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Abstract

One of the major climatic interests of the last decades has been to understand and describe the
rainfall patterns of specific areas of the world as functions of other climate covariates. We do it
for the historical climate monitoring data from Tegucigalpa, Honduras, using non-homogeneous
hidden Markov models (NHMMs), which are dynamic models usually used to identify and predict
heterogeneous regimes. For estimating the NHMM in an efficient and scalable way, we propose
the stochastic Expectation-Maximization (EM) algorithm and a Bayesian method, and compare
their performance in synthetic data. Although these methodologies have already been used
for estimating several other statistical models, it is not the case of NHMMs which are still
widely fitted by the traditional EM algorithm. We observe that, under tested conditions, the
performance of the Bayesian and stochastic EM algorithms is similar and discuss their slight
differences. Analyzing the Honduras rainfall data set, we identify three heterogeneous rainfall
periods and select temperature and humidity as relevant covariates for explaining the dynamic
relation among these periods.

Keywords Bayesian approach; dynamic models; estimation and classification performance;
rainfall pattern description; stochastic EM algorithm

1 Introduction
One of the major climatic interests of the last decades has been to understand and describe the
rainfall patterns of specific areas of the world and how they are influenced or explained by other
climatic characteristics. Here, our main interest is to analyze these features for the historical
climate monitoring data from Tegucigalpa, Honduras, using hidden Markov models (HMMs),
since rainfall patterns change over time due to other climate variables and we want to describe
and understand these latent associations.

These models are a statistical tool in which the system being modeled is considered a Markov
process with non-observable states, that usually identify heterogeneous regimes. For each non-
observable state there is a corresponding emission of an observable value that makes up the
observed data set. In the context of homogeneous hidden Markov models (HHMMs), transition
probabilities between the non-observable states are constant. For this reason, HHMMs may
not be appropriate for modeling certain practical situations in which transition probabilities
vary through time. On the other hand, transition probabilities for the non-homogeneous hidden
Markov model (NHMM) vary through time and depend on covariates. This modification on the
structure of homogeneous Markov models provides an interesting alternative to model processes
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which have transitions between non-observable states that depend on time-varying covariates,
that is, which are dynamic. In the manuscript, we present efficient and scalable methods for
estimating a NHMM, identifying heterogeneous regimes in a time series and selecting relevant
covariates that explain this heterogeneity for the Tegucigalpa data over the last 50 years.

A common approach for estimating the parameters of a NHMM is using maximum likeli-
hood estimation. In general, this is done using the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) also known as Baum-Welch algorithm for HMMs (Rabiner, 1989; Mac-
Donald and Zucchini, 1997; Zucchini and MacDonald, 2009; Maruotti and Rocci, 2012; Zucchini
et al., 2016), that includes forward-backward and Viterbi algorithms for gaining computacional
efficiency. This algorithm has been widely used by various authors and distinct research areas.
In environmental and climate studies, for example, Robertson et al. (2004) examine the proba-
bility distribution of local daily rainfall occurrence in the state of Ceará (Brazil) and identifies
relationships with large-scale atmospheric circulation patterns; Betrò et al. (2008) investigate
the capability of a NHMM in identifying possible recurrent patterns in the occurrence of ex-
treme events over a small area of Central-East Sardinia (Italy); Lagona et al. (2011) estimate
the probabilities of multi-pollutant exceedances, conditioning the occurrence and persistence of
these exceedances on time varying factors; Neykov et al. (2012) apply the EM algorithm to
link atmospheric circulation to daily precipitation at Bulgaria; among others. In other areas,
Ghavidel et al. (2015) use a NHMM for mapping quantitative trait loci (QTLs) and Pennoni
and Genge (2020) for identifying similar typologies of individuals sharing common perceptions
according to different dimensions of trust, etc.

Despite being known as a good method for computing point estimates (Rydén, 2008), the
EM algorithm is subject to several problems such as slow convergence and convergence towards
local solutions (Celeux et al., 1996; Dempster et al., 1977). Because of it, many researchers
have proposed improvements for the traditional method. Celeux and Diebolt (1985) present a
stochastic EM algorithm to fit a finite mixture model. Malefaki et al. (2010) propose a stochastic
version of the EM algorithm that achieves comparable estimates with the EM algorithm in less
execution time for hidden semi-Markov models. Considering NHMM, Di Mari et al. (2016)
propose a generalization in 3-steps of the original EM algorithm. Maruotti et al. (2017) model
multiple air pollutant exposures and identifies different regimes through a three-step Alternating
Expected Conditional Maximization (AECM) algorithm.

Under Bayesian perspective, NHMMs are usually estimated using Metropolis-within-Gibbs
Markov chain Monte Carlo (MCMC) algorithms. Shirley et al. (2010) use this method for es-
timating a NHMM with random effects for alcoholism treatment trial data. Shen et al. (2017)
present a similar method for detecting differentially methylated regions from methylation ar-
ray data. Avoiding Metropolis-Hastings steps, which may not present good mixing, Holsclaw
et al. (2017) use the Pólya-Gamma data augmentation approach to estimate a NHHM only
using Gibbs steps. They apply their model and inference scheme to 30 years of rainfall in India,
leading to a number of insights into rainfall-related phenomena in the region.

