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Abstract

Traditional methods for evaluating a potential treatment have focused on the average treatment
effect. However, there exist situations where individuals can experience significantly heteroge-
neous responses to a treatment. In these situations, one needs to account for the differences
among individuals when estimating the treatment effect. Li et al. (2022) proposed a method
based on random forest of interaction trees (RFIT) for a binary or categorical treatment vari-
able, while incorporating the propensity score in the construction of random forest. Motivated
by the need to evaluate the effect of tutoring sessions at a Math and Stat Learning Center
(MSLC), we extend their approach to an ordinal treatment variable. Our approach improves
upon RFIT for multiple treatments by incorporating the ordered structure of the treatment
variable into the tree growing process. To illustrate the effectiveness of our proposed method,
we conduct simulation studies where the results show that our proposed method has a lower
mean squared error and higher optimal treatment classification, and is able to identify the most
important variables that impact the treatment effect. We then apply the proposed method to
estimate how the number of visits to the MSLC impacts an individual student’s probability of
passing an introductory statistics course. Our results show that every student is recommended
to go to the MSLC at least once and some can drastically improve their chance of passing the
course by going the optimal number of times suggested by our analysis.

Keywords educational data mining; generalized propensity scores; individualized treatment
effect; machine learning; student success study

1 Introduction
When evaluating the effectiveness of a proposed treatment, traditional methods have focused
on estimating the treatment effect for the population average. Issues arise when subjects can
have drastically different responses to the proposed treatment, where some subjects may re-
ceive a very positive treatment effect while others may experience no or even negative effects.
In these situations one needs to account for the differences in subjects’ characteristics when
evaluating treatment effects for individual subjects. In other words, instead of estimating the
average treatment effect (ATE), we may want to estimate the individualized treatment effect

∗Corresponding author. Email: rlevine@sdsu.edu or jjfan@sdsu.edu.

© 2023 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received July 31, 2022; Accepted January 6, 2023

mailto:rlevine@sdsu.edu
mailto:jjfan@sdsu.edu
https://creativecommons.org/licenses/by/4.0/


392 Thorp, J. et al.

(ITE). By doing so we can recommend better treatment regimens to individual subjects and
also potentially reduce cost.

In a randomized controlled trial (RCT), treatment is randomly assigned and then the treat-
ment and control groups are compared to each other to estimate the treatment effect. The
randomization ensures that the treatment and control groups are similar with respect to con-
founding and other variables. However, there exist situations where a RCT is either impractical
or unethical. For example, when the treatment being evaluated can cause severe harm to an
individual. In such situations we have to rely on observational study data where treatments are
not randomly assigned. However, allowing individuals to select their own treatment introduces
bias in the estimated treatment effect. For example, a prevalent source of bias in observational
study data is that of self-selection, where characteristics that impact an individual’s outcome
may also impact their likelihood of choosing specific treatment options. One way to control for
selection bias is to use the propensity score method (Rosenbaum and Rubin, 1983). Propen-
sity score is defined as the probability of a subject being in the treatment group given their
individual characteristics. Rosenbaum and Rubin (1983) show that treatment assignment and
covariate values are independent, conditional on the propensity score. This eliminates selection
bias in observational studies by balancing the covariates between treatment and control groups,
so unbiased estimates of the treatment effect can be attained. In a RCT the propensity score
for each individual is known (equal to one-half for everyone in a study with two treatment
arms), while in observational studies the propensity score must be estimated from the data. The
most common methods used to estimate propensity scores include logistic regression, and more
recently machine learning classification methods such as random forest (Breiman, 2001).

Because tree based methods (Breiman et al., 1984) are non-parametric in nature and can
handle complex data structures such as variable interactions, they have become a popular and
effective approach for estimating ITE. Examples of such methods include random forest of
interaction trees (RFIT) (Su et al., 2018) where the splitting rule is modified to maximize
subgroup treatment heterogeneity, qualitative interaction trees (Dusseldorp and Mechelen, 2013)
where the terminal nodes are split based on the sign and magnitude of the treatment effect,
causal random forest (Wager and Athey, 2018) where each terminal node is treated as its own
randomized experiment, and subgroup identification based on differential effect search (Lipkovich
et al., 2011) where the optimal split creates a subgroup with the largest positive treatment effect.
Tree based methods can be thought of as a subgroup identification algorithm, so these methods
excel when there exist subgroups that experience drastically different responses to the treatment
under study.

Existing methods for estimating ITE and learning individualized treatment regimes (ITR)
are usually designed for binary treatment options only. Li et al. (2022) extends RFIT to ac-
commodate observational data with multiple treatments. We propose a further modification to
RFIT in order to estimate ITE and ITR when the treatment is an ordered variable. This paper
is motivated by an educational data mining problem: evaluating the effect of a university tutor-
ing center on performance in STEM courses. The binary “treatment” may be whether a student
attends the tutoring center at least once during the semester. Of course, such a binary treatment
ignores dosage, namely how often a student goes to the tutoring center throughout the semester.
To handle this ordered treatment, we propose taking advantage of the randomization scheme in
random forest by randomly dichotomizing treatment into a binary variable at each split point.
This modification improves upon Li et al. (2022) for multiple treatments since the entire data
set is considered at each node, which allows more informative trees to be grown while reducing
the total number of trees required to achieve a respectable estimate. In addition, preserving the
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ordered structure of the treatment variable allows us to more accurately estimate ITE across all
levels of treatment.

