
Journal of Data Science 22 (1), 10–24 DOI: 10.6339/23-JDS1093
January 2024 Statistical Data Science

Neural Generalized Ordinary Differential Equations with
Layer-Varying Parameters

Duo Yu
1
, Hongyu Miao

2
, and Hulin Wu

3,∗
1Department of Population Health, The University of Texas at Austin, United States

2College of Nursing, Florida State University, United States
3Department of Biostatistics and Data Science, The University of Texas Health Science Center at

Houston, United States

Abstract

Deep residual networks (ResNets) have shown state-of-the-art performance in various real-world
applications. Recently, the ResNets model was reparameterized and interpreted as solutions to
a continuous ordinary differential equation or Neural-ODE model. In this study, we propose
a neural generalized ordinary differential equation (Neural-GODE) model with layer-varying
parameters to further extend the Neural-ODE to approximate the discrete ResNets. Specifically,
we use nonparametric B-spline functions to parameterize the Neural-GODE so that the trade-
off between the model complexity and computational efficiency can be easily balanced. It is
demonstrated that ResNets and Neural-ODE models are special cases of the proposed Neural-
GODE model. Based on two benchmark datasets, MNIST and CIFAR-10, we show that the layer-
varying Neural-GODE is more flexible and general than the standard Neural-ODE. Furthermore,
the Neural-GODE enjoys the computational and memory benefits while performing comparably
to ResNets in prediction accuracy.

Keywords B-splines; deep residual networks; neural ordinary differential equations

1 Introduction
Deep learning (or deep neural networks) has been successfully applied in a variety of real-world
areas, including computer vision (Krizhevsky et al., 2009; Goodfellow et al., 2014; Long et al.,
2015), game playing (Silver et al., 2016, 2017), natural language processing (Graves et al., 2013;
Bahdanau et al., 2014; Young et al., 2018), speech recognition (Noda et al., 2015; Yu and Deng,
2016), medical diagnosis (Esteva et al., 2017; Kim et al., 2018; Abdeltawab et al., 2019; Yu et al.,
2020), and physical science (Sigaki et al., 2020). One type of deep learning model, called deep
residual networks (ResNets), has shown state-of-the-art performance in image recognition (He
et al., 2016a; Qiu et al., 2017; Zhang et al., 2017). By incorporating the shortcut connection, the
ResNets improves learning performance with deeper and wider architectures (Bishop et al., 1995;
Ripley, 2007). Therefore, it has been considered a default practice of the convolutional neural
networks (CNN) models and a powerful tool to deal with complex image recognition problems.
For example, ResNets-152 achieves 19.38% top-1 error on the ImageNet data with 152 layers
(He et al., 2016a); and ResNets-1001 reaches 4.92% test error on the CIFAR-10 data with 1000
layers (He et al., 2016b).

∗Corresponding author. Email: hulin.wu@uth.tmc.edu.

© 2024 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received December 15, 2022; Accepted February 19, 2023

mailto:hulin.wu@uth.tmc.edu
https://creativecommons.org/licenses/by/4.0/


Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 11

A ResNets transforms the input and hidden layers iteratively to filter the information:

ht+1 = ht + σ(ht , θt ), for t = 0, 1, . . . , T − 1, (1)

where h0 is the input data, h1, h2, . . . , hT are the hidden layers, σ denotes the activation function,
θt represents the parameters that link ht and ht+1. These iterative updates can be interpreted
as an Euler discretization of a nonlinear ordinary differential equation (ODE) (Weinan, 2017;
Chen et al., 2018; Haber and Ruthotto, 2017; Li et al., 2017; Lu et al., 2018):

h′(t) = σ(h(t), θ(t)).

Motivated by such a link between ResNets and ODE, many deep learning architectures and
training algorithms have been proposed, including differential equation-based neural networks
(Chen et al., 2018; Chang et al., 2018; Haber and Ruthotto, 2017; Ruthotto and Haber, 2020;
Lu et al., 2018; Li et al., 2017; Chen et al., 2018; Bai et al., 2019; Cranmer et al., 2020; Dupont
et al., 2019; Zhang et al., 2019; Zhong et al., 2019; Greydanus et al., 2019) and continuous-time
recurrent neural networks (RNN) (Chang et al., 2019; Lim, 2021; Lim et al., 2021; Rusch and
Mishra, 2020, 2021). Among them, Chen et al. (2018) proposed the Neural-ODE model that
replaced the multiple residual blocks with one ODE system in the model architecture. To train
such a Neural-ODE model, the authors developed the publicly available software, torchdiffeq,
which adopted various ODE solvers at the back-propagation step. Compared with the original
ResNets, many advantages of the proposed Neural-ODE were demonstrated, including mem-
ory efficiency, adaptive computation of solving ODEs, scalable and invertible normalizing flow
constructions, and building continuous time-series models.

