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Abstract

The potential weight of accumulated snow on the roof of a structure has long been an important
consideration in structure design. However, the historical approach of modeling the weight of
snow on structures is incompatible for structures with surfaces and geometry where snow is
expected to slide off of the structure, such as standalone solar panels. This paper proposes a
“storm-level” adaptation of previous structure-related snow studies that is designed to estimate
short-term, rather than season-long, accumulations of the snow water equivalent or snow load.
One key development associated with this paper includes a climate-driven random forests model
to impute missing snow water equivalent values at stations that measure only snow depth in
order to produce continuous snow load records. Additionally, the paper compares six different
approaches of extreme value estimation on short-term snow accumulations. The results of this
study indicate that, when considering the 50-year mean recurrence interval (MRI) for short-
term snow accumulations across different weather station types, the traditional block maxima
approach, the mean-adjusted quantile method with a gamma distribution approach, and the peak
over threshold Bayesian approach tend to most often provide MRI estimates near the median
of all six approaches considered in this study. Further, this paper also shows, via bootstrap
simulation, that the peak over threshold extreme value estimation using automatic threshold
selection approaches tend to have higher variance compared to the other approaches considered.
The results suggest that there is no one-size-fits-all option for extreme value estimation of short-
term snow accumulations, but highlights the potential value from integrating multiple extreme
value estimation approaches.

Keywords extreme value theory; generalized extreme value distribution; mean recurrence
interval; peak over threshold; snow water equivalent

1 Introduction
In many parts of the United States (U.S.), buildings must be designed to withstand harsh weather
conditions. One environmental hazard of particular interest in mountainous and northern states
is the weight of accumulated snow on a structure, also called the snow load. This quantity is
directly correlated with the water content of the accumulated snow, often called the snow water
equivalent (SWE). Historically, building design standards have been tied to x-year recurrence
intervals that depend upon the importance of the structure. For most structures, the “design”
snow load has been associated with a 50-year mean recurrence interval (MRI). However, recent
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engineering codes have begun to move away from the MRI-based approach in favor of “reliability-
targeted” load approach (Bean et al., 2021). Nevertheless, extreme MRI snow loads still play a
prominent role in engineering design and standards.

Traditional structure design for snow loads assumes a strong correlation between the weight
of snow on the ground and the weight of snow on a nearby roof. However, this assumption may
not hold for structures like ground-mounted solar panels (GMSP) with material properties that
encourage the regular shedding of snow. The shedding effect limits the amount of time that
snow can remain on the panels, which differs substantially from traditional roofing systems that
presume that accumulated snow stays in place for extended periods. This creates a pressing need
to understand the dynamics of both short and long-term snow accumulations on structures with
slick surfaces.

Addressing this need requires a change in the temporal scale of the snow measurement
considered. While current design loads are informed by annual maximum ground snow loads,
short-term design loads require the consideration of load accumulations at a weekly or daily
scale. This paper introduces a “storm-level” adaption of the extreme value distribution that
aims to evaluate x-day, rather than annual, accumulations of ground snow load. To do this,
we mimic the shedding of the snow accumulation process on panels by defining and extracting
snow accumulations over 1 to 6-day periods. The remaining sections of the paper proceed as
follows. We first present the background of extreme value theory in Section 2, followed by the
data collection and preparation process in Section 3. In addition, Section 3 describes a random
forests (RF) model for imputing SWE at weather locations where only snow depth has been
measured. In Section 4, we summarize the process of extracting single- and multiple-day snow
accumulations, followed by an exploration of multiple approaches for estimating the 50-year MRI
at more than 3,000 stations across the conterminous U.S. Section 6 concludes with a discussion
of the implications of these results for GMSPs and highlight future research opportunities to
better characterize short-term snow accumulations.

2 Background
Extreme value models focus on the tail behavior of a random process, which is necessary for
extrapolating future extreme events given a limited number of historical observations. The two
widely used methods for analyzing extremes are generally referred to as block maxima (BM) and
peak over threshold (POT). The BM method was described by Fisher and Tippett (1928), and
later proven by Gnedenko (1943), forms the Fisher–Tippett–Gnedenko theorem. The theorem
states that the maximum observations collected from blocks of observations in non-overlapping
periods converges to a generalized extreme value (GEV) distribution under the assumption
that the maximum values from each period are independent and identically distributed. The
distribution combines the two-parameter Gumbel, Fréchet, and Weibull distributions into a
single family of distributions bound together by a third shape parameter ξ . The GEV cumulative
distribution function (CDF) is represented mathematically as:

GEV (x;μ, σ, ξ) =
{

exp[−(1 + ξ(
x−μ

σ
)
− 1

ξ ] ξ �= 0,

exp[− exp(−(
x−μ

σ
))] ξ = 0.

