjacency Matrices DAGs and CPDAGs can also be represented by adjacency matrices
instead of their graphical objects. A DAG with p nodes is represented by a p × p matrix M

where the (i, j)th element is 1 if and only if there is an edge Xj → Xi in the DAG. For CPDAGs,
which also have undirected edges, the adjacency matrix is defined as follows:

M[i, j ] = 0 and M[j, i] = 1 ⇔ Xi → Xj

M[i, j ] = 1 and M[j, i] = 0 ⇔ Xi ← Xj

M[i, j ] = 1 and M[j, i] = 1 ⇔ Xi − Xj

M[i, j ] = 0 and M[j, i] = 0 ⇔ Xi Xj

As examples, the adjacency matrices for DAG and CPDAG in Figure 1 are given by M1 and M2

below, respectively:

M1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 1 0 0
0 0 0 0 1
1 0 0 0 0
1 0 0 1 0

⎤
⎥⎥⎥⎥⎦

and M2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
1 0 1 0 0
0 0 0 0 1
1 0 0 0 1
1 0 1 1 0

⎤
⎥⎥⎥⎥⎦

3 Observational Science Challenges for Selected Existing Causal
Discovery Procedures

A causal discovery procedure takes in a dataset and outputs a representation of its causal data
generating mechanism. Unless additional assumptions about the data generating mechanism
are made (e.g., distributional assumptions or assumptions about its functional form), only the
CPDAG is identifiable. We will now present the three observational science causal discovery
challenges in the context of two specific algorithms, PC and GES. These algorithms are cho-
sen because they represent the two main paradigms within causal discovery: Constraint-based
methods (PC) and score-based methods (GES). Constraint-based methods use conditional inde-
pendence tests to recover the true CPDAG, while score-based methods search through candidate
CPDAGs and score them. Both methods rely on numerous sequential statistical decisions in a
manner that is problematic for small sample performance and induces a bias towards sparse
models, as we will explain further below.

3.1 Small Sample and Dense Graph Challenges for the PC Algorithm

The PC algorithm (Spirtes and Glymour, 1991) reconstructs a causal CPDAG from observational
data as follows: First, it starts with a completely connected graph over the nodes. It then seeks
to prune away edges by looking for separating sets. For each adjacent pair of variables, Xi and
Xj , the algorithm searches for a set S among nodes that are connected to Xi or Xj such that
Xi ⊥⊥ Xj | S. If such a (possibly empty) set exists, the edge between Xi and Xj is removed.
The algorithm will first consider small separating sets (starting with S = ∅, i.e., marginal
independence), and then, if necessary, increase the size of S. Starting with small candidates for
S is attractive in the interest of efficient and precise computations, as conditional independence
tests for larger S are both more computationally expensive and require more statistical power.
When all possible edge pruning steps have been carried out, the algorithm orients edges by
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applying a complete list of orientation rules, which make use of 1) v-structure properties, and
2) the assumption of acyclicity.

In empirical applications, the decisions about conditional independence rely on statistical
tests. No generally valid, uniformly consistent test for conditional independence exists (Shah
and Peters, 2020), but under certain distributional assumptions, valid tests are available. For
example, for jointly Gaussian variables, conditional independence can be asserted by testing for
vanishing partial correlations. Given a valid conditional independence test, it has been proven
that PC is asymptotically correct (Spirtes and Glymour, 1991).

We wish to highlight two important characteristics of this algorithm that explain why PC
struggles with two of the three issues mentioned above, namely small sample performance and
dense graph performance:
1. The algorithm conducts a large number of sequential tests, and the results of former tests

inform which tests will later be conducted. If for example a test reveals that two variables,
Xi and Xj are separable, the edge between them is removed, and they are then no longer
adjacent and will not be considered again for future separation attempts. Moreover, because
only variables connected with Xi or Xj are considered for candidate separating sets, this also
has consequences for future tests involving the two variables: If Xi and Xj are considered
separable, and hence the edge between them is removed, this may imply that Xj will never
again be considered to be included in separating sets for Xi (if there are no other paths
connecting them). But if the original test conclusion was faulty, for example due to statistical
error, such an error may then propagate through its influence on subsequent tests. A similar
problem occurs in the orientation step.

2. The algorithm is biased towards sparse graphs. In dense graphs, separating sets will often be
large, as there are many possible paths between two given variables that must all be closed.
As the size of the separating set increases, the relative statistical power decreases, and hence
the type II error increases, which means that the probability of falsely concluding conditional
independence between any two variables is larger. This will lead to removing too many edges
and hence PC will be biased towards sparse graphs.

These two characteristics explain why PC may not perform ideally on small or moderate sample
sizes (due to error propagation), nor on dense graphs (due to preference towards sparse solutions).

3.2 Small Sample and Dense Graph Challenges for the GES Algorithm

The greedy equivalence search (GES) (Chickering, 2002) algorithm reconstructs a causal CPDAG
from observational data as follows: First, it starts with an empty graph, where no nodes are
connected. Then, a forward selection type step is carried out: Edges are greedily added until no
further edge additions result in increasing a chosen score. Afterwards, a backwards elimination
type step is conducted: Edges are greedily removed until no further edge removals result in
increasing the score. Finally, the procedure seeks to further increase the score by considering
single-edge orientation reversals.

In terms of the statistical error propagation and sparse graph preference issues, we make
the following remarks regarding GES:
1. The greedy search strategy implies that former statistical decisions (score comparisons) affect

subsequent statistical decisions. Hence statistical errors propagate.
2. Using an empty graph as starting point for a greedy search results in a preference towards

sparsity on small samples. On small samples, statistical error will be larger, and this may
result in a scoring function with several local optima, even if the scoring function is convex as
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the sample size tends to infinity. If such a local optimum exists, the greedy search procedure
of GES may get stuck in this optimum. Because sparse graphs are considered first, there is
an increased risk of such local optimum being systematically too sparse.

In conclusion, as for PC, on small or moderate samples, GES will tend to propagate errors and
have a built-in preference towards sparse graphs.