Conceptually, the Neural-ODE model combines the strengths of both parametric and non-
parametric approaches for model construction and training. Parametric dynamical models, such
as ordinary differential equations (ODEs), have long been studied in, e.g., mathematics, physics,
and engineering. Therefore, a rich amount of theories and application experiences have been
accumulated (LaSalle, 1968; Simmons, 2016; Arnold, 2012; Yu et al., 2016, 2017, 2021). In gen-
eral, the ODE models use parameterized mathematical functions to describe dynamic behaviors
of the state variables for a given dynamic system, such as the logistic model for population
growth (Yu et al., 2016), prey-predator dynamics in ecological studies (Tang et al., 2015), and
Susceptible-Infectious-Recovered (SIR) model for modeling infectious disease transmissions (Yu
et al., 2017). Then the parameters of the ODE model are estimated based on observed data
so that the proposed ODE can describe the observed dynamic behavior of a system. However,
this parametric approach is limited by its assumption of the underlying mechanisms, which may
only partially capture the real dynamics. On the other hand, machine learning models, such as
recurrent neural networks (RNNs), multilayer perceptron (MLP), and deep residual networks
(ResNets), have been successfully applied in a variety of fields due to their universal approxi-
mation property. By connecting the deep residual networks and ordinary differential equations,
the Neural-ODE model serves as a promising model to better capture the real-world dynamics.

1.1 Generalized Ordinary Differential Equation (GODE)

Previously, we have proposed a generalized ODE (GODE) to model the dynamics of both contin-
uous and discrete data, including binary or categorical data types (Miao et al., 2014). Compared
to the traditional ODE system where the variable is continuous, the GODE extends the ODE to
model the outcome that follows an exponential family distribution, which refers to a family of



12 Yu, D. et al.

flexible distribution for both continuous and discrete random variables. Assume the outcome at
time t , y(t), which is a random variable that follows an overdispersed exponential distribution
with the probability mass (or density) function of

f (y(t), ψt , φt ) = exp
(y(t)ψt − b(ψt)

a(φt )
+ c(y(t), φt )

)
, (2)

with respect to a σ -finite measure π , where a(·), b(·) and c(·) are some pre-specified functions;
ψt and φt are natural parameter and dispersion parameter at time t , respectively. Then, the
expectation of y(t) can be derived as

E(y(t)) = μ(t) = b′(ψt),

where b′(ψt) is the first-order derivative of b(ψt) with respect to ψt . In the GODE system, the
expectation of the response variable, i.e., μ(t), is modeled as

η(t) = g(μ(t)) = g∗(X(t), Z(t), β),

where g(·) denotes the link function; g∗(·) is a function of covariates, X(t), latent (unobserved)
dynamic state variable, Z(t), and the parameter vector β. In particular, the latent state variable,
Z(t), is modeled by a time-varying parameterized ODE,

Z′(t) = σ(t, Z(t), θ(t)), (3)

where t ∈ [0, T ], Z(0) is the initial condition of the dynamic system which can be considered as
an unknown parameter; σ is an explicit given function, θ(t) denotes the vector of time-varying
parameters.

Note that instead of an explicit function, if σ is a neural network activation function, then
the latent time-varying variables, Z(t) in equation (3), can be considered as hidden layers in
neural networks. Moreover, it is equivalent to the hidden layer of ODE block in the Neural-ODE
(Chen et al., 2018) when θ(t) is independent of t . In this study, we further extend the GODE
model to establish a general statistical framework for the deep learning neural network model.

1.2 Related Work

Recently, several studies have tried to extend the standard Neural-ODE with time-varying pa-
rameterized ODE systems (Zhang et al., 2019; Queiruga et al., 2020, 2021; Massaroli et al.,
2020). Zhang et al. proposed ANODEV2, which extends the standard Neural-ODE with a cou-
pled ODE system, in which the weights are time-varying and governed by an ODE. Queiruga
et al. proposed ContinuousNet, a family of continuous-in-depth generalizations of ResNet archi-
tectures. A set of time-varying basis functions are used to model the neural network weights
(Queiruga et al., 2020). Based on the CIFAR-10 and CIFAR-100 data sets, it has been shown
that the ContinuousNet outperforms ANODEV2 and standard Neural-ODE while having com-
petitive performances compared to ResNets in terms of accuracy. In the latter work of Queiruga
et al. (2021), the stateful ODE-Nets were developed, which achieved state-of-the-art performance
on CIFAR-10. Both the ContinuousNet and stateful ODE-Nets applied piecewise constant (or
linear) basis functions in the time-varying ODEs. However, it is not clear if the basis function
with higher orders, such as B-spline functions, can additionally improve the model performance.
More recently, Günther et al. (2021) explored the B-spline parameterized neural networks, which



Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 13

showed better performance compared to ResNets and standard Neural-ODE based on numerical
tests. However, the Neural-ODE with B-spline parameterized ODEs have not been evaluated
based on the benchmark data sets.

The time-varying parameterized differential equations are flexible (Chen and Wu, 2008; Xue
et al., 2010) dynamic systems that have been widely applied in practice, and the ODE model
fitting (training) methods and corresponding theoretical properties have been investigated in
statistical communities in the past two decades (Chen and Wu, 2008; Xue et al., 2010; Liang
et al., 2010). In this study, we couple the time-varying ODE and GODE modeling to generalize
the standard Neural-ODE model proposed by Chen et al. (2018) and propose a neural general-
ized ODE (Neural-GODE) model. We can demonstrate that the aforementioned Neural-ODE or
ODE-Nets models are special cases of the proposed Neural-GODE models. Thus, we establish a
connection of deep neural network models and Neural-ODE models in machine learning commu-
nity with the GODE model concept developed in statistical community many years ago. This
lays a foundation to potentially leverage the statistical concepts and theories on ODE models to
study the properties of deep learning algorithms in the future. In this study we also evaluated
the performance of the proposed Neural-GODE and compared with existing deep residual net-
works (ResNet) (He et al., 2016a) and the standard Neural-ODE model (Chen et al., 2018) using
benchmark datasets, MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009).