In both frequentist and Bayesian methods described below, the number of non-observable
states is selected using model selection criteria. For estimating and selecting the model simulta-
neously, without using model selection criteria in a second stage, the Bayesian reversible jump
method (Green, 1995) may be used. However, its implementation is not trivial, especially for
NHMM which is a complex model, and it usually presents poor mixing. Rydén (2008) and
Zuanetti and Milan (2017) propose, respectively, a reversible jump and a data-driven reversible
jump for selecting and estimating a HHMM. Meligkotsidou and Dellaportas (2011) describes a
reversible jump algorithm for NHMM.
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In this manuscript, before analyzing Tegucigalpa climate data, we present a stochastic EM
algorithm and a Bayesian method for estimation of NHMM parameters and non-observable state
sequence prediction. The stochastic EM, first proposed by Celeux and Diebolt (1985, 1992) to
estimate finite mixture models, has been shown to be efficient in avoiding local solutions, sim-
plifying the implementation and presenting faster convergence in several other models. For the
Bayesian algorithm, we use slice sampling algorithm (Neal, 2003) to simulate values of transition
coefficients through the rjags package (Plummer, 2022) and avoiding Metropolis-Hastings steps.
Although these methodologies have already been used for estimating several other statistical
models, it is not the case of NHMMs which are still widely fitted by the traditional EM algo-
rithm. Therefore, in addition to adapting these methods to estimate a NHMM, we compare their
performance to the EM algorithm (Visser and Speekenbrink, 2010). The selection of the number
of non-observable states and relevant variables are done through model selection criteria for all
compared methods.

The manuscript is organized as follows. Model specification is described in Section 2 as well
as computational details for the stochastic EM and Bayesian algorithms. Section 3 illustrates a
performance analysis of the methods in simulated data sets. Section 4 applies the methods to
describe rainfall patterns in Tegucigalpa, Honduras, and shows the results. Finally, Section 5
provides some final remarks.

2 Non-Homogeneous Hidden Markov Model
Among the many authors that define HMM, Rabiner and Juang (1986) explains HMMs as a
doubly stochastic process with an underlying stochastic process that is not observable, but can
only be observed through another stochastic process that produces the sequence of observable
values. Altman (2007) goes further and states that HMMs describe the relationship between two
stochastic processes: an observable process and an underlying hidden (non-observable) process.
The non-observable process is assumed to follow a Markov chain, and the observable data are
modeled as being conditionally independent on the sequence of non-observable states.

Here, to define a NHMM, we consider a discrete observable variable, which follows a Bi-
nomial distribution since it is the case of the real data set to be analyzed. However, it may be
seamlessly adapted to a continuous variable, if necessary. The elements of an NHMM are:
1. A discrete space of non-observable states ϕ = {1, . . . , K};
2. A set of observable values ω = {1, . . . , O};
3. A random variable St which assumes a value in the space of non-observable states ϕ, at a

given time t , for t = 1, . . . , T ;
4. A random variable Yt which assumes a value in the set of observable values ω, at a given

time t , for t = 1, . . . , T ;
5. An initial probability distribution for the non-observable states p = {pi}, such that pi =

P(S1 = i) and
∑k

i=1 pi = 1;
6. A vector Xt = (Xt1, . . . , XtD), for t = 1, . . . , T , that represents the values of D observed

covariates, with Xt1 = 1 for any t , that influence the transition probabilities between non-
observable states at times t − 1 and t ;

7. A coefficient matrix β that has entries βij = (βij1, . . . , βijD)� which contains D transition
coefficients, each associated to an observed covariate. Such that βij1 is considered the intercept
accompanied by the covariate Xt1 = 1 for all t ;

8. A state transition probability distribution At = {
aijt

}
, such that aijt = h(Xtβij ) where h(·)
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is a link function such that 0 � h(·) � 1 and
∑K

j=1 h(Xtβij ) = 1. The link function h(·) will
be further discussed; and

9. A probability distribution and its parameters for the observations associated to each non-
observable state that specifies P(Yt = o | St = j).
A typical link function h(·) is the Softmax given by

aijt = h(Xtβij ) = exp(Xtβij )∑K
l=1 exp(Xtβil)

, (1)

which, according to Gao and Pavel (2017) and in multi-class logistic regression, maps a vector of
covariates to an a posteriori probability distribution. However, it introduces a non-identifiability
problem in estimating NHMM since different sets of transition coefficients lead to the same
transition probabilities. For this reason, we use the multinomial-logistic link function, better
known as mlogit, widely used for polytomous logistic regression model. It is a specific case of
the Softmax function, in which the transition coefficients related to the first state are fixed with
value equal to 0. The mlogit function is given by

aijt = h(Xtβij ) =
⎧⎨
⎩

1
1+∑K

l=2 exp(Xtβil )
, if j = 1

exp(Xtβij )

1+∑K
l=2 exp(Xtβil )

, if j > 1.
(2)