The remainder of the paper is structured as follows. In Section 2, we first review RFIT (Su
et al., 2018), generalized propensity scores, and causal effect random forest of interaction trees
for multiple treatments (Li et al., 2022). We then present our proposed method for estimating
ITE and ITR based on observational study data with ordered treatments. In Section 3, we
present a simulation study comparing our proposed method to competing methods through the
metrics of mean squared error for the predicted response, optimal treatment classification, and
accuracy of variable importance rankings. In Section 4, we apply our proposed method to student
success data, estimating the effect of a student’s visit to a math and stat tutoring center on the
probability of passing an introductory statistics course at San Diego State University (SDSU).
In Section 5, we conclude the paper with a brief discussion.

2 Methods
2.1 Random Forest of Interaction Trees
RFIT was designed to estimate the ITE for binary treatments, namely a treated group and a
control group. The challenge is that we require an individual’s responses under treatment and
control, but in reality each subject is observed under either treatment or control, not both.
To solve this problem, RFIT uses Rubin’s potential outcome model (Rubin, 1974) where it
estimates the response under treatment for control subjects and that under no treatment for
treated subjects. We define Yi(0) as the response for the ith individual when not given treatment
and Yi(1) as the response for the ith individual when given treatment. RFIT estimates these
quantities and uses them to estimate the ITE as ̂IT Ei = Ŷi(1) − Ŷi(0).

RFIT is an extension of the random forest (RF) machine learning method (Breiman, 2001)
for the purpose of estimating the ITE using RCT data. RFIT differs from the standard RF in that
each tree grown in the forest is an interaction tree as defined in Su et al. (2009). In particular,
the splitting rule at each node is sought to maximize subgroup treatment heterogeneity instead
of maximizing the difference in response between the two child nodes. Let t denote a node under
consideration for a potential split, and tL and tR the left and right child nodes of t . Let YL(1) and
YL(0) represent collections of responses in the left child node for treated and control subjects,
respectively. The sets YR(1) and YR(0) are defined similarly for the right child node.

tL tR

Z = 1 YL(1), n1, s2
1 YR(1), n3, s2

3
Z = 0 YL(0), n2, s2

2 YR(0), n4, s2
4

Here Z ∈ {0, 1} denotes treatment assignment with 1 and 0 indicating treated and control
groups respectively, {n1, n2, n3, n4} denote the sample sizes, and {s2

1 , s
2
2 , s

2
3 , s

2
4} denote the sample

variances, in each cell of the 2 × 2 table, cross tabulated by the L/R child nodes and treatment
assignment. The split that is chosen is the one that maximizes the difference in ATE between the
two child nodes. Let AT EL = 1

n1
�YL(1) − 1

n2
�YL(0) and AT ER = 1

n3
�YR(1) − 1

n4
�YR(0) denote

the ATE in the left and right child nodes, respectively. Here �YL(1), �YL(0), �YR(1), and �YR(0)

denote the sum of responses for all the treated or control observations in the left or right child
nodes. For example, �YL(1) = �iYi · I {ith observation is sent to the left child node & Zi = 1},
where I {·} is the indicator function, gives the sum of responses for all the treated observations
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in the left child node. To measure the difference in AT EL and AT ER, the following test statistic
is used:

AT EL − AT ER

σ
√

1
n1

+ 1
n2

+ 1
n3

+ 1
n4

, (1)

where σ = ∑4
i=1

(ni−1)s2
i

n−4 and n = ∑4
i=1 ni . It can be shown that the above test statistic is

equivalent to the t-test statistic for β3 in the model

Yi = β0 + β1I (Zi = 1) + β2I (Xij < c) + β3I (Zi = 1)I (Xij < c) + εi. (2)

Here Yi denotes the ith response, Zi denotes the treatment for the ith subject, Xij denotes
the splitting variable, and c denotes the potential cut-point. The splitting variable and the
corresponding cut-point c that maximizes the squared value of the test statistic for β3 is chosen
as the best split. Each tree is grown using a bootstrap sample and only a subset of variables, of
size mtry, is used at each split point. The tree is then grown until it reaches a maximum depth
or minimum node size.

A safeguard should be placed in the code so that each terminal node has both treatment
levels. To estimate ITE from the RFIT model fit, the potential outcomes model is used: the esti-
mated response is obtained for each individual for when they do or do not receive the treatment.
To do this we subgroup observations in a terminal node into treatment and control groups and
then take the average response of each subgroup. The difference of these averages is assigned
to each individual in that terminal node as the estimated treatment effect. These estimates are
averaged across the entire forest to give the estimated treatment effect for each individual.

