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Abstract

Malignant mesotheliomas are aggressive cancers that occur in the thin layer of tissue that cov-
ers most commonly the linings of the chest or abdomen. Though the cancer itself is rare and
deadly, early diagnosis will help with treatment and improve outcomes. Mesothelioma is usually
diagnosed in the later stages. Symptoms are similar to other, more common conditions. As such,
predicting and diagnosing mesothelioma early is essential to starting early treatment for a can-
cer that is often diagnosed too late. The goal of this comprehensive empirical comparison is to
determine the best-performing model based on recall (sensitivity). We particularly wish to avoid
false negatives, as it is costly to diagnose a patient as healthy when they actually have cancer.
Model training will be conducted based on k-fold cross validation. Random forest is chosen as
the optimal model. According to this model, age and duration of asbestos exposure are ranked
as the most important features affecting diagnosis of mesothelioma.

Keywords binary classification; cancer; class imbalance; machine learning; mesothelioma;
variable importance

1 Introduction
Mesothelioma is a rare and incurable form of cancer that is closely associated with exposure
to asbestos (Spugnini et al., 2006). It affects the lining of the lungs and chest most and the
abdomen and sac around the heart less. Because the disease is fatal and is largely resistant to
radiation and chemotherapy treatment, diagnosis of the disease at early stages is vital in having a
better prognosis (Robinson et al., 2005). Machine learning algorithms can assist in identifying the
disease early on to improve the quality of life of a patient. Application of machine learning models
in cancer research has seen growing popularity in the past two decades (Cruz and Wishart, 2006).
For example, genetic algorithms and artificial intelligence were used for early detection of breast
cancer by detecting patterns in spectronomy data (Petricoin and Liotta, 2004). Faitima et al’s
(2020) comparative analysis of various machine learning techniques on breast cancer data found
that support vector machine (SVM) was the optimal algorithm in terms of prediction accuracy.

Here, we explore the potential of machine learning algorithms for mesothelioma diagnosis.
The mesothelioma data set discussed in this paper is taken from the University of California
Irvine (UCI) Machine Learning Repository, with 324 individuals who are healthy or with malig-
nant mesothelioma. 35 variables are included in this data set. The response variable is “class of
diagnosis.” It is imbalanced with 70.37% individuals without mesothelioma and 29.63% individ-
uals with mesothelioma. Although the breast cancer data set is not like the mesothelioma data

∗Corresponding author. Email: ted.cheng@student.csulb.edu.

© 2023 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received July 25, 2022; Accepted February 6, 2023

mailto:ted.cheng@student.csulb.edu
https://creativecommons.org/licenses/by/4.0/


206 Cheng, T. and Liao, X.

set it terms of clinical characteristics, the machine learning methods in Faitima et al (2020) can
be further investigated with the mesothelioma data set, for which the research goal is also to
build a binary classifier. In addition, there are many small sample clinical data sets and it is
important to investigate the performance of machine learning in this setting, which we do here
with mesothelioma data.

Our goal in this paper is to compare different machine learning algorithms for predict-
ing mesothelioma diagnosis. We first explore the data structure and features in Section 2. In
Section 3, we give more information on model building and decision making. In Section 4, we
review the algorithms studied in the paper in Section 4. We present the results of our analysis in
Section 5, and close with a discussion of main findings, limitations, and future work in Section 6.

2 Data Summary and Exploratory Data Analysis
Variables of the data set are either continuous or categorical with no missing values. Table 1 is
a summary of continuous variables. Table 2 is a summary of categorical variables. More details
about this data set can be found in Chicco and Rovelli C (2019).

Table 1: Summary of Continuous Features.