3.3 Error Trade Off: A Need for Conservative Discovery

Any causal discovery procedure based on empirical data will of course be subject to some amount
of statistical error. We will now discuss what type of error is most critical for observational
sciences, using epidemiology as a guiding example, and contrast that to the error trade offs
inherent in PC and GES.

In epidemiology, the typical causal inference pipeline involves two steps before an actual
data analysis is initiated (Greenland et al., 1999):
1. Construct causal model (often by drawing a DAG)
2. Analyze DAG to assert whether the causal estimand of interest (e.g., an average treatment

effect) is identifiable from observational data and with which analytical approach and which
epidemiological study design.

Importantly, what analytical approach is appropriate is dictated by the structure of the DAG.
Which effects are readily identifiable from a given DAG or CPDAG can be determined using for
example Pearl’s do-calculus (Pearl, 2009) (for DAGs) or Perković’s causal identification formula
(Perkovic, 2020) (for CPDAGs). And if the causal effect of interest is identifiable, an appropriate
causal inference method can then be applied to obtain an effect estimate, for example regression
adjustment, inverse probability weighting, the G-formula or targeted minimum loss estimation.
But even if a causal effect of interest first appears unidentified, the epidemiological toolbox in-
cludes another remedy: Study designs. By making use of auxiliary variables, natural experiments
or stratification among the observations, it may be possible to make otherwise unidentifiable ef-
fects estimable. Examples of such designs are instrumental variable designs, sibling comparison
designs, difference-in-difference designs and case-control designs.

When asserting whether a certain analytical approach or design is appropriate given a
DAG (or CPDAG), absent adjacencies are crucial. For example, an absent adjacency may make
it appear as if a certain effect of interest is unconfounded, which will make it appear identifiable.
On the other hand, a spurious adjacency in the CPDAG may make actually identifiable effects
appear unidentified. But as long as the spurious adjacency is undirected, it will not induce biased
effect estimates.

If a theory-based causal model is replaced by a causal discovery estimate as the first step,
we will therefore prefer an estimated model which rather has too many than too few adjacencies,
and rather too many undirected edges than too many falsely oriented edges. We will refer to
such a model as a conservative estimate of the causal model, because it (ideally) only makes
causal claims that we are quite certain about at the cost of making fewer causal claims alto-
gether. Hence, it errs on the side of inconclusiveness, much like the traditional use of the term
conservativeness in statistics (where for example a confidence interval with larger than nominal
coverage is considered conservative).

Using a conservative CPDAG estimate will imply a conservative causal identification anal-
ysis: We may not successfully identify effects that are present, but unidentified effects will not
appear identifiable. For example, if an effect is unconfounded in the estimated causal model,
it will generally also be unconfounded in the true causal model. But if it is confounded in the



262 Petersen, A.H. et al.

estimated causal model, it may or may not be confounded in the true model.
Since PC and GES are asymptotically correct and have a preference towards sparse graphs

on finite samples, they will generally not estimate a supergraph of the true skeleton and hence
they will not be conservative. On the contrary, they were specifically designed to aid pre-
experimental screening where the causal discovery algorithm is used to identify the strongest
causal relationships in a given observational dataset, so the experimenter can subsequently de-
sign a controlled experiment where the relevant variables are studied further. For this purpose,
it is most important that claimed causal relationships are very likely to also be present in the
true causal model, while it is less crucial that estimated absent causal relationships reflect the
true model. We return to simulation-based evidence of these claims in Section 6.1.

In conclusion, for this purpose of observational science causal discovery, the error-tradeoff
of PC and GES may not be very useful; these algorithms will provide models where effects that
are in fact confounded appear unconfounded. This can result in analysts choosing inappropriate
analytical tools or designs and, as an effect, obtain faulty causal conclusions along with biased
causal effect estimates. Instead, a conservative causal discovery procedure is needed.

4 Supervised Machine Learning for Causal Discovery
We here propose a supervised machine learning approach for conducting causal discovery, and
we will refer to this method as supervised learning discovery (SLdisco). SLdisco is motivated by
the three limitations of existing causal discovery algorithms highlighted above. The main ideas
of SLdisco is to 1) avoid poor small sample performance due to statistical error propagation by
learning the full causal structure jointly, 2) avoid a preference towards sparse (or dense) graphs
by building a machine learning model that is agnostic towards outputted sparsity, and 3) obtain
a direct means to affect error trade offs by outputting probabilities of edge/orientation presence
rather than binary decisions, whose error trade offs can then be controlled using thresholding
and post-processing. SLdisco consists of three steps (further details below):
1. Simulate training data with known data generating mechanisms.
2. Train a machine learning model on the simulated training data using true CPDAGs as labels.
3. Use the resulting classification function as a one-step causal discovery procedure on real data.

We use the following notation: The terms variable and node are used interchangeably. We
use p to denote the number of nodes in the DAG/CPDAG. We denote the p variables by
X1, . . . , Xp, and we use n to denote sample sizes for each simulated dataset, while btrain and btest
are used to denote the size of the training data and testing data, respectively.

4.1 Data Simulation

We limit the scope of the method to linear Gaussian data generating mechanisms. In this case,
the correlation matrix is a sufficient statistic and hence it is meaningful to only consider these as
input for the discovery method. Note, however, that the choice of Gaussianity in this simulation
setup is not only in the interest of computational simplicity. It is also useful from a theoretical
point of view, because it makes it possible to separate algorithmic correctness from finite sample
performance when evaluating the PC and GES algorithms. As mentioned above, these algorithms
are complete and correct on Gaussian data, which means that all errors must be due to finite
samples. We elaborate further on this point in the Discussion.

The data are simulated in a three-step procedure:
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1. Construct DAG with randomly drawn density (0–80% missing edges compared to fully con-
nected).

2. Simulate from a linear Gaussian structural equation model according to the DAG, and com-
pute the correlation matrix.

3. Construct CPDAG adjacency matrix corresponding to the DAG.
Technical details about the data simulation are provided in Appendix B, and here we only
provide a brief overview.

