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Abstract

The least squares (LS) estimator of the autoregressive coefficient in the bifurcating autoregressive
(BAR) model was recently shown to suffer from substantial bias, especially for small to moderate
samples. This study investigates the impact of the bias in the LS estimator on the behavior of
various types of bootstrap confidence intervals for the autoregressive coefficient and introduces
methods for constructing bias-corrected bootstrap confidence intervals. We first describe several
bootstrap confidence interval procedures for the autoregressive coefficient of the BAR model
and present their bias-corrected versions. The behavior of uncorrected and corrected confidence
interval procedures is studied empirically through extensive Monte Carlo simulations and two
real cell lineage data applications. The empirical results show that the bias in the LS estimator
can have a significant negative impact on the behavior of bootstrap confidence intervals and
that bias correction can significantly improve the performance of bootstrap confidence intervals
in terms of coverage, width, and symmetry.
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1 Introduction
The bifurcating autoregressive (BAR) model is commonly used to model binary tree-structured
data, depicted in Figure 1, that appear in many applications, most famously cell-lineage applica-
tions (e.g., Cowan, 1984; Hawkins et al., 2009; Kimmel and Axelrod, 2005; Sandler et al., 2015).
The first-order BAR [BAR(1)] model was first introduced and studied by Cowan and Staudte
(1986) for modeling cell-lineage data. This model can be seen as an extension of the first-order
autoregressive [AR(1)] model where each line of descent is modeled as an AR(1) process with the
observations from the two sibling cells who share the same parent being correlated. In practice,
the BAR(1) model is used to explain the progression of single-cell proliferation (c.f., Kimmel
and Axelrod, 2005).

Several studies have considered the problem of estimation of the BAR model parameters
(see, e.g., Cowan and Staudte, 1986; Huggins, 1995; Bui and Huggins, 1999; Huggins and Basawa,
1999, 2000; Zhou and Basawa, 2005; Terpstra and Elbayoumi, 2012; Elbayoumi and Terpstra,
2016, among many others). Cowan and Staudte (1986) introduced and studied maximum like-
lihood (ML) estimators for the model coefficients and the correlation between errors in the
BAR(1) model assuming the normality of the model errors. Huggins and Basawa (1999) studied
the asymptotic properties of the ML estimators for the BAR(p) model. On the other hand, Zhou
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Figure 1: Lifetimes (in minutes) of E. Coli cells. The tree is made using data from Cowan and
Staudte (1986).

and Basawa (2005) focused on the least squares (LS) estimation for BAR(p) models and did
not make distributional assumptions about the model errors. In their study, Zhou and Basawa
(2005) defined LS estimators for the model coefficients, a consistent estimator for the correlation
between model errors, and derived the limiting distribution of the LS estimators. Elbayoumi and
Mostafa (2021b) investigated the finite sample properties of the LS estimators of the BAR(1)
model coefficients. They showed that the finite sample bias of these estimators can be quite
large, especially for parameter values close to the boundary points, which might make inferences
based on these estimators to be inaccurate. Elbayoumi and Mostafa (2021b) introduced two
methods for correcting the bias in the LS estimators of the BAR model autoregressive param-
eter, namely, bootstrap bias correction and bias correction through linear bias functions. The
results of Elbayoumi and Mostafa (2021b) showed that both the linear-bias-correcting estimator
and the bootstrap bias-correcting estimators can be quite effective in reducing the bias of the
LS estimator and that the bootstrap estimators are more effective near the boundaries of the
range of the autoregressive parameter.

In this paper, we focus on the construction of bootstrap confidence intervals for the BAR
model. Specifically, we assess the impact of bias in LS estimators on the behavior of bootstrap
confidence intervals for the autoregressive parameter (φ1, the target parameter) in the BAR(1)
model. We conduct an extensive empirical study to evaluate the impact of different types of bias
correction of the LS estimator for the BAR(1) model on the performance of several confidence
interval procedures.

The rest of the paper is organized as follows. In Section 2, we give an overview of the BAR(1)
model and the LS estimation of model parameters, demonstrate the bias in the LS estimation of
the autoregressive parameter φ1, and outline two bootstrap bias correction approaches. Section 3
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introduces several types of bootstrap confidence intervals (with and without bias correction) for
φ1. In Section 4, we report and discuss the results of an extensive empirical study based on
both Monte Carlo simulations and two real data applications. The paper is concluded with some
discussions in Section 5.

2 The BAR Model and LS Estimation Bias
Let X1, X2, . . . , Xn denote the random variables corresponding to the observations on a perfect
binary tree with g generations. The initial observation X1 corresponds to generation 0, while
the observations X2i , X2i+1, . . . , X2i+1−1 correspond to the 2i observations in generation i, i =
1, 2, . . . , g. Note that the sample size n = 2g+1 − 1. Mathematically, the BAR(1) model is given
by

Xt = Z′
tφ + εt , for all t � 2, (1)

where Xt is an observed value of some quantitative characteristic at time t , Z′
t = (1, X[t/2]), where

X[t/2] denotes the mother of Xt for all t � 2 and [u] denotes the largest integer less than or equal
to u. The parameter vector φ′ = (φ0, φ1) is a vector of unknown model coefficients, where φ0 is the
intercept and φ1 denotes the autoregressive parameter (aka the inherited effect or the maternal
correlation). It is assumed that φ1 ∈ (−1, 1), which implies that the autoregressive process is
stationary. The errors (ε2t , ε2t+1) are independently and identically distributed (iid) according
to some joint distribution F . Here, (ε2t , ε2t+1) have zero mean vector and variance-covariance
matrix given by