Name Data Type Description Mean ± SD

Age Continuous Age of the individuals (year) 54.74 ± 11.00
Duration of asbestos
exposure

Continuous Duration of the
environmental exposure to
asbestos (year)

30.19 ± 16.42

Duration of symptoms Continuous Time period in which the
patients show symptoms
(year)

5.44 ± 4.72

White blood Continuous Number of white blood cells
in the pleural fluid per
microliter (mcL)

9457.45 ± 3450.73

Cell count (WBC) Continuous Number of white blood cells
per milliliter (mL)

9.56 ± 3.35

Platelet count (PLT) Continuous Number of platelets in blood
per milliliter (mL)

369.65 ± 227.55

Sedimentation Continuous Measure of how quickly
erythrocytes settle in a test
tube in one hour measured in
millimeter (mm/hour)

70.69 ± 21.75

Blood lactic
dehydrogenise (LDH)

Continuous Amount of LDH measured in
international units per liter
(IU/L)

308.91 ± 185.14

Alkaline phosphatise
(ALP)

Continuous Amount of ALP in the blood
(IU/L)

66.16 ± 35.08

Total protein Continuous Total amount of protein in
serum in grams per deciliter
(g/dL)

6.58 ± 0.83

Continued on next page
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Table 1 – Continued from previous page
Name Data Type Description Mean ± SD

Albumin Continuous Amount of albumin in blood
(g/dL)

3.30 ± 0.63

Glucose Continuous Amount of glucose in blood
in milligram per deciliter
(mg/dL)

112.41 ± 38.46

Pleural lactic
dehydrogenise

Continuous Amount of lactic
dehydrogenise in pleural
fluid(IU/L)

518.47 ± 536.28

Pleural protein Continuous Amount of protein in pleural
fluid (g/dL)

3.94 ± 1.58

Pleural albumin Continuous Amount of albumin in
pleural fluid (g/dL)

2.08 ± 0.92

Pleural glucose Continuous Amount of glucose in pleural
fluid (mg/dL)

48.44 ± 27.23

C-reactive protein
(CRP)

Continuous Acute phase reactant,
significantly elevated in
patients with pleural
mesothelioma (mg/dL)

64.19 ± 22.66

Table 2: Summary of Categorical Features.

Name Data Type Description Count Per Level

Gender Categorical Female or male Female = 134
Male = 190

City Categorical A multinominal variable
indicating how far individuals
are from downtown. The
value is from closest (0) to
furthest(8)

0 = 100 | 1 = 42
2 = 51 | 3 = 25
4 = 24 | 5 = 2
6 = 66 | 7 = 13
8 = 1

Asbestos Exposure Categorical A binary variable indicating
if or not a patient has been
exposed to asbestos

Negative = 44
Exposed = 280

Type of MM Categorical A multinominal variable
indicating mesothelioma
stages/phases to which the
symptoms seem to belong

Negative = 310
Middle = 11
Late = 3

Diagnosis Method Categorical A binary variable indicating
if or not the patient has been
diagnosed as with
mesothelioma by a common
diagnosis method

Uncommon = 96
Common = 228

Continued on next page
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Table 2 – Continued from previous page
Name Data Type Description Count Per Level

Keep Side Categorical A multinomial variable
showing the side of the lungs
which is experiencing pleural
plaques or mesothelioma
traces

Left = 100
Right = 202
Both = 22

Cytology Categorical A binary variable showing if
or not cancer cells and
certain other cells in the area
that surrounds the lung are
detected

Negative = 233
Positive = 91

Dyspnoea Categorical A binary variable showing if
or not the patient is short of
breath

No = 59
Yes = 265

Ache on Chest Categorical Presence or absence of pain
in the chest area

No pain = 103
Pain = 221

Weakness Categorical A binary variable showing if
or not the patient lacks of
strength

Not weak= 126
Weak = 198

Habit of cigarette Categorical A multinomial variable
showing the habit of smoking

None = 183
Rare = 37
Regular = 54
Frequent = 50

Performance status Categorical A binary variable showing
the patient’s ability to
perform normal tasks

Normal = 155
Difficult = 169

Hemoglobin (HGB) Categorical A binary variable showing if
or not the patient’s
hemoglobin is normal

Normal = 137
Abnormal = 187

Dead or not Categorical A binary variable showing if
or not the patient is dead

Dead = 18
Alive = 306

Pleural effusion Categorical A binary variable showing
the presence of pleurl effusion

None = 42
Present = 282

Pleural thickness on
tomography

Categorical A binary variable showing if
or not the patient has any
form of thickening involving
either parietal or visceral
pleura

None = 131
Thickened = 193

Pleural level of acidity
(pH)

Categorical A binary variable showing if
or not the patient’s pleural
fluid pH level is lower than
the normal level

Normal = 155
Lowered = 169



Binary Classification of Malignant Mesothelioma: A Comparative Study 209

Figure 1: Pearson Correlation heatmap of continuous variables.