The DAGs in step 1) are constructed such that the distribution of the number of edges is
uniform on the interval (m(p)min, m(p)max) where m(p)max = ∑p−1

i=1 i (fully connected DAG) and
m(p)min = m(p)max · 0.2. We thus consider a broad distribution of graph densities and include
very dense graphs in the simulation setup.

We simulate each variable Xi according to the DAG (which holds information about parent
sets) using a structural equation:

Xi :=
∑

Xj ∈pa(Xi)

Xj · βj,i + εi

where εi ∼ N(0, σ 2
i ) independently. All parameter values (βj,i and σi) are drawn randomly.

As data features, we use correlation matrices computed on the full dataset of X1, . . . , Xp

variables. As data labels, we use the CPDAGs encompassing the true DAGs. We represent the
CPDAGs by their adjacency matrices.

4.2 Machine Learning Model
We use neural networks to construct a mapping from correlation matrices to adjacency matrices.
In the special case where the DAG is fully identifiable from observational data (e.g., linear Gaus-
sian data generating mechanisms with equal residual variances), this learning task is achievable
since 1) DAG discovery can be formulated as a continuous optimization problem (Zheng et al.,
2018, 2020) and 2) a neural network is a universal approximator (Hornik et al., 1989). Hence,
with oracle correlation matrix information (corresponding to n → ∞), a sufficiently large train-
ing data set and a good neural network architecture, it is possible to estimate adjacency matrices
at any level of accuracy in this special case. Clearly, oracle correlation matrix information is not
available in real-data settings, so in practice, with a sufficiently sophisticated architecture and
sufficiently large training data size (which may both be feasible to obtain), we should be able to
achieve a level of accuracy that is only limited by how well we estimate the correlation matrix
(or, more generally, a sufficient statistic). We find it plausible that a similar result holds for our
more general case of CPDAG estimation, and we believe that the results provided below provide
evidence for this claim.

In this article, we do not attempt to provide such a sufficiently sophisticated architecture
or training data size. Instead, we present results for a simple, albeit useful convolutional neural
network with a set choice of training data size (btrain = 1, 000, 000), in order to provide a proof
of concept. Note that appropriate size of the training data pairs will of course depend strongly
on the number of nodes in the data generating DAG.

4.2.1 Neural Network and Post-Processing

We use a simple convolutional neural network to learn the relationship between correlation
matrices and CPDAG adjacency matrices. Technical details about its architecture and training
are provided in Appendix C.
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Most importantly, for the final output layer, we use a sigmoid activation function (also
known as the expit function, i.e. the inverse of the logit function). This means that our neural
network model outputs a matrix of probabilities rather than an adjacency matrix. Each element
in this probability matrix then corresponds to the estimated probability of that element in the
adjacency matrix being one.

This matrix of probabilities then needs to be post-processed to obtain an adjacency matrix.
Let O denoted the probability matrix. We propose and evaluate two alternative approaches for
this, both using a threshold τ ∈ (0, 1):
Cut-off: Set adjacency matrix elements to 1 if they are larger than τ , and set all others to zero.
BackwardsPC-orientation (BPCO): First use the cut-off post processing method and check

whether the resulting matrix, M, is a proper CPDAG adjacency matrix. If so, return M.
Otherwise, repeat the following steps until M is a proper CPDAG adjacency matrix:
1. Among the remaining non-zero elements in M, choose the element that had the lowest

probability in O and set this element to zero. If M is now a proper CPDAG, return it.
2. Otherwise, create a new adjacency matrix M̃ by modifying M such that only the skeleton

and v-structures are preserved. Then apply the orientation rules from the PC algorithm
(Meek, 1995) to M̃ and check whether the resulting matrix is a proper CPDAG.
(a) If so, return it.
(b) If not, discard M̃ and go to step 1.

Note that BPCO will always produce a proper CPDAG:1 If M ends up with only one edge,
M̃ will only have a single undirected edge, which is a proper CPDAG. Moreover, BPCO will
always either have the same skeleton as the cutoff method or a sparser one, since the procedure
in step 2 only changes edge orientations, not adjacencies.

5 Metrics
As discussed in Section 3.3, we aim for a causal discovery procedure that is conservative, and
our choice of relevant metrics will of course reflect this. We will divide the question into two
parts: 1) Adjacency performance and 2) orientation performance. In both cases, we report mean
metrics both over the full test data, as well as stratified by the true graph density. Moreover, we
also consider the estimated number of edges, and compare this to the true number of edges, in
order to assess which threshold level (τ ) obtains the closest approximation to the true number
of edges.

5.1 Adjacency Metrics

Adjacency performance only involves the skeleton of the CPDAG, and as mentioned above, we
wish to estimate a supergraph of that skeleton to achieve a conservative causal model estimate.
This motivates our first metric of interest, namely the negative predictive value (NPV). Let TP,
TN, FP, FN denote the number of true positive, true negative, false positive and false negative

1This is also theoretically true for PC, however, in practical implementations, the algorithm may return
outputs that e.g., have cycles. This occurs when the algorithm receives conflicting information about conditional
independencies, which can happen due to assumptions that are not fulfilled or because of finite-sample statistical
uncertainty. In contrast, for BPCO we explicitly check whether the output is a proper CPDAG and hence it
always returns a CPDAG.
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classifications (in this case: adjacencies), respectively. Then the NPV is defined as

NPV = TN
TN + FN

i.e., the probability of an estimated missing adjacency to also be missing in the true skeleton.
A high value of NPV will thus reflect a conservative skeleton estimate: Missing adjacencies
are generally trustworthy. However, one could of course obtain a NPV of 1 simply by trivially
returning a fully connected skeleton (using the convention that NPV = 1 for this degenerate
case where there are no classified negatives). Thus we also need to consider an secondary metric
that describes the error for positive findings, i.e. adjacencies estimated to be present.

For this purpose, we will use the F1 score:

F1 = 2 · precision · recall
precision + recall

.