2 Method
Given a supervised learning problem with input X and output label Y, the essential task is to
find a mapping

F : X → Y,

where X ⊂ R
p, Y ⊂ R, such that F(Xi ) can accurately predict yi , and (Xi , yi) is the i-th sample,

i = 1, 2, . . . , n. Usually, F is approximated by penalized regression, algorithms, and networks,
such as LASSO, support vector machine (SVM), and multilayer perceptron (MLP) neural net-
works. Especially with the universal approximation property, multilayer feedforward networks,
such as residual neural networks (ResNets), multilayer perceptron (MLP), and convolutional
neural networks (CNN), are widely applied in complex prediction tasks (Hornik et al., 1989).
Multilayer feedforward networks use the forward propagation technique that processes the in-
puts in a nonlinear and forward direction way to filter the information. For example, in a general
residual neural networks (ResNets), the forward propagation of input Z0 ∈ Rn×p, with T layers
is given by

Z(t+1) = Zt + hσ(ZtKt + bt), for t = 0, 1, . . . , T − 1, (4)
where Z0 = X, and Z1, Z2, . . . , ZT are the hidden layers, t is the layer index, σ is the activation
function, and h is the scaling factor, Kt and bt are the constant weights of the t-th hidden
layer. The iterative updates of hidden layers Zt , equation (4), can be interpreted as a discretized
nonlinear ordinary differential equation (ODE):

Ż(t) = σ(Z(t)β(t) + b(t)),

where Z(t) is a time-varying variable with initial Z(0) = X; β(t) and b(t) are time-varying
parameters. Based on the GODE in Section 1.1, assume the outcome variable Y follows an
exponential family distribution (2) with a mean of E(Y ) = μ and link function involving a
hidden variable ZT :

η = g(μ) = g∗(ZT , θ),



14 Yu, D. et al.

where ZT
.= Z(T ) is the solution to the ODE in equation (2). The optimization problem with

respect to both time-varying and constant parameters, β(t), b(t), θ , can be written as

min
1

n
L(β(t), b(t), θ | X, Y ) + λP (β(t), b(t), θ),

s.t. Ż(t) = σ(Z(t)β(t) + b(t)), Z(0) = X,

η = g(μ) = g∗(ZT , θ), (5)

where, L(β(t), b(t), θ | X, Y ) is the likelihood function and P(β(t), b(t), θ) is the penalty function,
λ is the penalty parameter. Adopting the idea of the time-varying ODE model in Xue et al.
(2010), we can approximate the time-varying parameters using B-splines, i.e.,

β(t) = B1(t)
′ζ 1,

b(t) = B2(t)
′ζ 2,

where B1(t)
′ and B2(t)

′ are B-spline basis functions and (ζ ′
1, ζ

′
2) are constant parameter vectors.

A brief review of the B-spline is given below.

2.1 B-Spline Function

The spline functions have been widely used in nonparametric regression and varying-coefficient
models in statistical research (Perperoglou et al., 2019). In particular, the splines are generally
used for modeling the smooth functions of the interested variables, such as nonlinear effects of
covariates, time-dependent effects in regression models, and time-series data modeling.

B-spline is a more general type of curve than Bézier curve (Bartels et al., 1995). A B-spline
with degree k and m basis functions can be written as

β(t) =
m−1∑
i=0

Bi,k(t)ξi, (6)

where Bi,k(t) is a degree k (the highest power) basis function, and ξi is the coefficient of i-th basis
function. The knot vector is {t0, t1, t2, . . . , tk+m}. Bi,k(t) is calculated recursively by the following
formula:

Bi,0 =
{

1, ti � t < ti+1,

0, otherwise,

Bi,k = t − ti

ti+k − ti
Bi,k−1(t) + ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t).

In this study, we apply the B-spline to parameterize the time-varying parameters in the GODE.
The degree of the basis function, k, controls the complexity of the time-varying effect; the number
of the basis functions, m, controls the number of parameters in the GODE. If k = 0, m = 1,
equation (6) can be rewritten as

β(t) = B0,0(t)ξ0, (7)

where
B0,0(t) =

{
1, t0 � t < t1,

0, otherwise. (8)



Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 15

In this case, the knot vector is {t0, t1}, i.e., the first and endpoints of the integration time interval.
Thus, equation (7) and (8) are equivalent to β(t) = ξ0, and B0,0(t) = 1. Therefore, the Neural-
GODE model is reduced to the standard Neural-ODE model with constant parameters when
k = 0, m = 1. On the other hand, increasing the number of basis functions (knots), m, increases
the number of parameters in the integration interval. If an ODE is solved by the simple Euler
method with a small step size, the increased number of knots makes each Euler step have different
parameters, i.e., the increased number of different θt in equation (1). Since the ResNets can be
interpreted as nonlinear ODE as equation (1), the Neural-GODE with time-varying parameters
can represent the ResNets in this case.

2.2 Model Architectures

We consider the residual networks (ResNets) architecture that has been used for comparison
in Chen et al. (2018), see Figure 1. The ResNets first pre-processes the input three times with
convolution layers, then followed by multiple standard residual blocks (He et al., 2016a), see
Figure 1 (left panel). Each residual block consists of two convolution layers with a kernel size of
3. The standard neural-ODE model and neural-GODE model replace the residual blocks with
an ODE block, see Figure 1 (right panel). However, the ODE block of the Neural-GODE is a
system with time-varying parameters, which makes the model more flexible for training.