A Pearson correlation heatmap is used to check pairwise correlations among continuous
variables.

From the results, “pleural albumin” and “pleural protein” have a high correlation of 0.91.
The two features have very similar biological meanings, so it is redundant to keep both. In this
study, pleural protein is dropped.

3 Methods

3.1 Data Pre-Processing

In this study, we first remove redundant and irrelevant features. In Section 2, we explore the
pairwise correlation among continuous predictors, and remove “pleural protein.” Based on the
definition of “type of MM” and “dead or not”, we remove the two features because it doesn’t
make sense to use them as predictors. Finally, because of the perfect dependence of “diagnosis
method” and diagnosis result, we remove “diagnosis method.” All other 30 features are used in
modeling.

After removing “pleural protein”, “type of MM”, “dead or not”, and “diagnosis method”,
we split the data into training set (80%) and test set (20%). We center and scale each continuous
feature. Next, we check the distribution of each continuous feature and log-transformed the fol-
lowing features because of their highly skewed pattern: “duration of symptoms”, “platelet count”,
“alkaline phosphatise”, “glucose”, “pleural lactic dehydrogenise”, “cell count”, and “blood lactic
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dehydrogenise.”
The binary response variable is imbalanced and we apply Synthetic Minority Over-Sampling

Technique (SMOTE) (Chawla et al., 2002) to the training set to generate data points from the
minority class, and make the “diagnosis” variable roughly balanced. SMOTE works by taking
a sample of k points from the minority class, creating a synthetic data point, taking the vector
between one of those k points and the current synthetic data point. This vector is then multiplied
by a random number between 0 and 1, and added to the current synthetic data point to generate
a new data point in the minority class.

3.2 Cross Validation and Model Evaluation

We compare 11 models in this study. A brief background of each model is included in Section 4.
We use k-fold cross validation to tune parameters and build each model with the training set.
Next, we evaluate each model with the test set. Four evaluation metrics defined in Section 4.9
are used.

4 Background
Modeling in this paper is mainly inspired by Fatima et al.’s (2020) comprehensive comparison
of various classification algorithms with breast cancer data. We also consider the probabilistic
neural network discussed in Er et al. (2012). For certain methods, there are variants such as
different kernels for support vector machines (SVM) and distance metrics for k-nearest neighbors.
These variants are chosen based on how well documented these methods are for reproducibility,
such as the kernels for SVM in the scikit-learn API reference (Pedregosa et al., 2011). Background
information of each model we discuss in this paper is included in subsection 4.1 to subsection 4.8.

4.1 Artificial Neural Network (ANN)

Artificial neural networks are computing systems that attempt to emulate neural networks in
biological systems, specifically to the human brain (Aggarwal, 2014). ANNs utilizes a myriad of
optimization tools to learn from past experiences and use that information to predict and classify
new data (Janghel et al., 2010). ANNs are based on neurons, which are defined as atomic parts
that compute the aggregation of their input to an output based upon an activation function.
An activation function defines the output of that node given a set of inputs. Most commonly
activation functions include sigmoid function, ReLU function, and radial basis function.

4.1.1 Multilayer Perceptrons (MLP)

The most commonly used feedforward neural networks is known as multilayer perceptrons.
Multilayer perceptrons provide a nonlinear mapping from an input vector to an output vector.
It can be used for nonlinear modeling in regression and classification (Hand et al., 2001). The
commonly used activation function in MLP (Chollet, 2017) is the sigmoid function, which is
defined as

S(x) = 1

(1 + e−x)
.

It is a logistic function where x is the input into the neuron. The function becomes increasingly
closer to 1 as x → +∞ and 0 as x → −∞ for the probability of classes.
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Figure 2: Schematic diagram of a multilayer perceptron.

Another commonly used activation function is the Rectified Linear Unit (ReLU) activation
function (Logan and Shepp, 1975). It is defined as

f (x) = max(0, x),

where x is the input into the neuron. The advantage of the ReLU function is that it is faster to
train and has sparse representation when provided with negative inputs.