�εt
=

(
1 θ

θ 1

)
σ 2, (2)

where θ denotes the linear correlation between ε2t and ε2t+1 (θ is also known as the environmental
effect or the sister-sister correlation given their common mother) and σ 2 is the variance of the
errors. Furthermore, it is assumed that the pairs (ε2t , ε2t+1) and (ε2s, ε2s+1) are independent for
s �= t . The rationale for this correlation structure is that sister cells grow in the same environment,
especially early in their lives. Therefore, two distinct kinds of correlation are expected: (i) the
environmental correlation between siblings; and (ii) the maternal correlation due to the effects
inherited from the mother. On the other hand, other distant relatives, such as cousins, share
less in their environment and, thus, it is reasonable to assume that their environmental effects
are independent.

2.1 LS Estimation of the BAR Model
Zhou and Basawa (2005) derived the following LS estimators of the BAR(1) model parameters:

φ̂LS
1 =

[
m∑

t=1

Ut(Xt − X̄)

] [
m∑

t=1

(Xt − X̄)2

]−1

,

φ̂LS
0 = Ū − φ̂LS

1 X̄,

where m = (n − 1)/2, Ut = (X2t + X2t+1)/2, X̄ = m−1 ∑m
t=1 Xt , and Ū = m−1 ∑m

t=1 Ut . The
consistent estimators of σ 2 and θ are given by σ̂ 2 = (n − 3)−1 ∑n

t=2 ε̂2
t and

θ̂LS = σ̂−2m−1
m∑

t=1

ε̂2t ε̂2t+1, (3)
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where ε̂t = Xt − Z′
t φ̂. Zhou and Basawa (2005) also showed that the joint limiting distribution

of the LS estimators of the BAR(1) model coefficients is given by:

√
n(φ̂

LS − φ)
d−→ N(0, σ 2(1 + θ)A−1), (4)

where

A =
(

1 φ0
(1−φ1)

φ0
(1−φ1)

σ 2

(1−φ2
1 )

+ (
φ0

1−φ1
)2

)
.

There are several other parameters that can be studied under the BAR(1) model but are
of less interest. Examples may include (i) the unconditional sibling-sibling correlation: ρ =
φ2

1 + (1 − φ2
1)θ , (ii) the cousin-cousin correlation: ρφ2

1 , and (iii) the grandmother-granddaughter
correlation: φ2

1 . Since θ̂ is computed from the residuals, estimates for the three parameters (i–iii)
are easily obtainable once φ1 is estimated. Therefore, we confine our attention to the estimation
of the main parameter φ1.

2.2 The Bias in LS Estimation of the BAR Model

Elbayoumi and Mostafa (2021b) studied the bias in the LS estimation of the BAR(1) autore-
gressive coefficient, φ1. They derived the asymptotic bias of the LS estimator and demonstrated
the finite sample bias using Monte Carlo simulations. Their results showed that the bias of φ̂LS

1
can be quite significant, especially for small sample sizes. Specifically, they showed that for small
sample sizes (n = 31) and when φ1 is near zero (−0.15 to +0.15), the bias of φ̂LS

1 can be as large
as 5% to 60% (as θ moves from −1 to +1) of the true value of φ1. For other values of φ1 larger
than −0.3, the relative bias of φ̂LS

1 continues to be considerably large as long as θ is away from
−1. The bias remains substantial in most cases, sometimes reaching 30%, for moderate sample
sizes, e.g., n = 63. We refer the reader to Fig. 3 in Elbayoumi and Mostafa (2021b) for a full
depiction of the bias in the LS estimator of the BAR(1) model autoregressive coefficient.

2.3 Bootstrap Bias Correction Methods for the BAR Model

The bootstrap technique has been widely used for bias correction in many statistical estimation
problems. For instance, the model-based bootstrap has been applied to correct the bias in the
LS estimation of the AR(1) model coefficient (e.g., Berkowitz and Kilian, 2000; Liu-Evans and
Phillips, 2012). Recently, this method was extended by Elbayoumi and Mostafa (2021b) to
correct the bias in the LS estimation of the BAR(1) model coefficient. For completeness and
later reference, we briefly describe three model-based bootstrap bias correction methods for the
BAR(1) model.

We start by rewriting the BAR(1) model given in Eq. (1) as follows: for t � 1,

X2t = φ0 + φ1Xt + ε2t ,

X2t+1 = φ0 + φ1Xt + ε2t+1,

where X2t and X2t+1 are the observations for the two siblings branching from Xt . Given the
observed binary tree Xn = (X1, X2, . . . , Xn), compute the LS estimates of the BAR(1) model
coefficients; φ̂LS

0 and φ̂LS
1 , as described in Section 2.1, and obtain the residuals ε̂2t = X2t −

(φ̂LS
0 + φ̂LS

1 Xt) and ε̂2t+1 = X2t+1 − (φ̂LS
0 + φ̂LS

1 Xt) for all t � 1 and the centered residuals
ε̃t = ε̂t − (n − 1)−1 ∑n

i=2 ε̂i for all t � 2.