Figure 1: Model architectures comparison between ResNet, Neural-ODE and Neural-GODE for
benchmark data. Neural-ODE and Neural-GODE replaces the residual blocks of ResNet with
constant and time-varying parameterized ODE block (with two customized convolutional (convt)
layers), respectively.



16 Yu, D. et al.

2.3 Implementation

The implementation of the ResNets, Neural-ODE, and Neural-GODE models follows the MNIST
training in Chen et al. (2018). The training images are transformed by randomly cropping with
padding of 4 on each border. We apply the group normalization over each mini-batch (Wu
and He, 2018) right after each convolution layer and before the activation. A uniform knots
sequence for B-splines is employed to parameterize the time-varying parameters. Specifically,
given m basis functions with degree k in equation (6), the knot vector over time interval [0, T ]
is {t0, t1, t2, . . . , tk+m}, where t0 = 0, ti+1 − ti = T

k+m
, i = 0, . . . , k + m − 1, tk+m = T . We initialize

the weights of the B-spline parameterized filter in the customized convolution layer (the module
“convt” in Figure 1). We use SGD with a mini-batch size of 128 in training. The learning rate
starts from 0.1 and is divided by 10 at epochs 60, 100, and 140. A total of 160 epochs are trained
for each model. We use a momentum of 0.9. The dropout is not applied, following the practice
in Ioffe and Szegedy (2015). We apply the Euler method with a step size of 0.05 for solving the
ODE systems both in the Neural-ODE and Neural-GODE by using the package torchdiffeq Chen
(2018). In testing, random cropping is not applied, and a mini-batch size of 1000 is used. The
model performance is reported based on the testing dataset using accuracy as the metric. All
the experiments are implemented on GPU (Tesla V100 with 16GB G-Memory), programming
code can be found at https://github.com/Duo-Yu/Neural-GODE.

3 Experimental Results
We evaluate the Neural-GODE on two benchmark datasets, i.e., MNIST and CIFAR-10.

3.1 Model Performances

The MNIST and CIFAR-10 are standard benchmark datasets for computer vision and deep
learning. In the MNIST, images are white-black handwritten digits with a size of 28×28 pixels.
The MNIST classification aims to predict the ten handwritten digits. It has 70,000 images with
60,000 samples in the training dataset and 10,000 in the testing dataset. The CIFAR-10 dataset
is 60,000 colored images with 10 classes. Each image has 32×32 pixels. Generally, the training
set of CIFAR-10 consists of 50,000 samples. The ResNets is implemented with 6 and 20 residual
blocks on MINIST and CIFAR-10, respectively. With such numbers of residual blocks, more
than 99% accuracy can be reached in training on both datasets. The ODE systems are solved
from 0 to 1 in the standard Neural-ODE and the proposed Neural-GODE. The number of
basis functions of B-spline in Neural-GODE, m, is selected as 4 and 8, respectively, for MNIST
and CIFAR-10 data training. The degree of the B-spline is selected as 1. The details of these
hyperparameters’ determination, including the B-spline degree, number of basis functions, and
integration interval of ODE systems, are shown in the following Section 3.2. For test error, the
Neural-GODE has the best performance (see Table 1). The ResNet has a slightly lower accuracy
than that of Neural-GODE. The standard Neural-ODE has the worst performance compared to
the other two models. Especially in the classification task based on CIFAR-10, which is more
complex than the MNIST, the standard Neural-ODE model has about 2% lower accuracy than
the Neural-GODE (Table 1). In terms of training efficiency, although the standard Neural-ODE
and Neural-GODE are slower than ResNets, their memory efficiency can be seen clearly. Both
Neural-ODE and Neural-GODE consist of a smaller number of training parameters than that of
ResNets; see Table 1. In summary, the Neural-GODE model has the advantage in both predictive

https://github.com/Duo-Yu/Neural-GODE


Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 17

Table 1: Model performance comparison.

Model Test error (%) # params (M) Time/iteration (s)

MNIST
Neural-GODE 0.31 0.43 0.035
ResNets 0.33 0.57 0.012
Neural-ODE 0.40 0.21 0.038

CIFAR-10
Neural-GODE 13.49 0.72 0.038
ResNets 13.47 1.6 0.026
Neural-ODE 15.32 0.21 0.041

accuracy and memory efficiency compared to the other two models.
The main difference between Neural-GODE and Neural-ODE is that the ‘convt’ layer

weights are parameterized with B-spline functions of integration time (t) in Neural-GODE rather
than constant in the Neural-ODE, Figure 1. As an illustration, we plot the weights of the first
convolution layer of the residual block in the ResNets, the first ‘convt’ layer of the ODE blocks
in the Neural-GODE and Neural-ODE in Figure 2. We observe that the kernel weights from the
Neural-ODE are constant across the integration time (red lines in Figure 2) as expected. The
weights in the Neural-GODE (blue lines in Figure 2) and ResNets (green lines in Figure 2) vary
across layers or integration time, and the weights of the Neural-GODE are smoother than those
of the ResNets, which might be the reason why the proposed Neural-GODE model could out-
perform the ResNets and Neural-ODE models in terms of computing efficiency and prediction
accuracy.