4.1.2 Probabilistic Neural Network

Probabilistic neural networks (PNN) is another class of feedforward neural networks that are
mainly used for classification problems. The method is derived from the Bayesian network and
the Kernel Fisher discriminant analysis algorithm. It is a kernelized version of linear discriminant
analysis. Compared with MLP, PNN is faster to train and it is less sensitive to outliers. The
PNN module from the NeuPy (Shevchuk et al., 2015) package is used in this paper.

The activation function in PNN is the radial basis function (RBF) (Stein and Weiss, 2016).
It is defined as

ϕ(x) = ϕ̂(‖x‖),
where ϕ is a real-valued function and ‖x‖ is the Euclidean distance between the input x and the
origin.

4.2 Support Vector Machine (SVM)
Support vector machine is one of the newer supervised machine learning techniques proposed
by Cortes and Vapnik (1995). SVM belongs to a family of generalized linear classifiers. If the
training data is linearly separable, then a SVM will construct a separating hyperplane. The
classes are divided by the hyperplane, which is of the form

w�x − b = 0,

where w is the normal vector of the hyperplane.
Data points from two classes are separated by the margins

w�x − b = 1 and w�x − b = −1.
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Figure 3: Schematic diagram of a probabilistic neural network.

Figure 4: Hyperplane and margins of a SVM for a data set with two classes (Cortes and Vapnik,
1995).

For the ith data point, i = 1, 2, . . . , n, it satisfies:

w�xi − b � 1 if yi = 1,

or
w�xi − b � −1 if yi = −1.

The goal of a linear SVM is to maximize the margin 2/‖w‖ or minimize ‖w‖. The optimiza-
tion problem is to find w and b to minimize

‖w‖ subject to yi(w
�xi − b) � 1.

When data points are not linearly separable, nonlinear kernels can be used to transform
the data points to be in a higher-dimensional feature space. A hyperplane can be defined in this
new space to separate the data points (Kotsiantis et al., 2007). Subsections 4.2.1, 4.2.2 and 4.2.3
list 3 non-linear kernels (Pedregosa et al., 2011).
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4.2.1 Polynomial Kernel

The polynomial kernel is defined as

K(xi, xj ) = (xi · xj + 1)d, i �= j, i, j = 1, 2, . . . , n,

where d (d � 2) denotes the number of degrees of the polynomial.

4.2.2 Radial Basis Kernel

The radial basis kernel is the most popular kernel used in a SVM. Similar to the k-NN algorithm,
it calculates the Euclidean distance between two data points to determine their similarity. It can
also be easily tuned with the γ parameter. It is defined as

K(xi, xj ) = exp(−γ ‖xi − xj‖2), i �= j, i, j = 1, 2, . . . , n,

where γ > 0 and ‖xi − xj‖ is the Euclidean distance between xi and xj .

4.2.3 Sigmoid Kernel

The sigmoid kernel is popular in neural networks. In a SVM, it is often used as a proxy to a
two-layer perceptron. It is defined as

K(xi, xj ) = tanh(αxi · xj + c), i �= j, i, j = 1, 2, . . . , n,

where α > 0 and c < 0.

4.3 Logistic Regression (LR)

Logistic regression is a generalized linear regression model using a logistic function to estimate
the occurring probability of the event of “success” in a binary response. Typically, the event of
success is coded as 1; the event of failure is coded as 0.

The logit link function connecting the occurring probability of success: p(x) for xi , i =
1, 2, . . . , n, with the predictors is defined as

log

[
p(xi)

1 − p(xi)

]
= β0 + β1xi1 + β2xi2+, . . . , +βpxip = β0 +

p∑
j=1

βjxij .

When there is no imbalance issue in the binary response, if the estimated p(x) is less than 0.5,
then a data point is assigned to the failure class; otherwise it is assigned to the success class.

4.3.1 Regularization

Regularization is defined as a modification made to a learning algorithm that reduces the testing
error but not the training error (Goodfellow et al., 2016). Adding a regularization term helps
prevent overfitting on the training set. Since small data sets are more prone to overfitting, it
is worthwhile to experiment with regularization methods. The regularization methods included
in the scikit-learn library (Pedregosa et al., 2011) are Lasso regularization (L1 penalty), ridge
regularization (L2 penalty), and elastic net regularization (both L1 and L2 penalties are added)
(Müller and Guido, 2016).
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Ridge regularization (James et al., 2013) uses an L2 penalty. It is similar to the least squares
criterion used in ordinary linear regression, except the coefficient estimates βR are the values
that minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij )
2 + λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j ,

where λ is a tuning parameter and RSS is the residual sum of squares. Its distance is calculated
as the Euclidean distance of the β vector from the origin.