2.2 Generalized Propensity Scores

In observational studies, the treatment is not randomly assigned, which is the cause of selection
bias. If not properly accounted for, selection bias could lead to biased estimates of the treatment
effect. Rosenbaum and Rubin (1983) show that, conditioning on propensity scores, treatment
assignment and covariates are independent, which allows us to attain unbiased estimates of
the treatment effect. This holds true under two assumptions: first, the potential outcomes are
independent of the treatment assignment given the covariates, {Y (0), Y (1)} ⊥⊥ Z|X with X being
a vector of measured covariates; and second, each individual has a non-zero chance of receiving
each treatment option. These two assumptions together are called strong ignorability.

When the treatment assignment is binary, the propensity score is defined as the conditional
probability of being assigned treatment given the baseline covariates. In this paper we will denote
the propensity score as e, defined as e = P(Z = 1|X) where Z denotes the treatment variable
and X denotes a vector of covariates. Propensity scores can be estimated using any classification
machine learning method. Popular approaches include logistic regression and random forest.

The propensity score method can be extended to situations when the treatment variable has
more than two levels (Imbens, 2000). We refer to the propensity score when there is more than
two treatment levels as the generalized propensity score, defined as r(z, X) = Pr(Z = z|X),
where z ∈ {1, 2, . . . , m} denotes the value of a treatment variable with m levels. Generalized
propensity scores can be estimated using any multiple classification machine learning methods
such as multinomial logistic regression.
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2.3 Causal Effect Random Forest of Interaction Trees for Multiple Treat-
ments

RFIT makes the assumption that treatment is randomly assigned to each observation, so ap-
plying RFIT to observational study data could lead to biased estimates. To solve this problem
RFIT was extended to causal effect random forest of interaction trees (CERFIT) to handle
observational study data (Li et al., 2022). There are three changes made to RFIT to allow it
to handle observational study data, all of which involve using propensity scores during the tree
growing and prediction processes. The first change to RFIT is in the bootstrap sampling prior
to growing each tree. In RFIT, each observation has an equal probability of being sampled, but
in CERFIT a weighted bootstrap sample is used with weights given by wi = Zi

ei
+ 1−Zi

1−ei
, that

is inverse probability of treatment weighting (IPTW). Such weighting allows observations that
were unlikely to receive a treatment option they ultimately did receive, to have a higher chance
of being chosen in each bootstrap sample. This weighted bootstrap scheme helps adjust for the
self-selection bias present in observational studies. The second change to RFIT is to include
propensity scores in the linear model used to determine the best split. Modifying equation 2, we
consider the model

Yi = β0 + β1I (Zi = 1) + β2I (Xij < c) + β3I (Zi = 1)I (Xij < c) + β4ei + εi, (3)

where ei denotes the propensity score for the ith observation. The third change to RFIT is made
when calculating the predicted values in each terminal node. Instead of using the node average
for each treatment group to calculate the ATE in each terminal node, a weighted average is used
where each observation is weighted according to IPTW. The weighted ATE is calculated as

AT Ew = �iwiI (Zi = 1)Yi

�iwiI (Zi = 1)
− �iwiI (Zi = 0)Yi

�iwiI (Zi = 0)
, (4)

the difference in the weighted average response between treated and control subjects in the
terminal node, with weights assigned according to IPTW.

Li et al. (2022) also extends RFIT to multiple treatments. Three changes were implemented
to accommodate multiple treatments. The first change is to adopt the generalized propensity
score method so that the weights applied for bootstrap sampling and for making predictions in
terminal nodes are given by wi = r(zi, Xi)

−1. The second change is that at each potential split,
two random treatment levels are selected. The treatment thus becomes a binary variable, and
only subjects that were assigned one of the two randomly chosen treatments are used to choose
the best split. Because there are typically a lot more splits in the random forest than the number
of possible pairs of treatments, every pair of treatments should be selected, most likely multiple
times, across the entire forest. The modified model for splitting is

Yi = β0 + β1I (Zi = u) + β2I (Xij < c) + β3I (Zi = u)I (Xij < c) + β4r(zi, Xi) + εi (5)

for i ∈ {1, . . . , n : Zi = u or v}, where u and v denote the two randomly selected treatments.
The third, more minor, change is made when making predictions in terminal nodes. Instead of
grouping the observations in each terminal node into treatment and control groups, they are
grouped according to each level of treatment. As such, an observation will have a predicted
response for each category of treatment, which can be used to obtain the estimated treatment
effect comparing any category against the reference category. A drawback of this method is that
only a subset of the data is used at each internal node to select the best split, which in turn
may negatively affect the prediction performance of the random forest.
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2.4 Proposed CERFIT for Ordered Treatment
In this paper we propose a modification of Li et al. (2022) CERFIT in order to handle ordered
treatments. In many applications (such as in our motivating example of tutoring center visits),
treatment can be represented as an ordered variable. Even if a treatment variable is continuous
on the real line (which is rare in practice), percentiles of the treatment can be used to apply
the proposed method. Our proposed algorithm takes advantage of the randomization scheme in
RF by randomly dichotomizing treatment into a binary variable at each split. Since the random
dichotomization is performed at every split of each tree, all treatment levels may be selected as
the dichotomization point and dispersed over all the splits across the forest. The modified model
for splitting is