3.2 Layer-Varying Parameters

To evaluate the effect of hyperparameters of Neural-GODE on prediction results, such as the
number of basis functions (m) and degree (k) of B-spline as well as the integration interval
endpoint (T ) of ODE, we use different settings to train the Neural-GODE on CIFAR-10 data.
We find that there exists an optimal number of basis functions for B-spline, which directly
affects the Neural-GODE model size (the number of parameters). Based on CIFAR-10, the
optimal number of basis functions is 8 when the ODE is solved by the Euler method with a step
size of 0.05, see Table 2. If we increase the number of basis functions from 2 to 8, the test error
is reduced by 1%. However, if the number of basis functions increases from 8 to 12, the test
error increases slightly. According to the experiment, the linear B-spline fits the data well, i.e.,
when the degree of B-spline (k) is 1, the prediction accuracy reaches the highest. If we increase
the endpoint (T ), the training speed will significantly decrease. For example, given the linear
B-spline with 8 basis functions, if the end integration time increases from 1 to 3, each iteration
training time increases from 0.038s to 0.093s, which is about 2.4 times increase, see Table 2. At
the same time, we do not find much benefit in terms of prediction accuracy when we increase
the endpoint of ODE.

3.3 ODE Solvers

In the experiment, we mainly focus on the Euler method to solve the ODEs because of its first-
order equivalence to the general residual network (see Method section). However, we could use



18 Yu, D. et al.

Figure 2: The patterns of the estimated weights of a 3×3 kernel from three models from the
CIFAR-10 data example. The x-axis represents the index of layers in ResNets, and the integration
time in Neural-GODE and Neural-ODE. The black line represents the initial value of the weights;
the red line denotes the weight of the first ‘convt’ layer in the ODE block of the Neural-ODE;
the blue line is the weight of the first ‘convt’ layer in the ODE block of the Neural-GODE; and
the green line is the weight of the first convolution layer in the residual blocks of the ResNets.

alternative ODE solvers in the neural ODE models. For example, instead of using the fixed-step
method such as Euler, we also implement another adaptive-step method, i.e., Runge-Kutta of
order 5 of Dormand-Prince-Shampine (dopri5 in the package torchidffeq). Given the same model,
we observe that the Runge-Kutta and Euler methods perform similarly in predictive accuracy,
see Table 3. However, the Neural-GODE model shows lower test errors than the standard Neural-
ODE using either the Runge-Kutta or the Euler methods. Due to its complex algorithm, the
Runge-Kutta method is significantly slower than the Euler method in terms of training efficiency.

3.4 ODE Function Forms

In this section, we investigate the effect of the number of customized CNN layers inside the ODE
block of Neural-GODE. The standard Neural-ODE directly replaces the residual blocks with one
ODE block consisting of two convolution layers. The “time” t is considered as a separate channel
and concatenated with other image channels. The concatenated channels are the input of the
ODE block in which the convolution functions are standard. Instead of combining the “time” t

with the convolution layer input, we parameterize t inside the convolution function. Specifically,



Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 19

Table 2: Effect of time-varying parameters.

m k T #params Time(s) Test error (%)

2 1 1 281,738 0.039 14.68
4 1 1 429,194 0.038 14.19
6 1 1 576,650 0.037 13.97
8 1 1 724,106 0.038 13.49

10 1 1 871,562 0.037 13.65
12 1 1 1,019,018 0.038 13.64

8 2 1 724,106 0.038 14.16
8 3 1 724,106 0.036 14.10
8 4 1 724,106 0.036 13.80
8 5 1 724,106 0.037 14.22

8 1 2 724,106 0.064 13.79
8 1 3 724,106 0.093 13.84

Table 3: ODE solver comparison.

Model Test error (%) Time (s)

Dopri5 Euler Dopri5 Euler

MNIST Neural-GODE 0.37 0.31 0.153 0.035
Neural-ODE 0.37 0.40 0.063 0.038

CIFAR-10 Neural-GODE 13.99 13.49 0.224 0.038
Neural-ODE 15.40 15.32 0.072 0.041

time-varying kernels are used rather than using the kernels with constant weights. Besides the
number of basis functions of the B-spline, the number of customized CNN layers (i.e. the convt
layer in Figure 1) can also affect the total number of parameters and the complexity of the ODE
block. We compare the predictive performance given the different number of basis functions and
the number of customized CNN layers based on CIFAR-10. The fixed parameters include the
degree of B-spline (k = 1), the integration interval ([0, 1]), and the ODE solver (Euler method
with a step size of 0.05). We observe a trade-off between the number of basis functions and the
number of customized CNN layers of the ODE block, see Table 4. When the number of basis
functions of the B-spline is small, a larger number of CNN layers may increase the predictive
performance. For example, if the number of basis functions is 2 or 4, better predictive accuracy
can be reached when the number of CNN layers is 3 (Table 4). However, if we further increase
the number of basis functions, two layers of CNN have better performance. Since the ODE block
with more CNN layers takes a longer time to solve, we apply two layers of CNN with eight basis
functions of the B-spline for CIFAR-10 training.