Lasso regularization (James et al., 2013) uses an L1 penalty. It is an alternative to ridge
regression. The lasso coefficients βL

λ are the values that minimize
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij )
2 + λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |.

Lasso regularization can force some coefficient estimates to be 0, while ridge regularization
will only have some coefficients to be close to 0 but never to be equal to 0. Therefore, Lasso
regularization leads to more interpretable models.

Elastic net regularization is a method that combines both L1 and L2 penalties (Müller and
Guido, 2016). The elastic net coefficients βE are the values that minimize

RSS + λ

p∑
j=1

β2
j + λ

p∑
j=1

|βj |.

4.4 k-Nearest Neighbor (k-NN)
The k-NN algorithm is one of the most fundamental algorithms for both regression and classi-
fication. It is a method that can be used when there is no prior knowledge of the underlying
pattern in the data (Peterson, 2009). It is a nonparametric classifier and usually has good per-
formance when the decision boundaries are irregular (Hastie et al., 2009). As the name implies,
for an unclassified data point, the k-NN algorithm will find k training samples closest to the
unclassified data point according to some distance measure, and then classify the data point
using majority vote (Pedregosa et al., 2011). The value of k is usually an odd number to avoid
ties in the decision.

Subsections 4.4.1, 4.4.2 and 4.4.3 list three distances commonly used in the k-NN algorithm.

4.4.1 Minkowski Distance
Minkowski distance is a metric used in a normed vector space and is the generalized form of the
Euclidean and Manhattan distance metrics. It is defined as

d (x, y) =
(

n∑
i=1

|xi − yi |p
)1/p

,

where p � 1.

4.4.2 Euclidean Distance

Euclidean distance is the most popular distance for k-NN. It is defined as

d (x, y) =
[

n∑
i=1

(xi − yi)
2

]1/2

.
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Figure 5: Example of k-NN for two classes where the center dot is the unclassified data point.

4.4.3 Manhattan Distance

Manhattan distance is defined as

d(x, y) =
n∑

i=1

|xi − yi |.

It is preferred over Euclidean distance for data sets in a high dimension (Aggarwal et al., 2001).

4.5 Naïve Bayes (NB)
Naïve Bayes classifier is a popular method for data sets whose features are in a high dimension
space (Hastie et al., 2009). It is a probabilistic classifier that is based on Bayes’ theorem with
the assumption of strong independence among the features. The goal of Naïve Bayes classifier
is to maximize the posterior probability defined as

Pr(Yi = k | xi) = πk × fk1(xi1) × fk2(xi2) × · · · × fkp(xip)∑K
l=1 πl × fl1(xi1) × fl2(xi2) × · · · × flp(xip)

, i = 1, 2, . . . , n,

for k = 1, . . . , K, where K is the total number of classes. xi = (xi1, xi2, . . . , xip)� is a vector of p

features. πk is the prior probability of an observation falling in class k. fkl is the density function
of the lth predictor among observations in the kth class.

The classification is obtained as

Ŷi = argmax
k∈{1,...,K}

Pr(Yi = k | xi), i = 1, 2, . . . , n.

Subsections 4.5.1 and 4.5.2 describe 2 commonly used variants of NB. As the mesothelioma
data set has both continuous and categorical features, the two NB models will be assessed for
categorical and continuous features separately.

4.5.1 Gaussian NB

The Gaussian NB algorithm assumes the likelihood of the features to follow a multivariate
normal distribution.
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Figure 6: Diagram of a random forest model.

4.5.2 Multinomial NB

Multinomial NB, unlike the Gaussian NB, supports categorical features that follow a multinomial
distribution.