Yi = β0 + β1I (Zi < l) + β2I (Xij < c) + β3I (Zi < l)I (Xij < c) + β4ei + εi, (6)

where l denotes the dichotomization point and ei = ∑
z<l r(z, Xi) sums up generalized propen-

sity scores according to how the treatment variable is dichotomized at the split. Following the
randomForest R package, the default mtry value is set at p/3 for the regression problem at hand,
where p is the number of predictors. Equation 6 is similar to equation 5, but with a substantial
improvement: all the data are used in equation 6, instead of only a subset of data corresponding
to the two randomly selected levels of treatment values. A byproduct of this change is that the
propensity score used is the one corresponding to how treatment is dichotomized. These changes
recognize the ordered nature of the treatment variable and hence allow the proposed method to
perform better than Li et al. (2022) when the treatment variable is an ordered one. Furthermore,
using all of the data at each split point allows us to grow fewer trees than CERFIT for multiple
treatment.

Binary Response: Equation 6 applies when the response variable is continuous. When the
response variable is binary, a corresponding logistic regression model may be fit to search for the
best split. In particular, the left hand side of equation 6 may be replaced by Y ′

i = logit Pr(Yi =
1) = log Pr(Yi = 1){1 − Pr(Yi = 1)}−1. As before, the best split is the one that maximizes the
squared test statistic for H0 : β3 = 0.

Numerical Stability: A criticism of RFIT is that the best split is chosen based on a single
covariate without controlling for other covariates, as there is a possibility that the optimal split
could be affected by other covariates (Alemayehu et al., 2017). To control for this, the left
hand side of equation 6 may be replaced by residuals, denoted as Ỹi , from a linear regression
model where all covariates (but not treatment) are included. According to Li et al. (2022), using
residuals from a regression model in place of the original responses increases the prediction
accuracy of CERFIT. Similarly, when the response is a binary variable, a logistic regression
model may be fit and the residuals may be used as a continuous response when growing the
forest.

Weighting the bootstrap sample by IPTW may induce correlated data as observations with
smaller values of generalized propensity scores are sampled more often than others. To account
for this correlation, the robust standard error is used when calculating the test statistic for β3.

For each terminal node, the predicted outcome under each treatment is given by the
weighted average based on the subjects in the terminal node, with weights given by the in-
verse of generalized propensity scores. The estimated treatment effect for the terminal node is
the difference in the predicted outcome between two treatment levels, and may be obtained for
any pair of treatments. Any subject that ends up in the terminal node is assigned this estimated
treatment effect as their ITE. The ITE for a subject from the forest is the average treatment ef-
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Table 1: The proposed causal effect random forest of interaction trees (CERFIT) algorithm for
ordered treatments with binary response.

1. Estimate generalized propensity score r(zi, Xi) and calculate inverse probability weight wi.
2. Fit a logistic regression model with all covariates (but not treatment), and obtain
residuals Ỹi.
3. Draw bootstrap samples from the data using wi as sampling weights.
4. Grow an interaction tree based on each weighted bootstrap sample.
−4.1 At each node, randomly select mtry of the total p covariates from which to determine
the splitting rule. The default value of mtry is set at p/3.
−4.2 Randomly dichotomize the treatment variable.
−4.3 Among the mtry covariates selected, the optimal split is identified by maximizing the
robust squared Wald test statistic for testing H0 : β3 = 0, in equation (6) using residuals Ỹi

as outcome.
−4.4 Repeat steps 4.1 to 4.3 until reaching a pre-specified stopping rule (e.g., maximum tree
depth, minimum terminal node size).
5. Repeat steps 3 and 4 for ntree trees as desired, with a default value set at 500.

fect across all trees. The optimal treatment for each subject is the one associated with the largest
treatment benefit. As in the RF algorithm (Breiman, 2001), predictions of the ITE should be
based on an out-of-bag (OOB) sample, which is composed of the observations left out from the
weighted bootstrap sample. The algorithm for the proposed method is presented in Table 1.

3 Simulation Studies
To evaluate the effectiveness of the proposed method, simulation studies were conducted. Results
will be presented in terms of variable importance rankings, classification accuracy (%) for the
optional ITR, and prediction accuracy for the outcome measured by mean squared error (MSE).

The structure of the simulation studies was modified from the simulation studies found in
Zhu et al. (2015) and Li et al. (2022). Three different simulation scenarios were used and for
each scenario a sample size of n = 1000 was used for training and testing. All simulations were
done using the R programming language (R Core Team, 2021). The simulated data included ten
covariates with each being independently generated from a standard normal distribution.