20 Yu, D. et al.

Table 4: Effect of the number of the customized CNN layers.

m # layers #params Time (s) Test error(%)

2

1 207,754 0.024 15.83
2 281,738 0.039 14.68
3 355,594 0.047 14.31
4 429,450 0.061 14.37

4

1 281,482 0.024 16.26
2 429,194 0.038 14.19
3 576,778 0.047 13.89
4 724,362 0.062 14.40

6

1 355,210 0.025 15.67
2 576,650 0.037 13.97
3 797,962 0.048 14.07
4 1,019,274 0.062 14.59

8

1 428,938 0.025 15.41
2 724,106 0.038 13.49
3 1,019,146 0.047 13.95
4 1,314,186 0.063 14.02

4 Conclusion
The idea of bridging deep residual networks (ResNets) with the discretized ordinary differential
equations (ODE) has raised much interest in the deep learning research field recently (Haber
and Ruthotto, 2017; Chang et al., 2018; Lu et al., 2018; Li et al., 2017, 2019; Chen et al., 2018).
With well-established ODE properties, theories, and numerical solutions, novel deep learning
architectures and training algorithms have been proposed based on such connections. In this
study, we further explore the performance of Neural-ODE based on two benchmark classification
tasks, i.e., the classification problems of MNIST and CIFAR-10. We confirm that the Neural-
ODE model has a training efficiency advantage compared to the deep ResNets in terms of
training memory, as stated in Chen et al. (2018). However, it shows the drawbacks of predictive
performance. The test error of Neural-ODE is 1.6% higher than that of the ResNets in CIFAR-10
(Table 1).

To overcome the predictive accuracy disadvantage of the standard Neural-ODE, we pro-
pose a time-varying Neural-GODE, which improves the model flexibility and the predictive
performance. Instead of using constant weights of CNN layers from the standard Neural-ODE,
we parameterize the kernel weights with time-varying parameters. Specifically, the weights are
B-spline functions of “time” (layer) t . As a result, the proposed Neural-GODE model reaches
similar or slightly better prediction accuracy than ResNets. Therefore, the time-varying param-
eterized ODE block is essential for Neural-ODE models to obtain state-of-the-art performance.
Additionally, Queiruga et al. explored the benefits of multiple time-varying ODE blocks and
stateful batch normalization layers for Neural-ODE (Queiruga et al., 2020, 2021). Based on
those techniques, it has been shown that the time-varying parameterized Neural-ODE can reach



Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 21

state-of-the-art performance for image classification problems (Queiruga et al., 2021).
Another key contribution of this work is that this is the first study to bridge the generalized

ordinary differential equations (GODE) model proposed in statistical literature (Miao et al.,
2014) with the deep learning algorithms and Neural-ODE models established in machine learn-
ing communities. We further extend the GODE model into a Neural-GODE model to establish a
new statistical framework for general deep learning algorithms for both continuous and discrete
outcome variables that follow a general exponential family distribution. This new statistical
framework lays a good foundation to allow us to leverage theoretical properties and the asymp-
totic results for ODE models (including time-varying ODE models) (Xue et al., 2010) to further
study the theoretical properties and improve the performance of deep learning algorithms in the
future.

Supplementary Material
Programming code to reproduce our results and figures can be found at https://github.com/
Duo-Yu/Neural-GODE. In the Supplementary Material, we list the code directories and corre-
sponding results.

Funding

This work was supported in part by NIH grant R01 AI087135 and P03AI161943 (HW), grant
from Cancer Prevention and Research Institute of Texas (PR170668) (HW), grant NSF/ECCS
2133106 (HM), and NSF/DMS 1620957 (HM).

References
Abdeltawab H, Shehata M, Shalaby A, Khalifa F, Mahmoud A, El-Ghar MA, et al. (2019). A

novel cnn-based cad system for early assessment of transplanted kidney dysfunction. Scientific
Reports, 9(1): 1–11. https://doi.org/10.1038/s41598-018-37186-2

Arnold VI (2012). Geometrical Methods in the Theory of Ordinary Differential Equations.
Springer Science & Business Media.

Bahdanau D, Cho K, Bengio Y (2014). Neural machine translation by jointly learning to align
and translate. arXiv preprint https://arxiv.org/abs/1409.0473.

Bai S, Kolter JZ, Koltun V (2019). Deep equilibrium models. Advances in Neural Information
Processing Systems, 32.

Bartels RH, Beatty JC, Barsky BA (1995). An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling. Morgan Kaufmann.

Bishop CM, et al. (1995). Neural Networks for Pattern Recognition. Oxford University Press.
Chang B, Chen M, Haber E, Chi EH (2019). Antisymmetricrnn: A dynamical system view on

recurrent neural networks. arXiv preprint https://arxiv.org/abs/1902.09689.
Chang B, Meng L, Haber E, Ruthotto L, Begert D, Holtham E (2018). Reversible architectures

for arbitrarily deep residual neural networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1).

Chen J, Wu H (2008). Efficient local estimation for time-varying coefficients in deterministic
dynamic models with applications to hiv-1 dynamics. Journal of the American Statistical
Association, 103(481): 369–384. https://doi.org/10.1198/016214507000001382

https://github.com/Duo-Yu/Neural-GODE
https://github.com/Duo-Yu/Neural-GODE
https://doi.org/10.1038/s41598-018-37186-2
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1902.09689
https://doi.org/10.1198/016214507000001382


22 Yu, D. et al.

Chen RT, Rubanova Y, Bettencourt J, Duvenaud DK (2018). Neural ordinary differential equa-
tions. Advances in Neural Information Processing Systems, 31. https://doi.org/10.1007/978-
3-030-04167-0

Chen RTQ (2018). torchdiffeq. https://github.com/rtqichen/torchdiffeq.
Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, Ho S (2020). Lagrangian neural

networks. arXiv preprint https://arxiv.org/abs/2003.04630.
Dupont E, Doucet A, Teh YW (2019). Augmented neural odes. Advances in Neural Information

Processing Systems, 32.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. (2017). Dermatologist-

level classification of skin cancer with deep neural networks. Nature, 542(7639): 115–118.
https://doi.org/10.1038/nature21056

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. (2014). Gener-
ative adversarial nets. Advances in Neural Information Processing Systems, 27.