4.6 Random Forest (RF)

Random forest is an extension of decision tree. A decision tree makes predictions by greedily
splitting the predictors’ space into sub-spaces, which are known as nodes of the tree. Predictions
are then made at each node by averaging the values in the node. A decision tree can easily
overfit a data set and has high variance. Random forests are developed by fitting a number of
decision trees and then making predictions by averaging the predicted values of each individual
decision tree, to reduce variance of predictions. Meanwhile, when fitting a random forest, only
a subset of predictors are used as candidate predictors to make a split, and this de-correlates
decision trees (Hastie et al., 2009).

4.7 Gradient Boosting (GB)

Gradient boosting is another algorithm that can be used to improve the prediction of a single
decision tree. Unlike random forest, boosting doesn’t build a number of trees using bootstrapping
samples. Instead, trees are grown sequentially. Each tree is grown using the residual information
of the previous tree. Each tree can be rather small with just a few terminal nodes (Hastie et al.,
2009).

Subsections 4.7.1 and 4.7.2 list two variants of GB.
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Figure 7: FRBS process based on Riza et al.’s (2015) construction.

4.7.1 LightGBM

LightGBM is a gradient boosting framework that uses two novel techniques to improve model
efficiency, namely, Gradient-Based One Side Sampling (GOSS) and Exclusive Feature Bundling
Technique (EFB) (Ke et al., 2017). GOSS keeps a small fraction of instances that have large
gradient values, which contribute most to information gain, and randomly sample instances with
small gradient values to retain the accuracy of information gain. EFB bundles mutually exclusive
features into one single feature to improve training speed.

4.7.2 Extreme Gradient Boosting (XGBoost)

XGBoost is an open source software library developed by Chen and Guestrin (2016). XGBoost
builds decision trees in a parallel pattern, instead of sequentially like regular GB. This allows
fast training if the user has access to a computation platform that allows parallel computing.
Besides, XGBoost is a regularized form of gradient boosting, and it reduces overfitting and
improves the model’s generalizability.

4.8 Fuzzy rule-based systems (FRBSs)

Fuzzy rule-based systems are methods based on fuzzy concepts to tackle problems such as
uncertainty, imprecision, and non-linearity in identification, regression, and classification tasks.
It is a method of soft computing (Riza et al., 2015). FRBSs are based on fuzzy set theory,
which represents human knowledge in a set of fuzzy IF-THEN rules (Zadeh, 1965). The rules
are defined as having degrees of membership instead of a binary membership value, such that
the values will be between 0 and 1 rather than 0 or 1. A degree of 1 means that an object is
a member of the set, a value of 0 means it is not a member, and a value in-between shows a
partial degree of membership. Fuzzy logic allows vagueness and overlapping class definitions.
Compared with other classifiers, which use crisp sets (sets in which a characteristic function
assigns a binary 0 or 1 to each member), FRBSs are more interpretable because they emulates
the knowledge of human experts in a set of fuzzy IF-THEN rules.

Subsections 4.8.1 and 4.8.2 list 3 FRBS models. The first 2 models are from the R package
frbs (Riza et al., 2015) and the third model is from the R package RoughSets (Janusz and Riza,
2019).
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4.8.1 FRBCS.W and SLAVE

The R package frbs implements the most widely used FRBS models. In this package, 5 models
are designed for classification tasks. We experiment with FRBCS.W and SLAVE. FRBCS using
Ishibuchi’s method with weight factor (FRBCS.W) is a fuzzy rule-based classification system
imposing certainty grades, i.e., rule weights to IF-THEN rules (Ishibuchi and Nakashima, 2000).
The authors of the frbs package applied FRBCS.W to the iris data set (Fisher, 1936) for a binary
classification task and its prediction accuracy was about 95%. Structural learning algorithm on
vague environment (SLAVE) is a genetic learning algorithm that uses the iterative approach to
learn fuzzy rules. Rafique et al. (2011) compared SLAVE with models such as NB, SVM, etc
in detecting Short Message Service (SMS) spam, and SLAVE showed the highest detection rate
and lowest false alarm rate. The drawback of FRBCS.W and SLAVE is that they can only use
continuous features. We only assess them for continuous features in this paper.

4.8.2 Fuzzy-rough nearest neighbors (FRNN)

Onan (2015) proposed a fuzzy-rough nearest neighbors (FRNN) algorithm where the nearest
neighbors are used to construct the fuzzy lower and upper approximations of decision classes,
and test instances are classified based on their membership to these approximations. In that
paper, authors compared FRNN with other classifiers such as SVM, k-NN, and fuzzy nearest
neighbors classifier with the Wisconsin breast cancer data set (Street et al., 1993) and showed
that FRNN outperformed other methods.