F1 describes a tradeoff between two metrics, precision and recall, where

precision = TP
TP + FP

and recall = TP
TP + FN

F1 thus summarizes errors related to positive findings: Precision (also known as the positive
predictive value) measures the probability of an estimated adjacency to be a true adjacency,
while recall (also known as sensitivity) measures the probability of the estimated graph including
a given true adjacency.

In order to obtain a conservative and informative model we thus aim for 1) a large NPV (to
obtain a supergraph of the skeleton) and 2) an acceptable F1 (so that the supergraph is close
to the true skeleton).

5.2 Orientation Metrics

We measure orientation performance by use of conditional endpoint metrics, that is, for each
correctly identified adjacency, we consider whether each edge endpoint is correctly estimated. A
correctly placed arrowhead is considered a true positive, a correctly placed tail is a true negative,
a falsely placed arrowhead is a false positive, while a falsely placed tail is a false negative.

As discussed in Section 3.3, a conservative causal model should rather have too many
undirected edges than too many falsely directed edges. Hence, for orientation, a conservative
procedure should prioritize obtaining a high value of precision (i.e. positive predictive value).
With a high precision, estimated arrowheads will generally be trustworthy, while estimated tails
may or may not reflect the true graph. As for the adjacency metrics, a trivially large value of
precision can of course be obtained by simply not orienting any edges. Hence, we again need a
secondary metric that summarizes errors related to the opposite (now: false) classifications.

To this end, we propose a negative classification equivalent to F1:

G1 = 2 · NPV · specificity
NPV + specificity

where
specificity = TN

TN + FP
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This metric measures the tradeoff between two types of negative classification errors, just as F1
does for positive classification errors.

A conservative causal model should hence have 1) a large orientation precision (thus only
claiming orientations that have a high probability of being true), and 2) an acceptable G1 (so
that some edges are forced to be oriented).

6 Simulation Study
We evaluate SLdisco by comparing estimated (pseudo) adjacency matrices with true adjacency
matrices on a test data set. We vary the following aspect of the procedure and compare the
resulting performances:
• The number of observations in each simulated training dataset, ntrain. We consider ntrain ∈

{50, 100, 500, 1000, 5000, 10000, 50000}.
• The number of variables in the data generating mechanism, p. We consider p ∈ {5, 10, 20}.
• The post processing procedure for converting probability matrices to (pseudo) adjacency

matrices. We consider the cutoff and BPCO methods.
• The threshold value, τ . We consider τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

We consider all combinations of the above.
We compare SLdisco with PC and GES. For PC, we consider a sequence of test significance

levels, namely α ∈ {10−8, 10−4, 10−3, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8}. For GES, we use the Bayesian
information criterion (BIC) to score models. In Appendix D, we furthermore compare this choice
to an alternative score, namely a modified version of BIC with a larger penalty for the number of
variables. We first compare PC and GES in order to choose a single benchmark causal discovery
setting for each of the two, which simplifies subsequent comparisons with SLdisco.

For each evaluation scenario, we train the neural network on btrain = 1, 000, 000 correlation
matrix/adjacency matrix pairs, and we test the procedure on btest = 5000 correlation matrix/ad-
jacency matrix pairs. For each scenario, we report performance metrics averaged over these 5000
repetitions.

Data simulations and computations for SLdisco and PC are conducted in R. We use the
keras package (Allaire and Chollet, 2021) for neural network training, the pcalg package
(Kalisch et al., 2012) for PC computations, and the causalDisco (Petersen, 2022) package
for evaluations. GES computations are performed in TETRAD (Ramsey et al., 2018) using the
fast GES (FGES) version of GES (Ramsey et al., 2017). All code, as well as the simulated data,
is available online at https://github.com/annennenne/SLdisco.

6.1 PC and GES Comparison
Figure 2 compares PC and GES with BIC scoring. For the small p = 5 graphs, we see that it
is possible to choose a significance level for PC (around 0.05) so that the two methods perform
equally well in terms of adjacency F1, adjacency NPV and orientation precision when n � 500.
However, for p ∈ {10, 20}, GES consistently produces better performance for the adjacency
metrics, no matter the choice of significance level for PC. For the orientation metrics, GES
performs better than PC in most cases, and in the cases where PC is superior, both methods
perform very poorly (for example, orientation G1 for p = 20). All in all, we thus find GES to
be the strongest competitor.

In Appendix D, we furthermore compare two different versions of GES using different choices
of score and find that standard BIC performs best overall (see Figure 7). We therefore use GES

https://github.com/annennenne/SLdisco
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Figure 2: All metrics for PC (lines with dots) for varying values of significance level, compared
to GES with BIC scoring (lighter straight lines).

with BIC score as our main GES benchmark in the following.
For simplicity, we also only report one setting for PC below, and we use PC with significance

level α = 0.1 because this results in good overall performance across metrics (see Figure 2).

6.2 Estimated Number of Edges

Figure 8 (Appendix D) presents the number of estimated edges for SLdisco. SLdisco is able to
obtain an average number of edges that is rather close to the truth by setting the threshold
appropriately. We find the overall closest approximation of the true number of edges at τ = 0.4
for p = 5, at τ = 0.4 for p = 10, and at τ = 0.3 for p = 20. In the following, for simplicity,
we primarily report results from SLdisco with these τ settings, but we note that even better
approximations to the true number of edges can be achieved by allowing the value of τ to also
depend on n. We propose that in practice, τ may be selected by referring to results like these.

We also find a rather good approximation of the correct number of edges for SLdisco when
stratifying by quartiles of true numbers of edges (see Figure 9 in Appendix D), though SLdisco
underestimates the number of edges for sparse graphs when p = 20.