Bootstrap Confidence Intervals for BAR Models 29

Algorithm 1 Single Bootstrap Bias-Corrected LS Estimation for φ1 (SBC).
Input
Observed tree: Xn = (X1, X2, . . . , Xn)

LS estimates of the BAR(1) model coefficients: φ̂LS
0 and φ̂LS

1
Centered residuals: ε̃t = ε̂t − (n − 1)−1

∑n
i=2 ε̂i , t � 2

Number of bootstrap resamples: B

1: for each b ← 1 to B do
2: Set X∗

1,b = X0, the last observation in an initial binary tree§, of size n0 = 31§§, whose first
observation is X1 in the original observed tree

3: for each j ← 1 to m = (n − 1)/2 do
4: Sample with replacement one pair (ε̃∗

2j,b, ε̃
∗
2j+1,b) from among the pairs

{(ε̃2t , ε̃2t+1); t � 1}
5: Compute

X∗
2j,b = φ̂LS

0 + φ̂LS
1 X∗

j,b + ε̃∗
2j,b,

X∗
2j+1,b = φ̂LS

0 + φ̂LS
1 X∗

j,b + ε̃∗
2j+1,b

6: end for
7: Build the bootstrap tree X∗n

b = (X∗
1,b, X

∗
2,b, . . . , X

∗
n,b)

8: Compute the LS estimate φ̂∗
1b

from X∗n
b

9: end for
10: Obtain the bootstrap estimate of the bias of φ̂LS

1 as β̂φ̂LS
1

= 1
B

B∑
b=1

(φ̂∗
1b

− φ̂LS
1 )

Output: The single bootstrap bias-corrected LS estimate of φ1:

φ̂SBC
1 = φ̂LS

1 − β̂φ̂LS
1

(5)

§ In each bootstrap replicate, the initial tree is generated from a BAR(1) model whose coefficients are the observed
LS estimates φ̂LS

0 and φ̂LS
1 and whose errors are randomly sampled in pairs from among the centered residuals.

We note that the alternative approach of using X1 from the observed tree as the first observation in all bootstrap
trees may add artificial correlation among the bootstrap trees. This issue can become more pronounced in higher-
order BAR(p), p > 1, models where 2p − 1 initial observations would be needed to start the bootstrap process.
In such case, our approach would simply take the 2p − 1 observations from the end of the initial tree.
§§ Any suitable initial tree size, n0, can be used. The suggested n0 = 31 seems to produce good balance between
computing time and stability of results.

The single bootstrap bias correction procedure for the autoregressive coefficient in the
BAR(1) model is presented in Algorithm 1. We note that the amount of bias in the corrected
estimate φ̂SBC

1 is of order O(n−2), whilst the original estimator φ̂LS
1 has a bias of order O(n−1).

The double bootstrapping approach involves iterating the single bootstrap procedure twice. This
technique was shown to improve the effectiveness of the bootstrap bias correction in the context
of the AR(1) model (e.g., Hall, 1992; Lee and Young, 1999; Shi, 1992; Chang and Hall, 2015)
and in the context of the BAR(1) model (See, Elbayoumi and Mostafa, 2021b). In Algorithm 2,
we describe the double bootstrap approach for correcting the bias in the LS estimator of φ1

under the BAR(1) model. One obvious drawback in this approach appears in its computational
cost. This has led to the proposal of a modified double bootstrap bias correction algorithm
that is more computationally efficient than the double bootstrap bias correction algorithm. The
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Algorithm 2 Double Bootstrap Bias-Corrected LS Estimation for φ1 (DBC).
Input:
Observed tree: Xn = (X1, X2, . . . , Xn)

LS estimates of the BAR(1) model coefficients: φ̂LS
0 and φ̂LS

1
Centered residuals: ε̃t = ε̂t − (n − 1)−1

∑n
i=2 ε̂i , t � 2

Number of phase 1 bootstrap resamples: B1

Number of phase 2 bootstrap resamples: B2

1: for each b ← 1 to B1 do
2: Set X∗

1,b = X0, the last observation in an initial binary tree, of size n0 = 31, whose first
observation is X1, the first observation in Xn

3: for each j ← 1 to m = (n − 1)/2 do
4: Sample with replacement one pair (ε̃∗

2j,b, ε̃
∗
2j+1,b) from among the pairs

{(ε̃2t , ε̃2t+1); t � 1}.
5: Compute

X∗
2j,b = φ̂LS

0 + φ̂LS
1 X∗

j,b + ε̃∗
2j,b,

X∗
2j+1,b = φ̂LS

0 + φ̂LS
1 X∗

j,b + ε̃∗
2j+1,b

6: end for
7: Build the bootstrap tree X∗n

b = (X∗
1,b, X

∗
2,b, . . . , X

∗
n,b)

8: Compute the first-phase bootstrap LS estimates φ̂∗
0b

and φ̂∗
1b

from X∗n
b

9: Obtain the first-phase bootstrap residuals

ε̂∗
2t,b = X∗

2t,b − (φ̂∗
0b

+ φ̂∗
1b

X∗
t,b) and ε̂∗

2t+1,b = X∗
2t+1,b − (φ̂∗

0b
+ φ̂∗

1b
X∗

t,b); t � 1

10: Obtain the centered bootstrap residuals ˜̃ε∗
t,b = ε̂∗

t,b − (n − 1)−1 ∑n
i=2 ε̂∗

i,b; t � 2
11: for each k ← 1 to B2 do
12: Repeat steps 2-6 on X∗n

b with φ̂∗
0b

, φ̂∗
1b

and the centered residuals ˜̃ε∗
t,b

13: Build the second-phase bootstrap tree X∗∗n
k,b = (X∗∗

1,kb, X
∗∗
2,kb, . . . , X

∗∗
n,kb)