4.9 Model Validation

k-fold cross validation is used to evaluate each algorithm. Evaluation metrics are specified in
subsections 4.9.1, 4.9.2, 4.9.3, and 4.9.4. We choose k = 7. For each metric, we need the following
terms: true positive (TP), false positive (FP), true negative (TN), and false negative (FN). For
this data set, a positive (negative) case represents an individual with (without) mesothelioma.
Each metric ranges from 0 to 1, inclusively. A larger value implies better performance.

4.9.1 Accuracy

Prediction accuracy is the most commonly used evaluation metric. It is defined as:

Accuracy = TP + TN
TP + TN + FP + FN

.

Accuracy may not be the most useful metric when the outcome is imbalanced. For example,
when most data points are in the positive group, then accuracy can be a large value but it
doesn’t imply that the model is effective in identifying cases in the negative group.

4.9.2 Recall

Recall measures how many out of all positive cases, are predicted correctly. It is a very important
metric in evaluating a model’s performance when researchers emphasize on correctly detecting
positive cases. It is defined as

Recall = TP
TP + FN

.
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4.9.3 Precision

Precision is the ratio of correctly classified positive cases to all predicted positive values. It is
defined as

Precision = TP
TP + FP

.

4.9.4 F1-score

F1-score is a harmonic mean of precision and recall. It is used if researchers care about precision
and recall equally. It is defined as

F1-Score = 2 ∗ Recall ∗ Precision
Recall + Precision

.

4.10 Model Tuning

In this study, we tune 7 models. Specifically, we tune MLP on the number of units for the
hidden layer. Candidate values are 1, 8, 15, and 30. For support vector machine, tuning is done
on the kernel types, which include linear kernel and non-linear kernels defined in Section 4.2. For
logistic regression, tuning is done on the regularization methods, which include logistic regression
without regularization and the 3 regularization methods defined in Section 4.3. It is also done on
class weight (balanced vs imbalanced). For the sake of interpretation, we fit a logistic regression
model with first-order terms only, and the features that have a p-value smaller than 0.05 are
included in Table 5.2. For k-NN, tuning is done on the number of neighbors k. Candidate values
are a grid starting from 1 and ending at 17, which is the rounded number of the square root of
sample size. Step in this grid is 2. For random forest and gradient boosting methods, tuning is
done on the number of features used in modeling. We compare the model using all 30 features
versus models with a subset of features, which is selected based on features’ importance values.

5 Results
Subsection 5.1 includes a table evaluating the models with metrics defined in 4.9. Subsection 5.2
includes a table interpreting the coefficient estimate of significant predictors in the logistic regres-
sion model. Subsection 5.3 includes a variable importance ranking plot. Subsection 5.4 includes
a table comparing computation time for each model.

5.1 Model Results

Table 3 lists the best performing variant of each model discussed in Section 4. The largest
value for each metric is shown with a bold font. k-NN has the largest recall and F1-score value,
which means that it identifies true positives or people with the mesothelioma cancer successfully.
However, for this variant, k = 1 and this implies overfitting, and we prefer not to choose this
model because this model is hard to be generalized to another data set.

Models like PNN, SVM, and RF have a relatively high recall value. However, PNN is not
well documented, though it has a high recall value. It is included in this paper to be compared
with other models as it is one of the original methods discussed in Er et al. (2012). RF has
the second largest F1-score, largest accuracy and largest precision value. We consider RF as the
optimal model.
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Table 3: Model Evaluation Results.
Algorithm Accuracy Recall Precision F1-Score

MLP (1 layer, 30 units) 80.77% 85.04% 67.29% 74.10%
PNN 74.18% 96.64% 61.20% 72.35%
SVM (Polynomial) 81.59% 85.71% 79.22% 82.03%
LR (Lasso) 65.66% 69.78% 64.36% 66.86%
k-NN (k = 1, Manhattan distance) 84.07% 97.80% 76.87% 86.00%
NB (Gaussian) 58.79% 85.16% 55.87% 67.37%
RF 86.54% 85.16% 88.44% 85.37%
XGboost 84.07% 81.32% 85.73% 81.85%
FRBCS.W (continuous) 39.47% 63.64% 26.92% 37.84%
FRNN 34.21% 81.82% 28.12% 41.861%
SLAVE (continuous) 36.84% 63.64% 25.93% 36.85%

Table 4: Summary of the Logistic Regression Model.