The treatment variable was simulated from a binomial distribution with n = 5, Z ∼
Binom(5, m), so that each subject could receive a treatment option from {0, 1, . . . , 5}. The prob-
ability of success (treatment), denoted as m, depends on the covariates and varies from scenario
to scenario. The complexity of m increases from scenario 1 to scenario 3, see equations 7, 8,
and 9 below.

The response, Y , is modeled with the equation y(X, Z) = h(X) + g(X, Z) + ε, where h(X)

depends on X only and hence does not affect the ITR, and g(X, Z) contains interactions between
X and Z and hence defines the optimal ITR. For all three scenarios h(X) remains the same, and
is given by h(X) = .3X1 + .36X2 + .73X3 − .2X4 + .1X5 + .25X2

8 . On the other hand, the function
g varies in each scenario. Scenario 1 features a simple non-linear treatment interaction effect,
scenario 2 features a tree-like treatment by interaction effect, and scenario 3 features a complex
non-linear treatment by interaction effect. The functional forms of both m and g for the three
scenarios are as follows.
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Scenario 1
logit (m) = .3X1 + .65X2 − .35X3 − .4X4 (7)

g(X, Z) = (X1 + X2) ∗ log(Z + 1)

Scenario 2

logit (m) = .3I (X1 > .5) + .65I (X2 < 0) − .35I (X3 > .75) − .4I (X4 < .75) (8)

g(X, Z) = I (Z � 3) ∗ (X1 ∗ X2) + (Z � 4) ∗ (X1 + X2) + I (2 � Z � 4) ∗ I (X1 ∗ X2 < 0)

Scenario 3

logit (m) = .3X1 + .65X2 − .35X3 − .4X4 + .65I (X1 > 0)I (X1 > 1)

+ .3I (X1 > 0)I (X4 > 1) − .65I (X2 > 3)I (X3 > 0) (9)

g(X, Z) = −.05(Z − X1 + X2

4
− 3)2 + .5 ∗ Z ∗ I ((X1 − X2) > 0)

The proposed method was compared to Bayesian additive regression trees (BART) (Chip-
man, 2010) and CERFIT for multiple treatments (Li et al., 2022). BART was implemented using
the BART R package (Sparapani et al., 2021). The two CERFIT models, for multiple treatments
and ordered treatments respectively, were implemented using the CERFIT R package (Thorp
et al., 2022).

In this paper, we use minimal depth (Ishwaran et al., 2012) to quantify variable importance
for its computational efficiency. Minimal depth for any variable in a tree is defined as the smallest
distance between a node, where this variable is used as the splitting variable, and the root node.
If the variable is used more than once in the tree, the minimal depth is the depth between
the node that splits on this variable and is also the closest to the root node. If the variable is
not used in the tree, the minimal depth is given as the max depth of the tree, plus one. The
average minimal depth across the entire forest is used to measure variable importance. Variables
with lower average minimal depths are more important. Figure 1 presents box plots of average
minimal depths. Each box plot is based on the average minimal depths from 100 simulated data
sets with 500 trees grown for each data set. In each of the three scenarios the proposed CERFIT
method for ordered treatments is able to correctly identify the most important variables that
impact treatment effect despite the differing levels of complexity in each scenario. Note that in
all three scenarios, the only important predictors that impact treatment effect are X1 and X2.

Figure 2 shows the correct classification rate (%) for the optimal treatment. Comparisons
are made to BART and CERFIT for multiple treatment. Higher rates of correct classification
for the ITR indicate better performance. For all three scenarios, and on average, both of the
CERFIT methods perform better than BART. These results show that in order to recommend
the optimal treatment, it is crucial to incorporate the propensity score into the model when
using observational study data. In comparison to Li et al. (2022), the proposed method is a
winner in all three scenarios, indicating that preserving the ordered nature of the treatment and
using all available data at each split does lead to better predictions when the treatment variable
is truly ordered.

Figure 3 presents prediction accuracy for the outcome as measured by the mean squared
error (MSE). Again the proposed method is compared to BART and CERFIT for multiple
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Figure 1: Variable importance plots for three different scenarios based on 100 random forests,
with 500 trees in each forest. Smaller average minimal depths represent more important variables.
Variables X1 and X2 are the only important predictors that impact treatment effect in each
scenario.

treatment. Here smaller values of MSE indicate better accuracy. For all three scenarios, the
proposed method has better accuracy, on average, than CERFIT for multiple treatments (Li
et al., 2022). In comparison to BART, the proposed method has better accuracy than BART in
two of the three scenarios (scenarios 1 and 2). In scenario 3, BART has slightly lower median
MSE than the proposed method.
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Figure 2: Box plots of correct rate (%) of optimal treatment classification for three different
scenarios based on 100 random forests, with 500 trees in each forest. Higher percentages indicate
better performance. Three methods are compared: the proposed causal effect random forest of
interaction trees (CERFIT) method, Bayesian additive regression trees or BART (Chipman,
2010), and CERFIT for multiple treatments (CERFIT_M) (Li et al., 2022).