14: Compute the second-phase bootstrap LS estimate φ̂∗∗
1kb

from X∗∗n
k,b

15: end for
16: end for
17: Obtain the single bootstrap estimate of the bias of φ̂LS

1 as:

β̂φ̂LS
1

= 1

B1

B1∑
b=1

(φ̂∗
1b

− φ̂LS
1 )

18: Obtain the double bootstrap bias adjustment factor as:

γ̂φ̂LS
1

= β̂φ̂LS
1

− 1

B1B2

B1∑
b=1

B2∑
k=1

(φ̂∗∗
1kb

− φ̂∗
1b

)

Output: The double bootstrap bias-corrected LS estimate for φ1: φ̂DBC
1 = φ̂LS

1 − β̂φ̂LS
1

− γ̂φ̂LS
1
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modification is known as the fast-double bootstrap and it was studied by Ouysse (2013). The
fast-double bootstrap algorithm uses one bootstrap resample in phase 2 (i.e., B2 = 1) from each
bootstrap sample created in phase 1. This is unlike the double bootstrap algorithm which draws
B2 bootstrap resamples within each phase bootstrap sample. While the double bootstrap algo-
rithm has a computational cost of order O(B1B2), the fast-double bootstrap algorithm’s cost is
of order O(B1). Despite this significant difference in computational cost, Elbayoumi and Mostafa
(2021b) noted that the bias correction performance of the two algorithms is quite similar.

3 Confidence Intervals for the BAR Model
Now, we present various types of confidence interval procedures for the BAR(1) autoregressive
coefficient φ1. Specifically, we describe several bootstrap confidence intervals for φ1 based on
the LS estimator φ̂1 with and without bias correction. We start with a Wald-type confidence
interval for φ1 based on the asymptotic distribution of φ̂1 and a plug-in estimate of its asymptotic
standard error. We call it the asymptotic confidence interval and use it as a benchmark when
evaluating the performance of the bootstrap confidence intervals.

3.1 Asymptotic Confidence Interval
Recall from (4) that φ̂1 has asymptotic normal distribution with mean φ1 and variance given by

Var(φ̂LS
1 ) = 1

n
(1 + θ)(1 − φ2

1).

Using this asymptotic distribution, a 100(1 − α)% asymptotic CI for φ1 is given by

φ̂LS
1 ± zα/2ŝeasy(φ̂

LS
1 ),

where zα/2 = 
−1(1 − α/2) is the (1 − α/2) percentile under the standard normal distribution
and

ŝeasy(φ̂
LS
1 ) =

√
1

n
(1 + θ̂LS)(1 − φ̂LS2

1 ),

with θ̂LS as given by (3).
It should be noted that this confidence interval can be highly impacted by the bias in the

LS estimator φ̂LS through the point estimate and the standard error. Therefore, alternative
confidence interval procedures are in demand to mitigate the bias effect.

3.2 Standard Normal Bootstrap Confidence Intervals
Instead of approximating the standard error of φ̂LS using a plug-in estimate of the asymptotic
standard error, one can use the bootstrap approach to directly estimate the standard error and
construct confidence intervals for φ. In the following, we present such confidence intervals with
and without correction for the bias in φ̂LS.
• Uncorrected standard normal bootstrap CI. Given an observed tree of size n ob-

servations, apply the bootstrap approach to obtain B replicates of the estimator φ̂LS, say;
φ̂LS∗

1(1)
, φ̂LS∗

1(2)
, . . . , φ̂LS∗

1(B)
. The bootstrap estimate of the standard error of φ̂LS is then obtained as

ŝeboot(φ̂
LS
1 ) =

√√√√ 1

B − 1

B∑
b=1

(
φ̂LS∗

1(b)
− ¯̂

φLS∗
1

)2
,
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with ¯̂
φLS∗

1 = 1
B

∑B
b=1 φ̂LS∗

1(b)
. A 100(1 − α)% standard normal bootstrap CI for φ1 is given by

φ̂LS
1 ± zα/2ŝeboot(φ̂

LS
1 ).

Similar to the asymptotic confidence interval, the performance of the above bootstrap con-
fidence interval procedure can deteriorate if φ̂LS is substantially biased. The following two
confidence interval procedures try to address this issue for this kind of confidence interval
procedure.

• Standard normal bootstrap CI with single bootstrap bias correction. To reduce
the impact of the bias in φ̂LS on the performance of the standard normal bootstrap CI, we
rely on a bias-corrected version of φ̂LS when constructing the CI. More precisely, we replace
φ̂LS with the single bootstrap bias-corrected LS estimator φ̂SBC

1 presented in (5). This leads
to the following bias-corrected CI procedure:

φ̂SBC
1 ± zα/2ŝeboot(φ̂

SBC
1 ),

where

ŝeboot(φ̂
SBC
1 ) =

√√√√ 1

B − 1

B∑
b=1

(
φ̂SBC∗

1(b)
− ¯̂

φSBC∗
1

)2
,

with φ̂SBC∗
1(1)

, φ̂SBC∗
1(2)