Graves A, Mohamed Ar Hinton G (2013). Speech recognition with deep recurrent neural net-
works. In: 2013 IEEE International Conference on Acoustics, Speech And Signal Processing.
6645–6649.

Greydanus S, Dzamba M, Yosinski J (2019). Hamiltonian neural networks. Advances in Neural
Information Processing Systems, 32.

Günther S, Pazner W, Qi D (2021). Spline parameterization of neural network controls for deep
learning. arXiv preprint https://arxiv.org/abs/2103.00301.

Haber E, Ruthotto L (2017). Stable architectures for deep neural networks. Inverse Problems,
34(1): 014004. https://doi.org/10.1088/1361-6420/aa9a90

He K, Zhang X, Ren S, Sun J (2016a). Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

He K, Zhang X, Ren S, Sun J (2016b). Identity mappings in deep residual networks. In: European
Conference on Computer Vision. 630–645.

Hornik K, Stinchcombe M, White H (1989). Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2(5): 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

Ioffe S, Szegedy C (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In: International Conference on Machine Learning. 448–456.

Kim K, Kim S, Lee YH, Lee SH, Lee HS, Kim S (2018). Performance of the deep con-
volutional neural network based magnetic resonance image scoring algorithm for differ-
entiating between tuberculous and pyogenic spondylitis. Scientific Reports, 8(1): 1–10.
https://doi.org/10.1038/s41598-018-35713-9

Krizhevsky A, Hinton G, et al. (2009). Learning multiple layers of features from tiny images,
Master’s Thesis, University of Tront.

LaSalle JP (1968). Stability theory for ordinary differential equations. Journal of Differential
Equations, 4(1): 57–65. https://doi.org/10.1016/0022-0396(68)90048-X

LeCun Y, Bottou L, Bengio Y, Haffner P (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11): 2278–2324. https://doi.org/10.1109/5.726791

Li Q, Chen L, Tai C, et al. (2017). Maximum principle based algorithms for deep learning. arXiv
preprint https://arxiv.org/abs/1710.09513.

Li Q, Lin T, Shen Z (2019). Deep learning via dynamical systems: An approximation perspective.
arXiv preprint https://arxiv.org/abs/1912.10382.

Liang H, Miao H, Wu H (2010). Estimation of constant and time-varying dynamic parameters
of hiv infection in a nonlinear differential equation model. The Annals of Applied Statistics,

https://doi.org/10.1007/978-3-030-04167-0
https://doi.org/10.1007/978-3-030-04167-0
https://github.com/rtqichen/torchdiffeq
https://arxiv.org/abs/2003.04630
https://doi.org/10.1038/nature21056
https://arxiv.org/abs/2103.00301
https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1038/s41598-018-35713-9
https://doi.org/10.1016/0022-0396(68)90048-X
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1710.09513
https://arxiv.org/abs/1912.10382


Neural Generalized Ordinary Differential Equations with Layer-Varying Parameters 23

4(1): 460. https://doi.org/10.1214/09-AOAS290
Lim SH (2021). Understanding recurrent neural networks using nonequilibrium response theory.

Journal of Machine Learning Research, 22: 1–47.
Lim SH, Erichson NB, Hodgkinson L, Mahoney MW (2021). Noisy recurrent neural networks.

Advances in Neural Information Processing Systems, 34: 5124–5137.
Long J, Shelhamer E, Darrell T (2015). Fully convolutional networks for semantic segmenta-

tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
3431–3440.

Lu Y, Zhong A, Li Q, Dong B (2018). Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations. In: International Conference on Machine
Learning. 3276–3285.

Massaroli S, Poli M, Park J, Yamashita A, Asama H (2020). Dissecting neural odes. Advances
in Neural Information Processing Systems, 33: 3952–3963.

Miao H, Wu H, Xue H (2014). Generalized ordinary differential equation mod-
els. Journal of the American Statistical Association, 109(508): 1672–1682.
https://doi.org/10.1080/01621459.2014.957287

Noda K, Yamaguchi Y, Nakadai K, Okuno HG, Ogata T (2015). Audio-visual speech recognition
using deep learning. Applied Intelligence, 42(4): 722–737. https://doi.org/10.1007/s10489-014-
0629-7

Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M (2019). A review of
spline function procedures in r. BMC Medical Research Methodology, 19(1): 1–16.
https://doi.org/10.1186/s12874-018-0650-3

Qiu Z, Yao T, Mei T (2017). Learning spatio-temporal representation with pseudo-3d resid-
ual networks. In: Proceedings of the IEEE International Conference on Computer Vision.
5533–5541.

Queiruga A, Erichson NB, Hodgkinson L, Mahoney MW (2021). Stateful ode-nets using basis
function expansions. Advances in Neural Information Processing Systems, 34: 21770–21781.