4 Application to Educational Data
This section presents an application of the proposed method to student success data, collected
from students enrolled in an introductory statistics course at San Diego State University. The
data, from 1386 students, include 15 covariates such as age, high school GPA, and SAT com-
posite score; see Table 2 for the full list of variables along with descriptive statistics for each.
Underrespresented minority (URM) is defined, by the California State University system, as



Estimating Individualized Treatment Regimes in Observational Studies 401

Figure 3: Box plots of mean squared error (MSE) of predicted outcome for three different sce-
narios based on 100 random forests, with 500 trees in each forest. Lower values of MSE indicate
better performance. Three methods are compared: the proposed causal effect random forest of
interaction trees (CERFIT) method, Bayesian additive regression trees or BART (Chipman,
2010), and CERFIT for multiple treatments (CERFIT_M) (Li et al., 2022).

people who identify as African American, Latinx, or Native American. The Compact Scholar
Program is offered to students from underprivileged communities (the word “compact” refers
to the agreement between SDSU and a local school district). The outcome variable is whether
the student passes an introductory statistics course, defined as earning a grade of C or better.
The treatment being evaluated is the number of visits to the Math and Stat Learning Center
(MSLC) on campus. The MSLC is a free tutoring center for students who wish to get help in
mathematics or statistics. We are interested in learning the effect of the number of visits for the
class on the probability of passing the course. Because students voluntarily choose to visit the
MSLC or not, these data are observational and the covariates that are associated with getting
a higher grade might also be associated with a student choosing to go to the MSLC. In order to
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Table 2: The variables included in the educational data set. The summary statistics given in the
last column are sample size (proportion) for qualitative variables and mean (standard deviation)
for quantitative variables.

Variable Name Value Summary

Categorical Semester S18 702 (0.51)
Predictors S19 684 (0.49)

Gender Female 837 (0.60)
Male 549 (0.40)

Underrepresented Minority No 833 (0.60)
Yes 553 (0.40)

Student Level Freshman 165 (0.12)
Sophmore 998 (0.72)
Junior 181 (0.13)
Senior 42 (0.03)

Education Opportunity Program No 1308 (0.94)
Yes 78 (0.06)

Compact Scholar Program No 1233 (0.89)
Yes 153 (0.11)

Scholarship Program No 1319 (0.95)
Yes 67 (0.05)

On Campus Housing No 900 (0.65)
Yes 486 (0.35)

STEM No 950 (0.69)
Yes 436 (0.31)

Campus GPA A 437 (0.32)
B 675 (0.49)
C 222 (0.16)
D 51 (0.04)
F 1 (0.0)

Continuous High School GPA 3.69 (0.30)
Predictors SAT Composite 1169.46 (130.79)

Total Units Enrolled 15.17 (2.04)
Age 18.62 (0.88)
Grade 778.20 (171.58)

Outcome Pass No 271 (0.20)
Variable Yes 1115 (0.80)

obtain unbiased estimates of the treatment effect, the propensity score method needs to be used
for causal inference. The main goal of the analysis is to identify the optimal number of visits for
each student in an effort to maximize their chances of passing the class.

Table 3 presents the observed frequencies for the number of visits to the MSLC for the
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Table 3: The observed frequencies for the number of visits to the Math and Stat Learning Center
for the introductory statistics course.

# of visits 0 1 2 3 4 5 6 7 8 9 10

Frequency 1010 214 73 25 16 8 7 2 5 4 2

# of visits 11 12 13 14 17 18 20 22 23 25
Frequency 5 3 2 2 2 1 1 2 1 1

Table 4: Crude passing rate by number of visits to the Math and Stat Learning Center.

#Visits #Students Passing Rate

0 1010 0.78
1 214 0.90
2 73 0.85
3 25 0.88
4 16 0.88

5-7 17 0.88
8-11 16 0.88
12+ 15 0.87

introductory statistics course. Note that the frequencies are rather small for any number of
visits larger than 4. Consequently, the levels of the treatment variable are grouped into 0, 1,
2, 3, 4, 5-7, 8-11, and 12+ visits, so that each level has a sufficient sample size, see Table 4.
Also included in Table 4 are the crude course passing rates (without adjusting for covariates)
for each visit bracket. It can be seen from Table 4 that there does seem to be a difference in
the passing rate between those students who did not go to the MSLC at all and those students
who went at least once. But, there does not seem to be much difference among students who
visited the MSLC at least once. However, the true benefits of MSLC attendance might depend
on individual student characteristics. To this end, the proposed CERFIT method was applied
to these data using 2000 interaction trees with an mtry value of 5.