, . . . , φ̂SBC∗
1(B)

being B bootstrap replicates of φ̂SBC
1 , and ¯̂

φSBC∗
1 being the

mean of these replicates. It is noteworthy that this confidence interval procedure requires
two phases of bootstrapping, where the first phase corrects the bias in the LS estimator φ̂LS

to obtain φ̂SBC
1 and the second phase estimates the standard error of φ̂SBC

1 .
• Standard normal bootstrap CI with fast double bootstrap bias correction. Another

bias-corrected standard normal bootstrap CI for φ1 can be built based on the fast double
bootstrap bias-corrected LS estimator φ̂FDBC

1 obtained as the output of Algorithm 2 after
setting B2 = 1. The fast double bootstrap approach is applied first to obtain the bias-
corrected estimator φ̂FDBC

1 followed by a single bootstrap of φ̂FDBC
1 to estimate its standard

error. The resulting CI is given by

φ̂FDBC
1 ± zαŝeboot(φ̂

FDBC
1 ),

with

ŝeboot(φ̂
FDBC
1 ) =

√√√√ 1

B − 1

B∑
b=1

(
φ̂FDBC∗

1(b)
− ¯̂

φFDBC∗
1

)2
,

where φ̂FDBC∗
1(1)

, φ̂FDBC∗
1(2)

, . . . , φ̂FDBC∗
1(B)

are B bootstrap replicates of φ̂FDBC
1 , and ¯̂

φFDBC∗
1 is the

mean of these replicates.

3.3 Percentile Bootstrap Confidence Interval
• Uncorrected percentile bootstrap CI. Given an observed tree of size n observations,

apply the bootstrap approach to obtain B replicates of the estimator φ̂LS, say; φ̂LS∗
1(1)

, φ̂LS∗
1(2)

, . . . ,

φ̂LS∗
1(B)

. The 100(1 − α)% percentile bootstrap CI for φ1 can then be obtained as(
φ̂LS∗

1α/2
, φ̂LS∗

11−α/2

)
,
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where φ̂LS∗
1α/2

and φ̂LS∗
11−α/2

are the (α/2) and (1 − α/2) percentiles of the empirical distribution
of the B bootstrap replicates of φ̂LS.

• Percentile bootstrap CI with single bootstrap bias correction. The bias in the LS
estimator φ̂LS can significantly impact the bootstrap distribution and, hence, the behavior of
the percentile bootstrap confidence interval. A corrected percentile bootstrap CI for φ1 can
be obtained from the bootstrap distribution of the single bootstrap bias-corrected estimator
φ̂SBC∗ as follows: (

φ̂SBC∗
1α/2

, φ̂SBC∗
11−α/2

)
,

where φ̂SBC∗
1α/2

and φ̂SBC∗
11−α/2

are the (α/2) and (1 − α/2) percentiles of the empirical distribution
of the bootstrap replicates φ̂SBC∗

1(1)
, φ̂SBC∗

1(2)
, . . . , φ̂SBC∗

1(B)
.

• Percentile bootstrap CI with fast double bootstrap bias correction. Similarly, a
100(1−α)% percentile bootstrap CI for φ1 based on the fast double bootstrap bias-corrected
estimator φ̂FDBC∗

1 is given by (
φ̂FDBC∗

1α/2
, φ̂FDBC∗

11−α/2

)
,

where φ̂FDBC∗
1α/2

and φ̂FDBC∗
11−α/2

are the (α/2) and (1−α/2) percentiles of the empirical distribution
of the bootstrap replicates φ̂FDBC∗

1(1)
, φ̂FDBC∗

1(2)
, . . . , φ̂FDBC∗

1(B)
.

Note that, unlike the uncorrected bootstrap percentile confidence interval procedure which
requires only one phase of bootstrapping, the above bias-corrected percentile bootstrap con-
fidence interval procedures require two phases of bootstrapping.

• Bias-corrected and accelerated bootstrap CI. Another modification to the bootstrap
percentile confidence interval procedure aims to correct the potential bias and skewness in
the bootstrap estimate of the sampling distribution of φ̂LS

1 . This procedure is known as the
bias-corrected and accelerated (BCa) bootstrap confidence interval and it has been shown
to have improved theoretical properties and enhanced performance in practice (See, Efron,
1987). Define

α1 = 


(
ẑ0 + ẑ0 + zα/2

1 − â(ẑ0 + zα/2)

)
and α2 = 


(
ẑ0 + ẑ0 + z(1−α/2)

1 − â(ẑ0 + z(1−α/2))

)
,

where 
(·) is the cumulative distribution function of the standard normal distribution,

ẑ0 = 
−1

(
1

B

B∑
b=1

I (φ̂LS∗
1(b)

< φ̂LS
1 )

)

is the bias-correction factor with I (·) being the indicator function, and

â =
∑n

i=1(φ̂
LS
1(i) − ¯̂

φLS
1 )3

6
(∑n

i=1(φ̂
LS
1(i) − ¯̂

φLS
1 )2

)3/2

is the acceleration factor with φ̂LS
1(i) being the delete-1-jackknife estimate, i.e., the LS estimate

with the i-th observation excluded, and ¯̂
φLS

1 is the mean of these jackknife replicates. A
100(1 − α)% BCa CI for φ1 in the BAR(1) model is given by(

φ̂LS∗
1α1

, φ̂LS∗
1α2

)
.
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Note that the BCa procedure nests the delete-1-jackknife within each of the B bootstrap
replicates and, therefore, is more computationally intensive than the uncorrected percentile
bootstrap confidence interval procedure.