Assume that the distribution of Yt | St = j is Binomial(nt , θj ), where θj is the probability
of success related to the j -th non-observable state, θ = (θ1, θ2, . . . , θK−1, θK), and nt represents
the known number of trials related to time t , n = (n1, n2, . . . , nT ). The complete (augmented)
likelihood function for the NHMM model is written as

L(φ | D) =
{

T∏
t=1

(
yt

nt

)}
(3)

×
K∏

j=1

⎧⎨
⎩p

Is1 (j)

j θ

∑
t :st =j yt

j (1 − θj )
∑

t :st =j (nt−yt )

K∏
i=1

∏
(t :t�2,(st−1,st )=(i,j))

h(Xtβij )

⎫⎬
⎭ ,

where φ = (θ , p, β), D = (y, s, n, X), y = (y1, . . . , yT ), s = (s1, . . . , sT ), X = (X1, . . . , XT )� and
Is1(j) represents an indicator function. The log-likelihood function is given by

�(φ | D) =
T∑

t=1

log

(
nt

yt

)
+

K∑
j=1

{
Is1(j) log(pj ) +

∑
t :st=j

yt log(θj ) (4)

+
∑
t :st=j

(nt − yt) log(1 − θj ) +
K∑

i=1

∑
(t :t�2,(st−1,st )=(i,j))

log(h(Xtβij ))

}
.

2.1 Estimation Procedures
Several approaches have been adopted to perform estimations on NHMMs. Here, we present
two computationally efficient algorithms and compare their performance to the EM algorithm’s
performance. They are the stochastic EM algorithm and a Bayesian algorithm with pre-fixed
number of non-observable states, K. The EM algorithm will not be discussed here, but details
are described by MacDonald and Zucchini (1997); Zucchini and MacDonald (2009); Maruotti
and Rocci (2012); Zucchini et al. (2016).
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2.1.1 Stochastic EM Algorithm

The stochastic EM algorithm is an interesting alternative to avoid slow convergence and local
solution of the traditional EM algorithm, specially for NHMMs which are more complex models.
This is due to the fact that the stochastic EM relies on random draws of the non-observable
sequence S at any given iteration, replacing step E of the original algorithm. Maximum likelihood
estimates are then calculated for the parameters based on the complete data, which is composed
of the observed data y and the randomly drawn s. The stochastic EM also significantly simplifies
the necessary calculations of the EM and is much easier to implement. Although stochastic EM
has already been used for estimating several other mixture models, it is not the case of NHMMs
which are still widely fitted by the traditional EM algorithm.

As we have the restriction
∑K

j=1 pj = 1, we use Lagrange multipliers for maximizing the
log-likelihood. The log-likelihood with the Lagrange multiplier is given by

�(φ | D) =
T∑

t=1

log

(
nt

yt

)
+

K∑
j=1

{
Is1(j) log(pj ) +

∑
t :st=j

yt log(θj ) (5)

+
∑

t :st=j

(nt − yt ) log(1 − θj ) +
K∑

i=1

∑
(t :t�2,(st−1,st )=(i,j))

log(h(Xtβij ))

}

+ λ0

(
1 −

K∑
j=1

pj

)
,

where λ0 is the Lagrange multiplier. Deriving this equation in terms of each parameter and
finding their solution, we obtain the following maximum points

θ̂j =
∑

t :st=j yt∑
t :st=j nt

(6)

and

p̂j = Is1(j). (7)
The maximum points for βij are obtained using numerical methods such as the Nelder-Mead

method. This is due to the fact that it is not possible to find a solution for the maximum point
of those parameters analytically.

If the sequence of states S was observable as Y , the maximum likelihood estimates for θ ,
p and β could be found by only using the observed data and the equations derived above.
However, this is not the case, and we have to recur to an iterative method which predicts s at
every iteration and finds the values of the parameters which maximize the log-likelihood based
on that prediction. This is the stochastic EM algorithm, described below:
1. Assign arbitrary initial values to S and β;
2. Based on the observed values y and the assigned values of s, calculate θ̂j and p̂j through

Equations (6) and (7) and β̂ij s using numerical methods;
3. Based on the updated values of the parameters, update the values of s using Bayes theorem

as

P(St = j | · · · ) = P(St = j, Yt = yt | St−1 = i, X, n, θ , p, β)

P (Yt = yt | St−1 = i, X, n, θ , p, β)
(8)

= aijt

(
nt

yt

)
θ

yt

j (1 − θj )
nt−yt∑K

l=1 ailt

(
nt

yt

)
θ

yt

l (1 − θl)nt−yt

, for j = 1, . . . , K,
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where · · · represents all the remaining variables and parameters of the model. Then, St

is updated through a Discrete distribution with these probabilities, for t = 1, . . . , T and
j = 1, . . . , K;

4. Repeat steps 2 and 3 until convergence is reached. The convergence criterion used is a com-
parison of the difference in the log-likelihood from one iteration to the next. Upon attaining
a difference less than a previously fixed tolerance, the algorithm stops.