Figure 4 presents the predicted ITE based on OOB samples, versus number of visits. The
ITEs are given relative to no visit to the MSLC. Almost all students would see a positive benefit
from going to the MSLC once. Most students would also benefit from going to the MSLC up
to 7 visits. However, only some students would benefit from going to the MSLC for 8 or more
times (last two violin plots). The group with three visits is clearly the group having the smallest
number of students who would receive a negative effect, and seems to have the highest chance
of being a student’s optimal treatment. Overall, the plots suggest that most students would
benefit the most from up to 4 visits to the MSLC. A possible reason for this finding is that a few
visits right before a midterm or final exam could really benefit a student. Another possibility
could be that some students with prior poor performance or low aptitude for statistics may be
attending more tutoring sessions but receiving less benefit. In terms of ITE variation, the group
with one visit seems to have the smallest variance out of all visit groups, which may be due to
the relatively large sample size (number of students in the group). For the same reason, the ITE
for last four visit brackets have the largest variance since these groups have the smallest sample
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Figure 4: Violin plots of individualized treatment effect (ITE) for each student at each treatment
level. The ITE’s are given in terms of the probability of passing the class, compared to no visit
to the Math and Stat Learning Center.

sizes.
Figure 5 presents average minimal depth for all the covariates used in the analysis, with

smaller minimal depths indicating more important variables that impact the treatment effect.
The results show that high school GPA, SAT composite score, and total number of enrolled
units during the semester are the variables that impact the treatment effect the most. While
SAT composite score and high school GPA are the usual suspects, the total number of enrolled
units is not. Figure 6 shows the relationship between the predicted ITE and the number of
visits to the MSLC, but broken down into three groups based on the number of units enrolled.
The three groups correspond roughly to students that were less than full time (3-13 units; 259
students), full time (14-16 units or about 5 courses with 3 units for each course; 867 students),
and more than full time (17 or more units; 260 students). The figure shows that, overall, students
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Figure 5: The average minimal depth of all covariates used in the analysis. Smaller average
minimal depths signify more important covariates that impact the treatment effect.

enrolled in the least units (blue solid curve) received higher benefits from visits to the MSLC.
While the curves for students enrolled in 3-13 and 14-16 units (blue solid and red dashed curves
respectively) do not cross, the curve for students enrolled in 17 or more units (green dashed
curve) starts out at the lowest position (smallest benefits from visits to MSLC) but then moves
higher crossing both of the other two curves. This finding suggests that there is a group of
“super-charged” students, who enrolled in a lot of courses, visited the MSLC many times, and
still received great benefits from these visits. One can also see from this Figure that 3 visits to
the MSLC seem to be optimal for most students.

Table 5 shows the average values of student characteristics and outcomes, grouped by their
recommended optimal treatment regimes (i.e., optimal number of visits to the MSLC). The
table shows that the majority of students were recommended between one to three visits to the
MSLC, and yet a sizable number of students were recommended four or more visits. No student
was recommended zero visits indicating that every student could benefit from visiting the MSLC
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Figure 6: Relationship between the individualized treatment effect (ITE) and the number of
visits to the Math and Stat Learning Center, broken down by three groups of students with
differing number of total enrolled units during the semester.

at least once. The table also shows that students who were recommended more visits had, on
average, a lower high school GPA and lower campus GPA. In addition, more URM students were
recommended more visits on average. From the outcome side, students who were recommended
the fewest (1-3) visits had a higher average course grade (out of 1030), and a higher probability
of passing the course, compared to the students recommended 4 or more visits. Interestingly,
even though students who were recommended more visits had lower grades, they did receive
higher benefits (ITE) from visits to the MSLC.
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Table 5: Average values of student characteristics and outcomes, grouped by their recommended
optimal treatment regimes (i.e., optimal number of visits to the MSLC).

1-3 Visits 4-7 Visits 8+ Visits

Number of Students 912.00 218.00 256.00

HSGPA 3.80 3.61 3.39
SATCOMP 1170.79 1179.59 1156.09
Total Enrolled 14.98 15.32 15.76
Campus GPA 3.24 2.72 2.82
URM 0.38 0.42 0.45
First Gen 0.13 0.15 0.12
Grade 803.51 715.76 741.24
Pass 0.86 0.64 0.73
ITE 0.12 0.19 0.18