4 Empirical Results
In this section, we report the results of an empirical study that investigates the performance
of eight confidence interval procedures presented in the previous section for the autoregressive
coefficient φ1 of the BAR(1) model. The empirical study includes both extensive simulations
and two real data applications. All computations were performed using R version 4.1.3 (R Core
Team, 2022) on a machine with a processor Intel Xeon E5-2699Av4, 2.4 GHz clock speed, 44
cores, and 512 GB memory. Simulations were set up to utilize 42 of the 44 available cores using
the “parallel” package. The “bifurcatingr” package was used to generate the bifurcating trees
and compute both uncorrected and bias-corrected LS estimators of the BAR model parameters
(Elbayoumi and Mostafa, 2021a).

4.1 Simulations
The simulation experiments are designed to (1) assess the impact of bias in the LS estimator
on the performance of various confidence interval procedures for the autoregressive coefficient
in the BAR(1) model, and (2) investigate the effectiveness of bias correction for enhancing the
performance of these confidence interval procedures. The performance of confidence interval
procedures is measured by the empirical coverage rate, width, and symmetry of the confidence
interval (i.e., approximately equal error rates on both sides).

In our simulations, we generate perfect binary trees from the BAR(1) model given in Eq. (1).
The model’s intercept φ0 is set equal to 10 in all trees. We account for wide scenarios of maternal
and environmental correlation levels by considering 48 possible combinations of
• φ1 = ±0.10, ±0.35, ±0.60, ±0.85, and
• θ = ±0.30, ±0.6, ±0.90.

The model errors (ε2t , ε2t+1) are generated as iid observations with zero mean vector and
variance-covariance matrix �εt

given by (2). The following distributions are considered:
• Bivariate normal distribution with 3 signal-to-noise ratios: σ = 0.25, 0.5, 1.
• Bivariate t-distribution with 10 degrees of freedom and σ = 1 using the function rmvst() in

the package “fCopulae” (Wuertz et al., 2022).
• Bivariate skew normal distribution with skewness parameter a = 3 and σ = 1 using the

function rmvsnorm() in the package “fCopulae”.
In each simulated tree, the first observation, X1 (generation 0), is taken as the last obser-

vation in an initial binary tree, of the same size as the target tree, whose first observation is
Xinitial

1 = φ0/(1 − φ1).
Under each of these settings, m = 500 BAR(1) trees, of size n = 63 (i.e., g = 5 generations),

are generated, and the LS estimator of the coefficient φ1 is obtained along with the eight con-
fidence intervals described in the previous section. We also considered two other sample sizes
n = 31, 127 (i.e., g = 4, 6). The eight confidence interval procedures analyzed are: asymptotic
Wald-Type CI (ASY); uncorrected standard normal bootstrap CI (NORMB); standard normal
bootstrap CI with single bootstrap bias correction (NORMB-SBC); standard normal bootstrap
CI with fast double bootstrap bias correction (NORMB-FDBC); uncorrected percentile boot-
strap CI (PERC); percentile bootstrap CI with single bootstrap bias correction (PERC-SBC);
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percentile bootstrap CI with fast double bootstrap bias correction (PERC-FDBC); and bias-
corrected and accelerated bootstrap CI (BCa).

In the case of single bootstrap, the number of bootstrap samples is set to B = 499. For the
fast double bootstrap, we set B1 = 499 (B2 = 1 by definition). The nominal coverage is set to
95% for all confidence interval procedures.

We use four metrics to compare the performance of the eight confidence interval procedures:
• Coverage: % of time the parameter is within the limits of the CI,
• Average Width,
• Lower Significance Rate (SL.L): % of time the parameter is below the lower limit of the CI,

and
• Upper Significance Rate (SL.U): % of time the parameter exceeds the upper limit of the CI.

The simulation results are presented in Figures 2–6 for the 3 error distributions under the

Figure 2: Performance of eight confidence interval procedures of φ1 based on tree size n = 63
under the bivariate normal distribution for the errors (σ = 0.25).
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Figure 3: Performance of eight confidence interval procedures of φ1 based on tree size n = 63
under the bivariate normal distribution for the errors (σ = 0.5).

n = 63 case. The results for the n = 31 and n = 127 cases can be found in the Supplementary
Material.

We summarize the results in the following points:
• Considering the asymptotic confidence interval procedure (ASY) based on the plug-in esti-

mate of the asymptotic standard error of φ̂LS
1 , it is readily seen that this procedure has un-

satisfactory performance as demonstrated by its excessively high coverage rates (near 100%
in most cases) and overly large width, especially for negative θ values, e.g., θ = −0.9, −0.6 or
−0.3. The large width of the asymptotic confidence interval procedure can be attributed to
the high variability in the plug-in estimate of the standard error of φ̂LS

1 . As we shift towards
positive values of θ , the relative performance of the asymptotic confidence interval procedure
improves except for large positive φ1 values, e.g., φ1 = 0.9, where the bias of LS estimator is
known to be high. This confidence interval procedure does not seem to enjoy good symmetry
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Figure 4: Performance of eight confidence interval procedures of φ1 based on tree size n = 63
under the bivariate normal distribution for the errors (σ = 1).