Variable Odds Ratio (95% C.I.) p-value

Age 0.48 ([0.35, 0.67]) 0.000
Gender 0.64 ([0.48, 0.85]) 0.002
Duration of asbestos exposure 2.34 ([1.46, 3.74]) 0.000
Keep side 1.49 ([1.14, 1.94]) 0.004
Duration of symptoms 1.37 ([1.03, 1.81]) 0.029
Cell count (WBC) 0.74 ([0.56, 0.97]) 0.030
Hemoglobin (HGB) 1.37 ([1.05, 1.79]) 0.022
Platelet count (PLT) 0.71 ([0.51, 0.998]) 0.048

5.2 Summary of the Logistic Regression Model
Table 4 summarizes the odds ratio of each significant predictor from logistic regression. There
is no comparison between Table 4 and Table 3. We include Table 4 here because of the inter-
pretability of the logistic regression model.

Table 4 shows that mesothelioma is more prevalent among individuals with a longer asbestos
exposure, with pleural plaques being detected in the right lung or both lungs, with a longer
duration of symptoms, and with more hemoglobin. It is less prevalent among individuals with
more platelets, with more white blood cells, and who are female.

5.3 Feature Ranking of the Random Forest Model
Figure 8 ranks features according to their feature importance value, which is computed as the
mean of accumulation of the impurity decrease within each tree. Here, we only include features
whose importance values are above the average of all feature importance values.

5.4 Computation Time Comparison
Table 5 compares computation time of each model. In this table, we include the average com-
putation time in k-fold cross validation. Guassian NB is the fastest model. Except for SLAVE
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Figure 8: Random Forest Feature Importance Ranking.

Table 5: Computation Time Comparison.
Algorithm Time (seconds)

MLP (1 layer, 30 units) 0.871
PNN 0.003
SVM (Polynomial) 0.011
LR (Lasso) 0.005
k-NN (k = 1, Manhattan distance) 0.005
NB (Gaussian) 0.002
RF 0.0100
XGboost 0.046
FRBCS.W (continuous) 1.680
FRNN 0.206
SLAVE (continuous) 60.978

and FRBCS.W, the computation time for every other model is within 1 second.

6 Discussion
In this paper, we have explored 11 different classification models for a mesothelioma data set with
324 observations and 34 features. We present evidence that random forest has high accuracy,
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precision, recall and F1-score values. Although its recall value is not the highest, it is above 85%
and has better generalization than k-NN (k = 1). Logistic regression model shows that exposure
to asbestos, gender, and keep side are all strongly predictive of the prevalence of mesothelioma.
Fuzzy logic-based models don’t have good performance with this data set, though they are novel.

Something that was not discussed in most papers using this data set is the deterministic
association between “diagnosis method” and the response “class of diagnosis.” When the data
set was initially assessed with this predictor, most of the algorithms yielded perfect metrics
across the board. Once “diagnosis method” was removed from the model, the algorithms yielded
significantly worse metrics. It is important to exclude this variable before modeling and this is
what we do in this paper.

It is known that old age and extended exposure to asbestos have long been contributing
factors to malignant mesothelioma. It is also interesting to note that there is some association
with sex, which may be attributable to the over-representation of male subjects in the sample.
Biological markers shown in Figure 8 can be scrutinized more closely by individuals with a
medical background to provide insight into their dependency with malignant mesothelioma.

In the future, researchers may consider recruiting more individuals to mitigate the overfitting
issue with a small data set. However, this can be difficult with a rare disease like mesothelioma. A
limitation in this paper is that model tuning is not thoroughly explored. For example, interaction
terms or polynomial terms in the logistic regression model are not discussed and they may help
improve the performance of logistic regression.

Supplementary Material
The zip supplementary material file contains the Python and R scripts for reading data and
preprocessing, exploratory data analysis, and the various models tested.
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