Figure 3 shows the estimated number of edges for SLdisco with the settings outlined above,
compared to PC and GES. For p = 5, we see that SLdisco estimates the true number of edges
well for small n, but on average adds a little more than one too many edges for large n. GES
and PC, on the other hand, underestimates the number of edges quite severely when n is small,
but estimates the true number of edges very well for large n. For p = 10, SLdisco provides a
good approximation to the true number of edges across all values of n. GES performance varies
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Figure 3: Estimated and true numbers of edges for SLdisco with τ = 0.4 for p ∈ {5, 10} and
τ = 0.3 for p = 20, compared with GES and PC. The results are stratified by number of nodes
(p), sample size (n) and method. The black, straight line marks the average true number of
edges for each value of p.

strongly with n, with underestimation for small n and (slight) overestimation for large n. PC
underestimates the number of edges for all n, but less severely as n increases. Finally, for p = 20,
SLdisco consistently overestimates the number of edges for all n, while GES and PC consistently
underestimate, although with less underestimation as n increases.

All in all, we thus find that SLdisco is more prone to overestimate than underestimate the
number of edges, while GES and PC generally are more at risk of underestimation. Moreover,
the results from SLdisco vary much less with sample size than the results from GES and PC,
which are generally very poor for small n.

6.3 Adjacency Results

Figure 4 shows adjacency results. We find that the two SLdisco post-processing methods perform
very similarly, so we will refer to them collectively. For small values of n, we find that SLdisco
strongly outperforms PC and GES across all values of p. For p ∈ {5, 10}, GES and PC converge
towards the performance of SLdisco as n increases, and GES even outperforms SLdisco slightly
for p = 10 and the largest values of n. For p = 20, however, GES and PC perform very poorly,
while SLdisco remains stronger.

We now turn to F1 results. For p ∈ {5, 10}, SLdisco only outperforms GES and PC for the
smallest values of n, while PC – and especially GES – achieves higher scores for large n. For
p = 20, SLdisco is again stronger for smaller values of n, but performs similarly to GES for large
n. PC, on the other hand, performs rather poorly in this scenario across all n.

For SLdisco, we find that in some cases, performance does not increase with n. This is
likely due to overfitting; all neural networks were trained for the same number of epochs (see
Appendix C), and since the classification task should become easier as n increases, this means
that we may be overfitting for larger values of n.
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Figure 4: Adjacency F1 and adjacency negative predictive values (NPV). The results are strat-
ified by number of nodes (p), sample size (n) and method.

Figure 5: Conditional orientation G1 and conditional orientation precision scores. The results
are stratified by number of nodes (p), sample size (n) and method.

6.4 Orientation Results

Figure 5 presents conditional orientation results. For orientation precision, we see that both
SLdisco methods outperform GES and PC for all combinations of n and p. We find that SLdisco-
BPCO outperforms SLdisco-cutoff quite markedly when p = 20.
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For orientation G1, we again find that SLdisco outperforms the competitors, except for
the scenarios where p = 5 and n is large. In these scenarios, GES, and to a lesser extent also
PC, outperforms SLdisco. We note, however, that all four methods perform very poorly when
p ∈ {5, 10}.

We again see a tendency to overfitting for SLdisco, as with the adjacency metrics.

6.5 Results Stratified by True Graph Density

Figure 10 in Appendix D focuses on the BPCO post-processing method, and compare only with
GES, which has proven to be the strongest competitor above. The four metrics from above are
stratified by graph density, measured as quartiles of the true number of edges. We only present
results for p = 10, but find similar results for p ∈ {5, 20}.

While GES struggles increasingly with adjacency NPV, orientation G1 and orientation
precision as the graph density increases, SLdisco is strongest on relatively dense graphs for these
metrics. For the dense graphs, SLdisco is hence able to outperform GES for most sample sizes.

But on the sparsest graphs, SLdisco struggles especially with orientation G1 and adjacency
F1. In contrast, GES adjacency F1 performance is less affected by graph density. As in the
above, we again see that GES depends more strongly on sample size, while SLdisco is able to
produce more similar results for both small and large samples.

7 Application
For the real data application, we apply PC, GES and SLdisco to data from the Metropolit Cohort
(Osler et al., 2004, 2006). This is a longitudinal dataset following a cohort of Danish men from
their birth in 1953 with data collections in childhood and adulthood, as well as register-based
information and followup during other periods of their lives. This is a high-quality dataset with
good validity and low degree of measurement error (Osler et al., 2006).

We use a subset of 10 variables also used by Petersen et al. (2021), which includes follow-up
until 2018. While that study focused on the life course etiology of depression in early old age,
the simplified application provided here is intended to explore what social factors across the
life course may be relevant for understanding alcohol use in adulthood. The 10 variables are
all assigned to one of four periods: Birth, childhood, young adulthood, or adulthood. Table 1
provides an overview of the 10 variables, as well as the data sources used to construct them.

The original dataset also contains a number of binary variables, but we use only numeric
variables for a more direct comparison with the simulation study. One numeric variable (total
years of smoking) is dropped so that we obtain exactly 10 variables, which means that we can
easily apply the pretrained SLdisco models from the simulation study. We do not believe that
smoking history is a likely cause of alcohol use (or any of the other variables included here), and
hence we do not expect omission of this variable to be crucial.

We use only complete cases and condition of cohort members being alive and residing in
Denmark in 2018. This results in a dataset of n = 2928 observations. Appendix E provides
information about marginal distributions and pairwise associations in this data.

7.1 Methods

We of course do not know the true causal model for this data, so we cannot readily apply the
same evaluation strategy as in Section 6. Instead, we will:
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Table 1: Overview of variables used in the Metropolit application. The data were constructed
from the following sources and linked using unique personal identification numbers: A) Midwife
notes, collected retrospectively in 1965. B) School survey conducted in 1965. C) The Danish
Conscription Database, where data are typically collected when the subjects are approximately
18 years old (1971). D) National Danish socio-economic registers. E) Survey conducted in 2004.
Further details about the variables and the data sources are provided in Petersen et al. (2021).

Period Variable Data source

Birth Length A
Birth Weight A
Childhood Creativity score B
Childhood Intelligence score B
Youth BMI C
Youth Height C
Youth Intelligence score C
Adulthood Disposable income D
Adulthood Alcohol binging frequency E
Adulthood BMI E

1. Discuss plausibility of the causal models proposed by SLdisco, GES and PC, respectively.
2. Evaluate how the performance of these methods varies with sample size.