levels as shown by the unbalanced significance rates (i.e., SL.L and SL.U).
• It is noteworthy that the uncorrected standard normal bootstrap (NORMB) confidence in-

terval procedure has the best performance among the three uncorrected procedures; namely,
ASY, NORMB, and the percentile bootstrap (PERC). Overall, the NORMB procedure en-
joys reasonable coverage rates, width, and symmetry in most cases. On the contrary, the
PERC procedure suffers from a dramatic drop in the coverage for large positive values of φ1

and produces the most asymmetrical confidence intervals among all eight procedures. The
PERC procedure enjoys good performance when both φ1 and θ are negative, the combination
where the bias of the LS estimate φ̂LS

1 reaches its minimal level.
• The simulation results indicate that the bias-correction of the LS estimator significantly

enhances the performance of the two bootstrap confidence interval procedures, NORMB and
PERC. This is clear from the improved coverage, width, and symmetry of the NORMB-SBC,
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Figure 5: Performance of eight confidence interval procedures of φ1 based on tree size n = 63
under the bivariate t-distribution with 10 degrees of freedom.

NORMB-FDBC, PERC-SBC, and PERC-FDBC procedures. The bias-corrected versions of
the NORMB and PERC procedures perform quite similarly for negative values of θ with
somewhat superior coverage for the corrected NORMB procedures at the expense of a slightly
higher width. When θ is positive, the corrected PERC procedures have higher coverage rates,
especially for φ1 < 0.5, and a smaller width than the corrected NORMB procedures. However,
the corrected NORMB procedures appear to enjoy better symmetry than the corrected PERC
procedures. In general, the two types of bias correction, namely, single bootstrap and fast-
double bootstrap, have very similar performance. Considering the computational cost, the
single bootstrap bias correction procedure is recommended over the fast-double bootstrap
procedure.

• The BCa procedure has stable coverage rates across the different scenarios and produces
confidence intervals that have a nice balance between coverage and width. Hence, the BCa
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Figure 6: Performance of eight confidence interval procedures of φ1 based on tree size n = 63
under the bivariate skew normal distribution with skewness parameter a = 3.

successfully addresses two of the main issues in the PERC bootstrap confidence interval
procedure. However, the BCa does not fully treat the asymmetry in the PERC confidence
intervals.

• We note that the observations summarized in the previous points hold regardless of the
sample size and error distribution.

• The simulation results shown in the above figures and the figures in Supplementary Material
suggest that the error distribution may impact the behavior of the confidence interval proce-
dures analyzed in our study. However, the effect of the error distribution appears to be rather
small except for the ASY procedure where we notice a dramatic drop in its performance for
skew error distribution, especially when both θ and φ1 are above 0.5.

• Lastly, upon inspection of the simulation results across the three sample sizes, n = 31, 63, 127,
we notice that all eight confidence interval procedures are consistent. That is, at a fixed
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combination of θ and φ1, increasing the sample size leads to higher observed coverage rates
and narrower intervals.

4.2 Applications to Cell Lineage Data

In this section, we apply the confidence interval procedures discussed in earlier sections to two
real cell lineage datasets that can be modeled as bifurcating trees.

4.2.1 Lifetimes of EMT6 Cells

The lifetimes (in tenths of hours) of the progeny of EMT6 (BALB/c mouse mammary tumor)
cells were recorded and 877 observations were obtained from 41 trees. The data were collected
at the Institute of Cancer Research, Lille, France, and can be found in Appendix B of Staudte
et al. (1984). The initial cells of all trees were missing and many of the trees had censored
data resulting in non-perfect binary trees. Staudte et al. (1984) analyzed the data from all trees
and noted that the mean lifetime was similar across trees. With the exception of two trees, all
trees consisted of 63 or fewer cells. In this application, we combine observations from all 41
trees (after trimming the largest two trees at 63 cells) to build a perfect binary tree of 64 cells
that can be modeled using the BAR model. To do so, we averaged observations from cells in
each position in all 41 trees. Due to the varying trees sizes, the number of observations used
in computing the cell averages also varied from one cell to another. Since the first cell was
missing in all trees, we used the average of all cells’ averages to estimate the initial cell for the
averages tree. Figure 7 displays the resulting tree which is composed of five generations and 63

Figure 7: Average lifetimes (in tenths of hours) of EMT6 cells obtained from averaging obser-
vations from 41 bifurcating trees. The averaging of observations and the tree are made by the
authors using the data in Staudte et al. (1984).
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Table 1: 95% confidence intervals for the autoregressive coefficient φ1 and their corresponding
widths from the EMT6 and E. coli datasets.

Method EMT6 (φ̂1 = −0.096, θ̂ = 0.569) E. coli (φ̂1 = 0.355, θ̂ = 0.584)

95% CI Width 95% CI Width
ASY (−0.706, 0.513) 1.219 (−0.165, 0.876) 1.041
NORMB (−0.438, 0.246) 0.684 (−0.168, 0.878) 1.046
NORMB-SBC (−0.418, 0.236) 0.654 (−0.114, 1.000§) 1.147
NORMB-FDBC (−0.378, 0.299) 0.678 (−0.169, 1.000§) 1.205
PERC (−0.433, 0.197) 0.630 (−0.372, 0.708) 1.081
PERC-SBC (−0.430, 0.278) 0.708 (−0.276, 0.866) 1.142
PERC-FDBC (−0.367, 0.296) 0.663 (−0.249, 0.913) 1.162
BCa (−0.328, 0.326) 0.654 (0.039, 1.000§) 1.070
§ The upper limit for the confidence interval was trimmed at 1.000 as φ1 is restricted to be between 0 and 1 by the
stationarity assumption. The calculation of the confidence interval width uses the upper limit before trimming.