2.1.2 Bayesian Algorithm

Although the stochastic EM algorithm provides solutions for some of the disadvantages of the EM
algorithm, it is not without setbacks. Celeux et al. (1996) mention that neither the EM algorithm
nor the stochastic EM algorithm can be confidently used for some severely overlapping mixtures.
They also depend on the occurrence of all possible transitions in every iteration of the algorithm.
If all possible transitions are not observed, the algorithms can not estimate the complete model,
that is, it can not find the maximum values for βij s corresponding to the transitions with no
observations and the algorithm stops.

An alternative for NHMM estimation is the use of Bayesian tools such as MCMC algorithms.
For the application of these Bayesian algorithms for inference on the NHMM, the posterior
distribution of the parameters is given by

P(θ , p, β | y, s, n, X) ∝ P(y | s, n, X, θ , p, β)P (s | n, X, θ , p, β)P (θ , p, β) (9)

where P(y | s, n, X, θ , p, β) and P(s | n, X, θ , p, β) make up the complete likelihood func-
tion and P(θ , p, β) is the joint prior distribution of the parameters. If we assume conditional
independence between the parameters, we have that

P(θ , p, β) = P(p)

K∏
j=1

P(θj )

K∏
i=1

K∏
j=2

D∏
d=1

P(βijd). (10)

For the NHMM, the prior distributions considered for the parameters are

p ∼ Dirichlet(1, . . . , 1);
θj ∼ Beta(1, 1) 1 � j � K; and
βijd ∼ Normal(0, 100) 1 � i � K, 2 � j � K, 1 � d � D,

in order to have vague (weakly informative with large variance) prior informations. Then, the
full conditional posterior distributions for the parameters are given by

p | · · · ∼ Dirichlet(1 + Is1(1), . . . , 1 + Is1(K));
θj | · · · ∼ Beta(1 +

∑
t :st=j

yt , 1 +
∑
t :st=j

(nt − yt)); and

βijd | · · · does not have a known and traditional form.

We also want to predict the non-observable sequence s which generated the observable
sequence, so St has a Discrete full condition posterior distribution with probabilities defined as
for stochastic EM algorithm.

Using a MCMC methodology, the Bayesian algorithm is defined in the following steps:
1. Assign initial values to s, p, θi and βijd for 1 � i � K, 2 � j � K and 1 � d � D;
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2. Update p from its full conditional posterior distribution;
3. Update θi from its full conditional posterior distribution, for 1 � i � K;
4. Update βijd from its full conditional posterior distribution for 1 � i � K, 2 � j � K

and 1 � d � D. As this distribution is not available in a known and closed form, we need
to use an acceptance-rejection sampling method to simulate values of it. One of the most
traditional in Bayesian estimation is the Metropolis-Hastings algorithm. Here, we choose to
use the slice sampling method, implemented in rjags package (Plummer, 2022), which usually
presents a better mixing and faster convergence than Metropolis-Hastings method. It is also
not necessary to include additional non-observable variables, as proposed in Holsclaw et al.
(2017), to obtain a closed full conditional posterior distribution for transition coefficients;

5. Update s, where st is sampled from a Discrete distribution with probabilities for each state
defined as for stochastic EM algorithm;

6. Repeat steps 2, 3, 4 and 5 until attaining the equilibrium distribution of the MCMC chain.
In the Bayesian estimation of mixture models, of which HHMM and NHMM are special cases

and consider dependence between observations, we usually have the problem of label-switching.
For correcting this problem, we use the algorithm called Equivalence Classes Representatives,
proposed by Papastamoulis (2014), which exchange the labels for each simulated sequence s in
order to minimize classification error with a specified sequence of states. This process is done
using the package label.switching (Papastamoulis, 2016), available for R. Other methods for
dealing with this problem are discussed by Stephens (2000).

When the number of non-observable states is unknown we may use model selection criteria
to choose the best model for both frequentist and Bayesian estimation methods. Here, we suggest
to estimate models with different numbers of non-observable states and select the best one using
Bayesian information criterion (BIC, Schwarz, 1978) or corrected Akaike information criterion
(AICc, Cavanaugh, 1997). The best model is the model with the lowest value of BIC or AICc.
We illustrate their use when analyzing the climate data set.

Under Bayesian perspective, we have other model selection criteria which are most used, as
Deviance Bayesian Criterion (DIC), Extended Bayesian Information Criterion (EBIC), among
others. However, as a means of comparison, we only replace the maximum likelihood estimates
with Bayesian point estimates for calculating BIC and AICc for Bayesian fits.

3 Simulation Examples
For comparing the estimation and classification performance of the two proposed algorithms
and traditional EM, carried out using the package depmixS4 (Visser and Speekenbrink, 2010),
we simulate several data sets based on the following conditions:
1. We set up 3 chain lengths: T = 300, 600, 1200;
2. We fix the number of non-observable states at K = 2, 3;
3. We use 2 covariates to influence the transition probabilities, such that Xm ∼ N(0, 1) for

m = 1, 2;
4. We simulate a total of M = 100 data sets (replications) for each situation and estimate the

models using the three procedures.
We establish two situations to effectively test and compare the estimation capabilities and

performance of the algorithms. We call the first situation as Situation A. This situation con-
templates unfavorable conditions for the estimation algorithms to retrieve estimates of the pa-
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rameters. The second situation, Situation B, presents conditions which are favorable for the
estimation algorithms to retrieve estimates.