For each causal discovery method, we use the settings that provided the closest estimation
of the true number of edges in the simulation study for p = 10 and n = 5000 (the closest value
we have considered to nmetropolit = 2928). We use PC with a significance level of α = 0.1, GES
with BIC scoring and SLdisco with BPCO post-processing and τ = 0.4.

To address plausibility (task 1), we apply PC, GES and SLdisco to correlation matrices
computed on the full Metropolit dataset. We use an SLdisco model trained on datasets with
n = 5000. We make use of the fact that the Metropolit dataset includes temporal information;
each variable is assigned to a specific period and this provides us with a ground truth about
some of the potential causal orientations: Any edge oriented against the direction of time is
necessarily false.

To compare the performance across varying sample sizes (task 2), we use random subsam-
pling. Even though we do not know the ground truth causal model, the more data we have,
the better we should be able to estimate it. Hence, we can use CPDAGs estimated from the
full Metropolit dataset as a “best estimate”, and compare these graphs to graphs estimated on
from correlations matrices computed on random subsets of the Metropolit data. This will allow
us to evaluate the impact of small sample sizes on real data. We draw a random subsample for
each n ∈ {50, 100, 500, 1000}, compute the corresponding correlation matrices, and use these as
input for PC, GES and SLdisco. The resulting causal models are then compared with the same
method’s “best estimate”, as obtained from task 1. We report the comparisons using the same
four metrics as in the simulation study.

We use the pcalg (Kalisch et al., 2012) R package for the PC and GES computations, and
the causalDisco R package (Petersen, 2022) for evaluation and plotting. All code, as well as
correlation matrices, is available online at

https://github.com/annennenne/SLdisco

https://github.com/annennenne/SLdisco
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Figure 6: CPDAG estimates for the Metropolit example based on all n = 2928 observations
using SLdisco (a), PC (b) and GES (c).

7.2 Results

Figure 6 shows the estimated CPDAGs for the Metropolit data for SLdisco, PC and GES,
respectively. The variables are arranged in temporal periods (marked in colors) and edges are
colored according to the period the originate from, if they are oriented, or simply their first
period, if they are unoriented. None of the three methods are provided with external information
about the temporal order of the variables.
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7.2.1 Plausibility of the Estimated Models

For SLdisco we see that a number of plausible causal links are identified: edges between birth
weight, birth length and height in youth, edges between creativity score in childhood and in-
telligence score in childhood and youth, and an edge between body mass index (BMI) in youth
and BMI in adulthood. But the CPDAG also includes two edges that were erroneously oriented
against the direction of time: An edge from disposable income in adulthood to height in youth, as
well as an edge from disposable income in adulthood to intelligence score in youth. The CPDAG
also includes an undirected edge between intelligence score in childhood and disposable income
in adulthood, which may or may not be plausible. On the one hand, it would be more obvious
that a specific effect of intelligence should go via intelligence score in youth. But on the other
hand, socio-economic status may affect intelligence test performance in children (Von Stumm
and Plomin, 2015), and hence the edge between intelligence score in childhood and adulthood
income could represent an indirect effect due to lack of social mobility. SLdisco does not identify
any direct causes of alcohol binging among the other included variables.

PC also suggest the wrongly oriented edge between disposable income in adulthood and
intelligence score in youth, as well as two other erroneously oriented edges: One from alcohol
binging frequency in adulthood to height in youth and one from intelligence score in youth to
intelligence score in childhood. PC furthermore recovers a number of plausible causal links, e.g.,
an effect of BMI in youth on BMI in adulthood, and an effect of birth length on height in
youth. However, the CPDAG also shows a number of less plausible causal links, for example a
causal link between height (youth) and alcohol binging (adulthood), height (youth) and income
(adulthood), and a direct effect of birth weight on BMI in adulthood (on top of the more plausible
effect via BMI in youth). Furthermore, we note that in the current application, PC does not
return a proper CPDAG; the graph in Figure 6 (b) includes a cycle: Childhood creativity score →
youth intelligence score → childhood intelligence score → childhood creativity score. PC may
produce graphs that are not proper CPDAGs if there is conflicting information with respect
to separating sets, which can occur if some of the algorithm’s assumptions (no unobserved
confounding, faithfulness and a correct statistical test of independence) are not fulfilled (Kalisch
et al., 2012). We return to this point below. Note that this issue cannot occur for BPCO, because
BPCO explicitly checks whether the output is a proper CPDAG, and iterates further if not.

GES also finds three edges against the direction of time (BMI in adulthood to BMI in youth,
alcohol binging in adulthood to intelligence score in youth, and height in youth to birth length),
and plausible causal links between the variables related to intelligence and creativity scores. It
shares a number of plausible causal links with SLdisco and PC, e.g., links between intelligence
score and creativity score variables, as well as links between birth weight and birth length. Among
less plausible causal links is the suggested effect of birth weight on adult BMI (not mediated
through BMI in youth), and the edge between intelligence score and height, both in youth.

It should be noted that all three methods rest on a strong assumption that may not be
reasonable for this example, namely that there are no unobserved confounders or selection vari-
ables. If the example does suffer from such unobserved variables it may induce spurious edges
in the outputs of PC (Spirtes et al., 2000) and GES (Ogarrio et al., 2016), which may explain
why these methods – somewhat surprisingly – produce denser CPDAGs than SLdisco in this
application. The fact that PC produces a graph with a cycle also lends evidence to this explana-
tion, as this can be expected behavior when applying PC to data with unobserved confounding
(Kalisch et al., 2012). We do not know how density estimation for SLdisco is affected by presence
of unobserved confounding, and leave this question to future research. Unobserved confounding
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Table 2: Results for subsampled Metropolit data applications. For each method, the subsample
based results are compared to results from the same method based on the full Metropolit dataset
(n = 2928). nsub denotes the number of observations in the subsampled dataset.