One of the reasons to study ITE and ITR is that the same treatments may have very
different effects on different subjects. Figure 7 shows plots of ITE for ten randomly selected
students. We can see that students did experience drastically different responses to the same
levels of treatment. Circles in the plots indicate the observed (or actual) number of visits to
the MSLC. If a student’s plot does not have a circle around any of the points, it means that
the student did not visit the MSLC (the actual number of visits was zero). For each plot, the
number of visits with the highest ITE value is the optimal treatment regime for the student.
Observed values of selected variables for these randomly selected students are given in Table 6.
Students one, six, and ten see very similar ITE curves, where we see an overall increasing trend
as the number of visits increases. This finding can be explained in part by the students’ similar
values in both SAT composite score and high school GPA. What is interesting is that these
students had very different final grades, explained at least partially by their chosen treatment
level. While students one and ten did not visit the MSLC at all, student six went eight to eleven
times, which happened to be the recommended optimal number of visits for this student. Note
that students with low high school GPA and low SAT composite score really benefit from a
large number of visits to the MSLC. Students three, four, and nine see very similar trends in
that as their number of visits increases beyond 3, their ITE seems to have an overall decreasing
trend. As these students all have very good high school GPA and a full-time course load, their
time might be spent more effectively studying on their own beyond visiting the MSLC a limited
number of times. Note that there is substantial variability in the ITE curves in Figure 7 due to
limited sample size for the study, especially for the number of students who visited the MSLC for
three or more times. When using these curves for student advising, it is important to consider
the general trend in ITE as well as other factors such as student time constraints.

5 Discussion
In this paper we propose a novel method based on RFIT in order to estimate ITE and provide
ITR for observational study data with multiple ordered treatment levels. In order to attain
unbiased estimates of the ITE, generalized propensity scores are incorporated in the tree building
process as well as in the prediction procedure based on the terminal nodes. Note that in many
applications, treatment can be represented as an ordered variable, and even when the treatment
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Figure 7: Estimated individualized treatment effect (ITE) versus number of visits to the Math
and Stat Learning Center for 10 randomly selected students.

is continuous one may use its percentiles as ordered levels. A R package (Thorp et al., 2022) that
implements RFIT for binary, multiple ordered, and multiple unordered (categorical) treatments,
applicable to both RCT and observational data, has also been developed and made publicly
available. We are currently working on an extension of the RFIT algorithm to a time-to-event
response.

The results from our simulation studies show that the proposed method is effective and has
better comparative accuracy compared to two existing methods: BART (Chipman, 2010) and the
original CERFIT (Li et al., 2022). These two methods were chosen because BART was the most
competitive method among various methods that Li et al. (2022) evaluated in a comprehensive
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Table 6: Values of outcomes and selected covariates for the 10 randomly selected students in
Figure 7.

Student SAT HSGPA #Units #Visits URM 1st Gen Grade Pass

1 930 3.19 6 0 1 0 453.51 0
2 1070 3.23 12 2 1 0 1017.81 1
3 1340 3.94 16 0 0 0 900.13 1
4 1010 4.03 15 4 0 1 784.65 1
5 1260 3.09 18 0 1 0 250.49 0
6 970 3.28 17 8-11 1 0 810.76 1
7 1350 3.46 16 4 0 0 957.93 1
8 850 3.41 17 4 1 1 478.83 0
9 970 3.96 16 12+ 1 0 792.06 1

10 940 3.21 12 0 0 0 619.95 0

simulation study, while the CERFIT method of Li et al. (2022) is the method we modified
in order to handle ordered treatments more effectively. Using minimal depth as the variable
importance measure, the proposed method was able to correctly identify the most important
variables that impact the treatment effect. Note that variable importance in CERFIT measures
the ability of variables to impact the treatment effect. Such a variable importance measure is
not easily attained from BART. The variable importance results from Li et al. (2022) are very
similar to those from the proposed method for ordinal treatments.

In terms of prediction accuracy, the simulation results show that the proposed method was
able to attain a higher classification accuracy for the optimal treatment than BART (Chipman,
2010) and CERFIT for multiple treatments (Li et al., 2022) in all scenarios considered. In
addition, the proposed method attained better prediction accuracy, signified by lower MSE
for the outcome prediction, than BART and CERFIT for multiple treatments. This finding
held in all scenarios except for one, where BART had a slightly lower median MSE. Note that
the proposed method is designed specifically for predicting ITE, while BART is optimized for
outcome prediction. The fact that BART does not account for the observational nature of the
data, beyond adjusting for covariates in the tree growing process, probably hurt its performance
when applied to observational study data.

The proposed method was applied to student success data from an introductory statistics
course at San Diego State University. The results indicated that high school GPA, SAT composite
score, and total units enrolled during the semester were the most important variables that
impacted the effect of treatment (visits to the MSLC) on the probability of passing the course.
The results also showed that every student would benefit from going to the MSLC at least once,
and that for a majority of students the optimal number of visits to the MSLC was three. The
reason for this last finding might be that visiting the MSLC right before a midterm or final
exam could be very effective for students. Because of the small number of students going to the
MSLC for more than 4 times, the higher visit numbers were collapsed into a few brackets. Note
that even with grouping, the sample size in each bracket (with the smallest one at 15 students)
is still not large. A larger data set could allow us to estimate the ITE for each distinct number
of visits and reduce the variance of the estimates.

Work is currently being carried out that takes into account when visits to the MSLC take
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place, relative to the semester and assessment timelines, as the timing of the visits might also
impact their benefit. In addition, a simulation study is also currently underway to investigate the
comparative performance of the proposed and competing methods when the strong ignorability
assumption is violated, since real data may often have unmeasured confounders.
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