The transition parameters, β, chosen for Situation A produce transition probabilities which
generate a non-observable state chain which is more difficult to predict and that are very similar
among the states, while the transition parameters for Situation B produce probabilities which
generate a more stable non-observable chain, which is easier to predict.

The success probabilities for the observable variables used in the simulation are the follow-
ing. When we consider K = 2, for Situation A we have that θ1 = 0.45 and θ2 = 0.55 and number
of trials fixed at nt = 50. For Situation B, we have that θ1 = 0.25 and θ2 = 0.75 and a number
of trials of nt = 500. When we consider K = 3, for Situation A we have that θ1 = 0.40, θ2 = 0.50
and θ3 = 0.60 with a number of trials of nt = 300 and, for Situation B, θ1 = 0.25, θ2 = 0.50
and θ2 = 0.75 fixing the number of trials at nt = 500. These choices reinforce Situation A as a
difficult case for estimation and Situation B as an easier case for estimation.

For comparing methods performance we use the mean squared error (MSE) of estimates for
every models’ parameters and the relative frequency of correct prediction or classification for S.
The MSE is calculated for each parameter based on its M = 100 estimates and the MSE values
of transition parameters are shown together through boxplots. Then, each point represented in
the boxplots is the calculated MSE for each transition parameter. The classification success rate
shown as bar plots is the average of success rates in predicting S for the M = 100 replications.
We also verify the standard deviation and bias of the estimates, but as they are in agreement
with MSE we do not show these results.

The MSE for the success probabilities associated with Binomial components will be dis-
cussed briefly, given that all algorithms show excellent performance in most cases. We omit EM
algorithm results for the MSE because its performance is poor, in some cases obtaining values
which are two orders-of-magnitude greater than the values of the other two algorithms. This
poor performance of traditional EM method, especially when compared to the stochastic EM
performance since they have the same target distribution, probably is due to a convergence to
local solutions in many replications.

3.1 Results

The Bayesian algorithm is run for a total of 55,000 iterations. The first 5,000 iterations are
discarded as burn in. Samples of MCMC are collected every 5 iterations. The sample size of the
final sub-sequence used to perform inference is 10,000. As usually done in Bayesian analysis,
point estimates for the parameters are their posterior means, given by the average of the values
of the sub-sequence after label-switching correction. We verify the convergence of MCMC using
trace plots and Geweke’s statistic for the log-likelihood value in each iteration. For the stochastic
EM and original EM algorithms the tolerance is set to 0.00001 to ensure the convergence of the
algorithm. The starting values for all methods are randomly chosen.

We observe in Figures 1–4 that the performance of the Bayesian and stochastic EM al-
gorithms in the estimation of the parameters is similar under analyzed conditions. For most
cases shown, the stochastic EM has lower values of MSE than those presented by the Bayesian
method. In terms of predicting the non-observable state sequence, the Bayesian method achieves
almost 100% accuracy in all situations considered and the stochastic EM algorithm has a similar
performance. The EM algorithm performs poorly in terms of predicting the non-observable state
sequence, also as a reflection of a poor parameters estimation.

The success probabilities for the Binomial distributions which generate the observable values
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Figure 1: Mean squared errors and success rates for predicting S under Situation A and K = 2.

Figure 2: Mean squared errors and success rates for predicting S under Situation B and K = 2.

are well estimated by the three algorithms, presenting MSEs often in the thousandths decimal
place, and even smaller for some specific cases. The only situation in which success probabilities
are not well estimated was Situation A for K = 2, when the fixed success probabilities are close
and the used number of trials nt = 50 is too small to differentiate them.

Weaker performances of Bayesian algorithm when compared to the stochastic EM usually
happen for parameters associated to transitions which are not frequently observed in the data
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Figure 3: Mean squared errors and success rates for predicting S under Situation A and K = 3.

Figure 4: Mean squared errors and success rates for predicting S under Situation B and K = 3.

and their estimation is based almost completely on the prior distribution which intentionally
has a high variability. In spite of the fact that the Bayesian algorithm shows slightly poorer
performance than the stochastic EM, it has the advantage of providing interval estimates through
credibility intervals for all the models’ parameters. This is not true for the traditional and
stochastic EM algorithms which, in general, provide confidence intervals through bootstrap
or asymptotic methods. Stochastic EM, in contrast, shows lower computational time cost for
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running, especially in case of fast convergence, and may be more efficient for high dimensional
time series.

4 Analyzing the Rainfall Patterns of Tegucigalpa
In this section, using the algorithms previously described, we model the rainfall regime and rain
probabilities associated with it in the city of Tegucigalpa, Honduras, in the time period between
1969 and 2019. The most recent data is used to verify the predictive performance of the fitted
and chosen model later on.