Queiruga AF, Erichson NB, Taylor D, Mahoney MW (2020). Continuous-in-depth neural net-
works. arXiv preprint https://arxiv.org/abs/2008.02389.

Ripley BD (2007). Pattern Recognition and Neural Networks. Cambridge University Press.
Rusch TK, Mishra S (2020). Coupled oscillatory recurrent neural network (cornn): An accurate

and (gradient) stable architecture for learning long time dependencies. arXiv preprint https:
//arxiv.org/abs/2010.00951.

Rusch TK, Mishra S (2021). Unicornn: A recurrent model for learning very long time depen-
dencies. In: International Conference on Machine Learning, 9168–9178. PMLR.

Ruthotto L, Haber E (2020). Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3): 352–364. https://doi.org/10.1007/s10851-
019-00903-1

Sigaki HY, Lenzi EK, Zola RS, Perc M, Ribeiro HV (2020). Learning physical properties
of liquid crystals with deep convolutional neural networks. Scientific Reports, 10(1): 1–10.
https://doi.org/10.1038/s41598-019-56847-4

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, et al. (2016). Master-
ing the game of go with deep neural networks and tree search. Nature, 529(7587): 484–489.
https://doi.org/10.1038/nature16961

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. (2017).
Mastering the game of go without human knowledge. Nature, 550(7676): 354–359.

https://doi.org/10.1214/09-AOAS290
https://doi.org/10.1080/01621459.2014.957287
https://doi.org/10.1007/s10489-014-0629-7
https://doi.org/10.1007/s10489-014-0629-7
https://doi.org/10.1186/s12874-018-0650-3
https://arxiv.org/abs/2008.02389
https://arxiv.org/abs/2010.00951
https://arxiv.org/abs/2010.00951
https://doi.org/10.1007/s10851-019-00903-1
https://doi.org/10.1007/s10851-019-00903-1
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1038/nature16961


24 Yu, D. et al.

https://doi.org/10.1038/nature24270
Simmons GF (2016). Differential Equations with Applications and Historical Notes. CRC Press.
Tang S, Tang B, Wang A, Xiao Y (2015). Holling ii predator–prey impulsive semi-

dynamic model with complex poincaré map. Nonlinear Dynamics, 81(3): 1575–1596.
https://doi.org/10.1007/s11071-015-2092-3

Weinan E (2017). A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 1(5): 1–11.

Wu Y, He K (2018). Group normalization. In: Proceedings of the European Conference on Com-
puter Vision (ECCV). 3–19.

Xue H, Miao H, Wu H (2010). Sieve estimation of constant and time-varying coefficients in
nonlinear ordinary differential equation models by considering both numerical error and mea-
surement error. Annals of Statistics, 38(4): 2351. https://doi.org/10.1214/09-AOS784

Young T, Hazarika D, Poria S, Cambria E (2018). Recent trends in deep learning based
natural language processing. IEEE Computational Intelligence Magazine, 13(3): 55–75.
https://doi.org/10.1109/MCI.2018.2840738

Yu D, Deng L (2016). Automatic Speech Recognition, volume 1. Springer.
Yu D, Lin Q, Chiu AP, He D (2017). Effects of reactive social distancing on the 1918 influenza

pandemic. PloS One, 12(7): e0180545. https://doi.org/10.1371/journal.pone.0180545
Yu D, Tang S, Lou Y (2016). Revisiting logistic population model for assessing periodically

harvested closures. Communications in Mathematical Biology and Neuroscience, 2016: Article
ID 14.

Yu D, Yaseen A, Luo X (2020). Neural network and deep learning methods for ehr data.
In: Statistics and Machine Learning Methods for EHR Data (H Wu, JM Yamal, A Yaseen, V
Maroufy, eds.), 253–271. Chapman and Hall/CRC.

Yu D, Zhu G, Wang X, Zhang C, Soltanalizadeh B, Wang X, et al. (2021). Assessing effects of
reopening policies on COVID-19 pandemic in texas with a data-driven transmission model.
Infectious Disease Modelling, 6: 461–473. https://doi.org/10.1016/j.idm.2021.02.001

Zhang K, Sun M, Han TX, Yuan X, Guo L, Liu T (2017). Residual networks of residual net-
works: Multilevel residual networks. IEEE Transactions on Circuits and Systems for Video
Technology, 28(6): 1303–1314. https://doi.org/10.1109/TCSVT.2017.2654543

Zhang T, Yao Z, Gholami A, Gonzalez JE, Keutzer K, Mahoney MW, et al. (2019). Anodev2:
A coupled neural ode framework. Advances in Neural Information Processing Systems, 32.

Zhong YD, Dey B, Chakraborty A (2019). Symplectic ode-net: Learning hamiltonian dynamics
with control. arXiv preprint: https://arxiv.org/abs/1909.12077.

https://doi.org/10.1038/nature24270
https://doi.org/10.1007/s11071-015-2092-3
https://doi.org/10.1214/09-AOS784
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1371/journal.pone.0180545
https://doi.org/10.1016/j.idm.2021.02.001
https://doi.org/10.1109/TCSVT.2017.2654543
https://arxiv.org/abs/1909.12077

	Introduction
	Generalized Ordinary Differential Equation (GODE)
	Related Work

	Method
	B-Spline Function
	Model Architectures
	Implementation

	Experimental Results
	Model Performances
	Layer-Varying Parameters
	ODE Solvers
	ODE Function Forms

	Conclusion