Method nsub Adjacency metrics Orientation metrics
F1 NPV G1 Precision

SLdisco 50 0.67 0.88 0.75 1.00
100 0.67 0.88 0.75 1.00
500 0.89 0.95 0.55 1.00

1000 0.95 0.97 0.80 1.00
PC 50 0.53 0.78 0.33 1.00

100 0.53 0.78 0.33 1.00
500 0.72 0.85 0.20 0.50

1000 0.75 0.86 0.33 0.71
GES 50 0.56 0.82 0.33 1.00

100 0.67 0.85 0.29 1.00
500 0.64 0.86 0.00 1.00

1000 0.76 0.89 0.00 0.25

can also lead to wrong edge orientations for both PC and GES (Spirtes et al., 2000; Ogarrio
et al., 2016), and hence it may explain some of the faulty oriented edges that we found above.

Moreover, all three methods rely on the data being jointly Gaussian, and this assumptions
may not be fully satisfied for some variables, especially the three adulthood variables which
have unimodal but skewed distributions (see Figure 11 in Appendix E). All in all, the results
presented here should thus be interpreted with some caution, and more work should be dedicated
to further investigating the impact of the strong assumptions that SLdisco relies on, and whether
they may be relaxed.

7.2.2 Influence of Sample Size

Table 2 presents results from the subsampling experiment. We see that SLdisco produces very
similar CPDAGs across the different values of n, as reflected by generally large metric values.
The large values of the adjacency metrics show that the estimated graph skeletons are quite
similar, and increasingly so when n increases. Unoriented edges are preserved across subsamples
(as evident from the orientation precisions), whereas estimation of unoriented edges differs a bit
more. In comparison, GES produces lower values and hence is more sensitive towards sample
size, and PC is even more sensitive than GES.

8 Discussion
We have proposed a new method for causal discovery based on supervised machine learning,
SLdisco, and we have evaluated it focusing on the three highlighted challenges for using existing
causal discovery methods in observational sciences, namely 1) poor small sample performance,
2) bias towards sparse graphs, and 3) error-tradeoffs that result in non-conservative causal model
estimates.
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In a simulation study, we found that SLdisco produces more conservative causal models than
both PC and GES: SLdisco generally achieves larger adjacency NPVs and orientation precisions
than PC and GES, which means that adjacency absence and oriented edges proposed by SLdisco
are more trustworthy. These increases in conservativeness come at the price of modestly reduced
informativeness; SLdisco is overall not as good at detecting adjacency presence (lower adjacency
F1) and orients fewer edges than PC and GES (lower orientation G1).

Moreover, we found that SLdisco shows promising potential for estimating the correct graph
density. We also find that SLdisco is more robust towards graph density and that it shows little
sensitivity towards sample size.

In the application, we found SLdisco to produce a mostly plausible CPDAG, whereas PC
and GES identified more implausible causal links or orientations. However, their results were also
denser, and this suggests that the strong assumptions underlying all three methods – Gaussianity
and absence of unobserved confounding – may not be fulfilled for this application, and hence
further real data assessments are needed. We were however able to systematically assess the
influence of sample size on the estimated causal models in the application as well, and we found
that SLdisco was again much less sensitive towards sample size than the other two methods.
SLdisco thus makes better use of information available in small sample data, both on simulated
and real life data. All in all, we conclude that SLdisco holds the potential to address the three
challenges for causal discovery in observational sciences.

We have compared SLdisco with two well-known and well-studied procedures for causal
discovery, namely PC and GES, and we have considered a simplified setting with Gaussian
data and no unobserved confounding. This is obviously a limitation of the study in terms of
generalizability, as we will return to below. However, it is also a strength in terms of validity
of the conclusions. PC and GES are correct and complete (with respect to CPDAGs) in the
large sample limit for the type of data studied here, and hence we are able to directly study the
finite-sample statistical properties of the methods without blurring the picture by other factors.
The only reason for any deviance from fully correctly estimated CPDAGs are necessarily due
to finite sample properties of the methods. By comparing SLdisco to these two methods, and
by focusing on Gaussian data, we thus get a good picture of how sequential testing (for PC) or
greedy searching (for GES) impacts finite sample causal discovery performance.

We now turn to the limitations imposed by the use of Gaussian training data for SLdisco.
Gaussianity may not always be a reasonable assumption, and it is not clear to what extent the
performance of SLdisco depends on this. It is difficult to conduct a general simulation-based
investigation into the practical influence of deviations from Gaussianity: We would have to
simulate data under a specific alternative distribution, and would hence run into the very same
generalization issues, and still not be much more knowledgeable about the performance on real
data, where the data generating mechanism is unknown. The real data application did include
some variables whose distributions were quite skewed and hence deviates from Gaussianity.
Nonetheless, SLdisco produced a reasonable CPDAG with only two definitely erroneous edges.
Both of these edges were problematic due to their orientation, but plausible in terms of their
adjacencies. This could suggest that Gaussianity is not a crucial assumption for SLdisco, at least
when the variable distributions are unimodal as in our application. Applying SLdisco to more
data with varying distributions will be helpful in gaining a better understanding of the influence
of the Gaussianity assumption.

On a related note, our choice to use correlation matrices as input is of course only equivalent
with using the full data under the assumption of Gaussianity, where the correlation matrix is
a sufficient statistics (if we disregard the data scale). Our suggested procedure could easily be
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modified to use full datasets, rather than correlation matrices, as its input. Using full datasets as
inputs for SLdisco should be more robust towards deviations from Gaussianity and would allow
SLdisco to utilize information in the data beyond partial correlations. Using full data would,
however, impose a larger burden on computer memory, especially when n is large.