The data was retrieved from the database of Tutiempo Network, S.L. The data was recorded
daily at the weather station of Toncontin airport in Tegucigalpa. The location of this weather
station is 14.05 N and 87.22 W and its WMO (World Meteorological Organization) identifica-
tion number is 787200. Therefore, the studied data consists of weather time series from this only
one station. It collects data on daily precipitation, relative humidity and temperature. However,
as our goal is to analyze the precipitation behavior among the months, we aggregate the daily
informations to obtain monthly features. Considering as a rainy day a day when the amount of
observed precipitation is greater than 0.5 mm, the response variable analyzed for each month
from Jan/1969 to Oct/2019 is the quantity of rainy days. As covariates for impacting the transi-
tion probabilities among periods of different chance of raining, we use the average temperature
and average relative humidity for each month.

The database contains 610 observations of the response variable and the two covariates used
and their descriptive statistics are shown in Table 1. We observe that the city of Tegucigalpa does
not present any month without rain in the analyzed period and the monthly average temperature
is reasonably stable. As it is expected for being close to the Equator line, the weather of this
city does not vary much throughout the year.

We standardized the covariates and apply the three algorithms presented in earlier sections
to the data set. We perform model fitting considering different values for K non-observable
states as, in fact, we do not know the correct value of K. We fit three different models for the
transition probabilities. Some of them include a single covariate, for which we alternate the
use of the variables temperature and humidity. Other models uses both variables as covariates
for the transition probabilities. The distribution we define for the data is Binomial(N, θi) for
i ∈ {1, 2, . . . , K − 1, K} and N = 30.

The Bayesian algorithm is run for a total of 88,000 iterations. The first 8,000 iterations
are discarded as burn in. Samples of MCMC are collected every 8 iterations and, consequently,
the sample size of the final sub-sequence used to perform inference is 10,000. We verify the
convergence of MCMC using trace plots and Geweke’s statistic for the log-likelihood value in
each iteration. As usually done in Bayesian analysis, point estimate for the parameters is their
posterior means, given by the average of the values of the sub-sequence. For the stochastic EM

Table 1: Descriptive statistics for the variables.

Variable Min. Q1 Mean Q3 Max. SD Asymmetry

Number of rainy days (days/month) 1.00 7.00 13.00 19.00 29.00 6.38 0.14
Temperature (◦C) 18.20 21.00 22.03 23.00 25.90 1.44 −0.30
Humidity (%) 43.50 65.25 70.24 75.78 90.80 7.80 −0.52
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Table 2: Parameters estimates for the selected model, where SD represents the standard deviation
and CI represents credibility interval.

Parameter Estimate SD Asymmetry 95% CI

β121 −2.61 1.25 −0.63 (−5.45, −0.53)
β122 4.85 1.13 0.65 (2.97, 7.36)
β123 10.60 1.80 0.47 (7.45, 14.58)
β131 1.59 0.38 0.24 (0.89, 2.37)
β132 1.39 0.28 0.19 (0.87, 1.98)
β133 3.97 0.61 0.34 (2.87, 5.27)
β221 7.75 3.33 0.88 (2.78, 15.60)
β222 10.56 2.77 0.88 (6.44, 17.16)
β223 8.27 2.56 0.81 (4.29, 14.11)
β231 8.69 3.32 0.88 (3.73, 16.53)
β232 7.18 2.71 0.93 (3.22, 13.63)
β233 5.59 2.52 0.85 (1.73, 11.44)
β321 −0.60 0.37 −0.20 (−1.34, 0.08)
β322 2.72 0.46 0.33 (1.89, 3.67)
β323 4.73 0.70 0.28 (3.44, 6.19)
β331 0.15 0.20 −0.02 (−0.39, 0.68)
β332 0.04 0.23 −0.01 (−0.40, 0.47)
β333 1.66 0.38 0.24 (0.97, 2.44)
θ1 0.20 0.01 0.09 (0.18, 0.21)
θ2 0.66 0.01 −0.02 (0.65, 0.67)
θ3 0.42 0.01 −0.001 (0.40, 0.43)

algorithm the tolerance is set to 0.00001 to ensure the convergence of the algorithm.
Under the conditions previously established and using both AICc and BIC for selecting

the best model estimated for each method, the chosen model using the traditional EM has
K = 3 regimes, considers only the temperature as covariate and presents AICc and BIC values
of 3,802.5 and 3,867.9, respectively. The best model for stochastic EM algorithm also considers
only the temperature as covariate, but has K = 2 regimes and AICc and BIC values equal to
3,833.3 and 3,859.7, respectively. Under Bayesian estimation procedure, the chosen model has
K = 3 regimes, both temperature and humidity as covariates and shows AICc and BIC values
equal to 3,611.3 and 3,702.4, respectively.

Considering the two model selection criteria, we choose the model with two covariates
and three non-observable states fitted by the Bayesian algorithm as the best fit for the data
set. Table 2 shows the parameters estimate for the selected model. As we choose the Bayesian
estimation, in addition to point estimation we also present interval estimation.