observations. The LS estimates for the first-order BAR model coefficients from this tree were
found to be φ̂0 = 120.25 and φ̂1 = −0.096 with an estimated errors correlation of θ̂ = 0.569.
We also computed 95% confidence intervals for the autoregressive coefficient φ1 using the eight
confidence interval procedures presented earlier. These confidence intervals and their widths are
shown in Table 1. We note that all eight confidence intervals contain the value zero suggesting
that the true mother-daughter correlation, φ1, is not significantly different from zero. The Wald-
Type confidence interval (ASY) is much wider than all other intervals which is consistent with
what was observed from the simulations. Assuming that the true value of φ1 is zero, the BCa
confidence interval is the only procedure that produces a symmetric confidence interval with
reasonable width.

4.2.2 Lifetimes of E. Coli Cells

In this application, we use data on the lineage of E. coli cells. The data is taken from Cowan and
Staudte (1986). Observations in the data represent the lifetimes (in minutes) of the E. coli cells.
The 31 observations form a perfect binary tree with four generations as displayed in Figure 1.
The LS estimates of the first-order BAR model coefficients from this data are φ̂0 = 17.617 and
φ̂1 = 0.355 with errors correlation θ̂ = 0.584. In the last two columns of Table 1, we report the
results of 95% confidence intervals for the autoregressive coefficient φ1 calculated using the eight
confidence interval procedures studied in this paper. Although the LS estimate of φ1 is 0.355,
which is much larger than 0, seven of the eight confidence intervals contain the value zero. For
the uncorrected procedures, i.e., ASY, NORMB, and PERC, this behavior is likely due to the
large amount of negative bias in the LS estimate which is reported by Elbayoumi and Mostafa
(2021b) to be about 25%. The increase in width of the four bias-corrected confidence interval
procedures, NORMB-SBC, NORMB-FDBC, PERC-SBC and PERC-FDBC, can be attributed
to the fact that the bias-correction can lead to a significant increase in the variance, especially
for small sample sizes such as n = 31 (see, Elbayoumi and Mostafa, 2021b). Similar to the EMT6
cells application above, the BCa procedure seems to produce a more accurate inference for φ1

as indicated by the all-positive interval while maintaining a reasonable width.
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5 Discussions
In this paper, we studied the effect of the bias in the least squares estimation of the autore-
gressive coefficients in bifurcating autoregressive (BAR) models on the performance of different
types of bootstrap confidence intervals. Specifically, we focused on constructing and evaluating
bias-corrected/uncorrected bootstrap confidence intervals for the autoregressive coefficient φ1

in the BAR(1) model. Both single and fast-double bootstrap bias corrections were used in the
bias-corrected bootstrap confidence intervals. The behavior of the uncorrected and corrected
confidence interval procedures was examined through extensive simulations and two cell lineage
data sets. Several concluding points can be drawn from the simulation results and real data ex-
amples. First, the performance of uncorrected bootstrap confidence interval procedures, namely;
standard normal and percentile bootstrap confidence intervals, can be significantly affected by
the bias in the LS estimator. Second, the standard normal bootstrap confidence interval is gen-
erally superior to the percentile bootstrap procedure. Third, the correction of the bias in the
LS estimator significantly enhances the performance of these two bootstrap confidence interval
procedures with the bias-corrected standard normal bootstrap procedure having better cover-
age rate, especially when the errors correlation is negative, and better symmetry in most cases.
Fourth, the two types of bias correction –single bootstrap and fast-double bootstrap– have sim-
ilar performance and, therefore, the single bootstrap bias correction procedure is recommended
due to its computational efficiency relative to the fast-double bootstrap. Finally, although the
bias-corrected and accelerated (BCa) confidence interval procedure does not fully address the
asymmetry problem in the percentile bootstrap confidence interval, it produces reasonably tight
confidence intervals that have stable coverage rates. This preferable performance of the BCa
procedure is further confirmed in the two real data examples.

It is worth noting that the work presented in this paper can be extended to higher-order
BAR models which can be quite useful when, in addition to the correlations between the immedi-
ate relatives in the tree, the researcher is interested in the correlations between distant relatives
such as cousins (Huggins and Basawa, 1999). Elbayoumi and Mostafa (2021b) discussed the bias
in the LS estimation of higher-order BAR models, especially BAR(2) models. They showed that
the LS estimators of the BAR(2) model coefficients have similar biases as in the case of BAR(1)
models and outlined the extension of bootstrap bias correction methods to BAR(2) models. It is
straightforward to extend the bootstrap confidence interval procedures discussed above for the
case of BAR(1) models to construct confidence intervals for the coefficients of BAR(p) models.
This extension is straightforward since the bootstrap bias correction and bootstrap confidence
intervals discussed here use model-based bootstrapping which makes the necessary modifications
for higher-order BAR models quite obvious. The finite sample behavior of bias-corrected/un-
corrected bootstrap confidence intervals for BAR(p), p > 1, models can be investigated via an
empirical study similar to the one reported in this paper.

Supplementary Material
The supplementary material includes the following files and folders: (1) README: a brief ex-
planation of all the files and folders in the supplementary material; (2) The application datasets;
(3) Code files; and (4) Additional simulation results.
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