The assumption of no unobserved confounding, on the other hand, is potentially more
crucial. This assumption is very strong and might not be fulfilled in many observational science
applications. The CPDAGs proposed by GES and PC in the application may suggest that there
are issues due to unobserved confounding in the Metropolit dataset. If so, it is interesting that
SLdisco does not seem to be influenced by deviation from this assumption in the same way as
PC and GES: It appears that SLdisco does not add extra spurious adjacencies – like the other
two methods are known to do. A possible explanation for this could be that SLdisco is more
robust towards unobserved confounding, but further work is needed to assess if this holds. In
either case, extending SLdisco to also handle unobserved confounding could be achieved rather
easily simply by simulating data in the presence of unobserved confounding. However, causal
model equivalence classes would then have to be represented by partial ancestral graphs (PAGs)
(instead of CPDAGs) (Richardson and Spirtes, 2002), which are more complicated graphical
objects that include more edge types (bidirected, directed, undetermined, and combinations of
the latter two). Expanding SLdisco to also handle data with unobserved confounding would
therefore also require some modifications to the output layer of the proposed neural networks,
and the orientation metrics used for evaluations would have to be generalized to handle more
edge orientation possibilities.

Another limitation of our suggested machine learning procedure is our proposed neural net-
work architecture. The architecture is clearly simplistic and we expect that performance can be
greatly improved by substituting our approach with a more sophisticated and tailored architec-
ture. Li et al. (2020) remark that the causal discovery task is permutation equivariant in the
sense that permuting variable order in the input (i.e. permuting both rows and columns in the
correlation matrix) results in the same permutation in the output (permuting both rows and
columns in the adjacency matrix). They propose to use a equivariant neural network to natively
support this feature, although with a different causal discovery task in mind (DAG discovery).
Using such a permutation equivariant architecture in our setting could also be interesting. This
would also ensure that the method becomes completely order invariant, which means that dif-
ferent orderings of inputted variables result in the same outputted adjacency matrix. This is
an attractive and natural property to request of a causal discovery method, however, for some
commonly used approaches, including PC, it is not completely fulfilled (Colombo et al., 2014).

We considered only a few, rather small, values of p (number of nodes). This was primarily
in the interest of simplicity of disseminating the results. But we would like to make two points
concerning the value of p: First, when the aim is conservative discovery for observational sciences,
and hence the expected CPDAG of interest is quite dense, we believe that it is not relevant
to consider very large values of p. A dense graph with e.g. 100 nodes would be completely
uninterpretable and not aid applied scientists in understanding the causal mechanisms they wish
to study. Secondly, when using convolutional neural networks, large values of p are not generally
a computational issue; on the contrary, larger p would have allowed us to reuse existing network
architectures designed for e.g., image classification, where p measures the number of pixels. We
have performed some exploratory experiments reusing for example the MobileNet architecture
(Howard et al., 2017), and while they produced slightly better performance for the “large” p = 20
graphs, they did not scale well to smaller graphs (results not included). Hence, we believe that
the SLdisco procedure could be well-suited for much larger p as well. However, this would then
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require a larger training data set, as the search space of Gaussian CPDAGs would become much
larger, because the number of DAGs grows super exponentially with p (Peters et al., 2017).

We found that the post-processing method used to convert probability matrices to (pseudo)
adjacency matrices was not very influential on the overall performance. The BPCO, which
ensures that the output is a proper CPDAG, generally obtained slightly worse performance
than the cutoff method for the adjacency metrics, but comparable or better performance in
the orientation metrics. It may be possible to construct a better post-processing method since
there are no guarantees that our proposed greedy method will find an optimal solution from the
estimated probability matrix. However, we believe that a more useful line of research would be
to natively include CPDAG structure requirements in the neural network optimization, so that
no or little post-processing becomes necessary. This could be done by changing the loss function
used to optimize the neural network. The current choice of loss function, the binary cross-entropy
loss, essentially considers each entry in the output matrix one by one and seeks to optimize it
locally, without taking the structure of the full output matrix into account. Informally, this
loss is not aware of the fact that it should be looking for a CPDAG. Naturally, if the neural
network is sufficiently sophisticated and n → ∞, btrain → ∞, optimizing the adjacency matrix
entry-by-entry will converge to the correct solution. But with finite n and btrain, we suspect much
can be gained by choosing a loss function that better captures the estimation goal. However,
constructing such a function is not straightforward. Neural network weights are optimized using
a variation of gradient descent and hence the loss function needs to be differentiable, and there
has to exist analytical expressions for its derivatives, as they are computed a very large number
of times. We leave suggestions for candidates for such a loss function to future research.

A strength of SLdisco is the very low computational burden at inference time, that is, when
the method is used on real data. A pretrained SLdisco model provides a mapping from input data
to CPDAGs that does not need further optimization. SLdisco will therefore be easy to combine
with e.g. stability selection or other bootstrapping procedures to provide more insights into the
statistical uncertainty of causal discovery – a topic that is currently heavily under-described.
At training time, SLdisco does require some computation time (approximately 100–200 seconds
per epoch resulting in 4–8 hours for the models presented here). However, it is only necessary to
train a neural network once for each n-p combination. Moreover, transfer learning across similar
values of n may be permissible so that new models need to be trained less often. Note also that
more efficient training schemes may be achievable by e.g. training first on a large n and then
only fine-tuning weights when considering a different value of n. For p, such transfer learning is
less natural, as we do not expect the mapping from correlation matrices to adjacency matrices
to be the same for different values of p. This may be tested empirically in future studies, but
requires that a given neural network can input correlation matrices of varying sizes. One way to
obtain this feature is by simply zero-padding or up-sampling the input matrix in the first layers
of the architecture. Alternatively, if for example graph neural networks are used, this feature is
ensured natively (Scarselli et al., 2008). This neural network type may also be able to avoid two
other issues raised here, lack of permutation equivariance and the need of post-processing. We
believe that applying graph neural network in SLdisco will be an interesting and natural next
step in further improving the method we have proposed here.

Supplementary Material
The following supplementary materials are available:
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Appendices:
A: Terminology and notation
B: Details about data simulation
C: Details about the neural network
D: Results: Extra figures
E: Application: Extra figures

Application data: Correlation matrices from the Metropolit data application and estimated
adjacency matrices.

GES simulation study results: Estimated adjacency matrices from the GES applications for
the simulation study (estimated using TETRAD).

Neural network models: Trained neural network models from the simulation study (.h5 files).
Replication code: R code for replicating the simulation study and the application.
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