From Table 2 we observe that the 3 non-observable states are well identified by the esti-
mation algorithm. The first non-observable state generates binomially distributed observations
with probability of success equal to 0.20. This can be interpreted as a state in which there is a
low probability of observing days with precipitation for the given month. A second state gener-
ates binomially distributed observations with probability of success equal to 0.66. This can be
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interpreted as a state in which there is a high probability of observing days with precipitation
during the corresponding month. Argeñal (2010) mentions that there are two clearly observable
seasons in the central mountainous region of Honduras, where Tegucigalpa is located. These sea-
sons are commonly called dry season and rainy season. The two non-observable states previously
described account for these two seasons. The third non-observable state generates binomially
distributed observations with probability of success equal to 0.42. This state represents transi-
tional periods between the rainy and dry seasons in which there are intermediate probabilities
of observing rainy days during a given month.

The transition coefficient matrix for the model with the best fit is given in Equation (11)
by

β̂ =

⎡
⎢⎢⎢⎢⎢⎣

( 0
0
0

) ( −2.61
4.85
10.59

) ( 1.59
1.39
3.97

)
( 0

0
0

) ( 7.75
10.56
8.27

) ( 8.69
7.18
5.59

)
( 0

0
0

) ( −0.60
2.72
4.73

) ( 0.15
0.04
1.66

)

⎤
⎥⎥⎥⎥⎥⎦ . (11)

In order to verify if the fitted transition coefficient matrix generates probabilities which are
coherent with the precipitation phenomenon, we perform a graphical analysis of the transitions
functions they are used in. Figure 5 shows the graphs of the transition functions when the
covariate humidity is fixed at a value equal to 0.

The top graph of Figure 5 shows that while temperatures are much lower than the mean of
the recorded temperatures, there is a high probability of the non-observable chain continuing in
state 1, a state with low probability of precipitation. As the temperatures rise and become closer

Figure 5: Transition functions when humidity is fixed to zero. On the x axis, we vary the
standardized temperature.
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to the mean of the observed temperatures, the probability of moving from state 1 to state 3, a
state with intermediate probability of precipitation, increases. As the temperature increases and
becomes greater than the mean of the recorded temperatures, then the probability of moving
from state 1 to state 2, a state with high probability of precipitation, increases.

The middle graph of Figure 5 shows that while temperatures are much lower than the mean
of the recorded temperatures, there is a high probability of the non-observable chain moving
from state 2 to state 1, a state of low probability of precipitation. When the temperature is close
to the mean of the recorded temperatures, there is a high probability of moving from state 2
to state 3, a state with intermediate probability of precipitation. As the temperatures become
greater than the mean of the recorded temperatures, then the probability of remaining in state
2 increases.

The bottom graph of Figure 5 shows that while temperatures are lower than the mean of
the recorded temperatures, then it is almost equally likely to transition from state 3 to state 1, a
state with a low probability of precipitation, or to continue in state 3, a state with intermediate
probability of rain. When temperatures increase and become greater than the mean of the
observed temperatures, then the probability of moving to state 2, a state with high probability
of precipitation, increases.

Figure 6 shows the graphs of the transition functions when the covariate temperature is fixed
at a value equal to 0. In general, the behavior of the transition functions when the temperature
is fixed is very similar to the behavior of the transition functions when the humidity is fixed. We
observe the only difference in behavior in the transitions for state 3, seen in the bottom graph of
Figure 6. When the humidity is lower than the mean of the recorded humidities, there is a high

Figure 6: Transition functions when temperature is fixed to zero. On the x axis, we vary the
standardized humidity.
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probability of moving from state 3 to state 1, a state with low probability of precipitation. When
the humidity is higher than the mean of the recorded humidities, there is a high probability of
moving to state 2, a state with high probability of precipitation. Finally, when humidity is close
to the mean of the observed humidities, it is almost equally like to transition to state 1 or 2, or
to remain in state 3.

The transition dynamics previously described are coherent with the behavior of the precip-
itation patterns in the city of Tegucigalpa. As stated before, there are two clearly observable
seasons: a rainy season, in which high temperatures and humidities prevail, along with a high
probability of observing days with precipitation and a dry season, in which low temperatures
and relatively low humidities are usually recorded, along with a low probability of observing
days with precipitation. A brief transitional period between the rainy and dry seasons with
intermediate probabilities of rain is related to values of temperature and humidity which are
closer to the mean value of the records and accounts for the third non-observable state.

A useful tool to better understand and to visualize the precipitation phenomenon in Tegu-
cigalpa is a graph portraying the sequence of non-observable states predicted by the algorithm
along with the number of days with precipitation observed monthly. An online application devel-
oped in R Shiny is available at https://gsabillon85.shinyapps.io/PrecipitationNHMM/ to show
details about these results. The application allows the user to view predicted states and data
along with covariates values for each individual year for the time period studied. In general, we
distinguish two periods with distinct rain probabilities. We observe that the months of February,
March and April are usually linked to the non-observable state with low probability of rain. The
months of June to October are mostly related to the non-observable state with high probability
of rain. The non-observable states associated to the months of November, December, January
and May are slightly more heterogeneous with a certain prevalence of the non-observable state
with intermediate probability of rain.

From the predicted sequence of non-observable states we obtain the matrix⎡
⎢⎢⎢⎣

128 7 63

12 147 64

59 68 61

⎤
⎥⎥⎥⎦ (12)

which contains counts of the amount of times each possible transition has occurred. From Ex-
pression (12) we observe that the transitions that are least likely to occur are transitions between
states 1 and 2. This is coherent with the phenomenon being studied, as it is unlikely to move
directly from a rainy season to a dry season, or vice-versa, without experiencing a small time
interval with intermediate amounts of rain. We also observe that the most frequent transitions
involve remaining in state 1 or state 2. This is consistent with the phenomenon, because remain-
ing in state 1 indicates a time period of low probability of precipitation, which reflects a dry
season, and remaining in state 2 indicates a time period of high probability of rain, which would
portray a rainy season.

We also verify the performance of the fitted and chosen model to predict the number of
rainy days in the period from Nov/19 to Nov/22 in a total of 37 forecast points for the last three
years. Using the parameters’ estimate and observed average temperature and average relative
humidity for each month t in this most recent period, we calculate âŝt−1j t , for j = 1, 2, 3, and
predict ŷt = Ê(Yt |St−1 = ŝt−1) = nt

∑3
j=1 âŝt−1j t θ̂j and ŝt = argj max âŝt−1j t . This predicted ŝt is

used to calculate âŝt j t for the observation t + 1 and so on. We also predicted ŝt by randomly
drawing from probabilities âŝt−1j t , for j = 1, 2, 3, but the results are very similar.

https://gsabillon85.shinyapps.io/PrecipitationNHMM/
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Figure 7: Observed (black) and predicted (gray) number of rainy days for each month from
Nov/19 to Nov/22. The top graph considers covariates of the month of prediction, as we carry
out the estimation, and the bottom graph considers covariates of the month before the prediction
month, that is, covariates lagged by one month.

The top graph of Figure 7 shows the observed and predicted number of rainy days for each
month using the observed values of covariates in the month of prediction. We carry out the
model estimation in this way since our main goal is to understand and describe the rainfall
patterns and not to make longer predictions, for which covariates values are not yet available
(but forecasts for them may be used). We observe that the fitted model correctly predict months
with the most and least amount of rainy days as well as the number of rainy days for each month.
The mean squared error associated with those 37 predictions is 27.99.

The bottom graph of Figure 7 shows the predicted number of rainy days for each month
using the covariates lagged by one month. It is useful when we want to predict the number of
rainy days in advance (for the next month, in this case) using observed values of covariates for
the current month since the informations for the next month are not yet available. We observe
that, even if the model has not been fitted for this scenario, it still performs and predicts well.
Now, the mean squared error associated with those predictions is 34.22.

5 Discussion
We study the structure, elements and functions of NHMMs in order to apply them for describing
the rainfall pattern in Honduras. We present two algorithms, the stochastic EM and Bayesian al-
gorithm, as more efficient alternatives than the EM algorithm for estimating NHMMs in terms of
faster convergence, easier implementation and scalability for high dimensional data. Comparisons
between these three algorithms show that the performance of the stochastic EM and Bayesian
algorithms is similar, whereas the EM algorithm shows poor performance in terms of estimating
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the transition parameters, mainly due to local solutions. Similar values for mean squared error
are obtained by the stochastic EM and Bayesian algorithms in simulated situations, with the
stochastic EM having slightly better performance in some cases.

Despite showing slightly poorer performance, the Bayesian method has the advantage of
providing interval estimates, through credibility intervals, for all models’ parameters whereas
for traditional and stochastic EM it would be possible using bootstrap or asymptotic methods.
Stochastic EM, in contrast, shows lower computational time cost for running which makes the
method applicable to high dimensional data. However, it is mandatory to have observations
allocated in all possible transitions for the algorithm to work properly. We observe a success rate
greater than 90% in the prediction of the non-observable state sequence for these two algorithms
in all considered simulations, while the traditional EM shows a rate no greater than 56% in any
simulation. Although the presented methodologies have already been used for estimating several
other statistical models, NHMMs are still widely fitted by the traditional EM algorithm.

We apply NHMMs and the three algorithms to 50 years of rainfall data collected in Tegu-
cigalpa, Honduras. The best model, under considered conditions, is fitted by the Bayesian algo-
rithm, considers 3 non-observable states and the two covariates tested, temperature and humid-
ity. The algorithm clearly identifies 3 non-observable states. One non-observable state represents
periods with a low probability of observing days with precipitation, the second non-observable
state represents periods with a high probability of precipitation, and the third state represents
periods with an intermediate probability of days with precipitation per month (0.42). Both vari-
ables (temperature and humidity) are important to determine the rain season and the results
are consistent with the studied phenomenon. In general, an NHMM models the phenomenon
well. The fitted model may also be used to predict future informations of precipitation depend-
ing on future informations of temperature and humidity. If available, many other weather and
environmental features may be used in the analysis.

In this case study, we only have two covariates available and an automatic and efficient vari-
able selection process was not necessary. However, as future studies, variable selection methods
may be included in the estimation process to make it more efficient.

Supplementary Material
Data that support the findings are openly available in GitHub at https://github.com/gsabillon85/
NHMM-Estimation and https://gsabillon85.shinyapps.io/PrecipitationNHMM/.

The R codes used for simulation are openly available in GitHub at https://github.com/
gsabillon85/NHMM-Estimation.
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