(1)

The m-year MRI or return level is defined as the event whose magnitude is expected to be
exceeded, on average, once every m-years. This value is derived from the probability distribution
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describing the extreme events as:

1 − Pr(X � rm) = 1

m
, where rm is m-year return level. (2)

For example, a 50-year MRI is a value for which the area under the curve to the right of the
value is 1/50 = 0.02. Replacing with the left-hand-side of (1) with (2) gives:

1 − exp[−(1 + ξ̂ (
r̂m − μ̂

σ̂
)
− 1

ξ̂ ] = 1

m

exp[−(1 + ξ̂ (
r̂m − μ̂

σ̂
)
− 1

ξ̂ ] = 1 − 1

m
.

Solving for r̂m gives an estimate of the m-year return level as:

r̂m =
{

μ̂ − σ̂

ξ̂
[1 − {−log(1 − m)}−ξ̂ ] ξ �= 0,

μ̂ − σ̂ log{− log(1 − m)} ξ → 0.
(3)

Alternatively, the slightly more modern POT method focuses on extreme events separated
from the rest of the data, regardless of the time interval in which the event occurred. Pickands
III (1975) and Balkema and De Haan (1974) state that for a properly selected threshold, the
POT method is approximated by the generalized pareto distribution (GPD) represented math-
ematically as:

P(X > x|X > u) =
[

1 + ξ

(
x − u

σ

)]− 1
σ

(4)

then,

P(X > x) = ζu

[
1 + ξ

(
x − u

σ

)]− 1
σ

(5)

where ζu is the probability of exceeding a user-defined threshold u. The rk return level of the
POT method which is exceeded once every k observations is computed as:

ζu

[
1 + ξ

(
xk − u

σ

)]− 1
σ

= 1

k
(6)

Rearranging Equation 6 yields:

r̂k =
⎧⎨⎩û + σ̂

ξ̂
[
(
knxζ̂u

)ξ − 1] , ξ �= 0,

û + σ̂ [log
(
knxζ̂u

)ξ ] , ξ → 0.
(7)

For an N-year return level, where nx represents the number of observations per year, then
k = N ∗ nx . Thus, the N-year return level is:

r̂N =
⎧⎨⎩û + σ̂

ξ̂
[
(
Nnxζ̂u

)ξ − 1] , ξ �= 0,

û + σ̂ [log
(
Nnxζ̂u

)ξ ] , ξ → 0.
(8)

Bommier (2014) states that ζu can follow a poisson distribution. Hence ζu is estimated as:

ζ̂u = λ̂

nx
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Reformulating Equation 8 in terms of λ, the m-year return level is restated as:

r̂N =
⎧⎨⎩û + σ̂

ξ̂
[
(
Nλ̂

)ξ − 1] ξ �= 0,

û + σ̂ [log
(
Nλ̂

)ξ ] ξ → 0.
(9)

There is no consensus in the current extreme value theory literature as to whether POT or
BM should be generally preferred. Bücher and Zhou (2021) argues that POT is preferable for
quantile estimation, while BM is preferable for return level estimation. Ferreira and de Haan
(2015) states that BM method is efficient when the observations are not exactly independent
and identically distributed. On the other hand, the POT method is more flexible in applica-
tions where changing the block size is difficult (Ferreira and de Haan, 2015). The arbitrariness
of selecting threshold(s) for the POT method is one of the key difficulties associated with the
method. If the selected threshold is too low, the retained values will fail to give enough emphasis
to the distribution tail behavior. On the other hand, a high threshold increases the variance
of the estimators due to smaller sample sizes. For this reason, it is vital to set a threshold
that finds a good balance between the bias and variance of the model. The literature proposes
many diagnostic procedures for threshold choice. These procedures and their many variants can
be roughly categorized into two forms: graphical methods and probabilistic-based or analytical
methods. Coles (2001) outlines graphical methods that include the mean residual life (MRL)
plot and parameter stability plot, among others. The MRL is a plot of the mean excess against
a range of threshold values. Given the threshold stability property of the GPD, the plot should
be linear above the suitable threshold for which the GPD model is valid. On the other hand,
the parameter stability plot is based on the idea that if a threshold is suitable to approximate
a GPD model, then the shape and modified scale parameters should remain stable above other
thresholds. Figures 1 and 2 show an example of the MRL and parameter stability plot for a 1-day
snow accumulation, measured via snow water equivalent (SWE) at the Pittsburgh International
Airport, PA, weather station. In Figure 1, exceedances are approximately linear between thresh-
old values of 17 mm and 25 mm. In Figure 2, the parameters appear to stabilize around a
threshold of 23 mm, with subsequent values having a higher variance due to fewer exceedances.
The combination of these two approaches suggests a threshold selection at or near 23 mm.

These graphical approaches to threshold selection have been criticized for their subjective
nature (Coles, 2001; Scarrott and MacDonald, 2012; Yang et al., 2018). As an alternative, ana-
lytical methods have been proposed to automate the threshold selection process. Durrieu et al.
(2015) proposed an automated threshold selection method based on a point-wise data-driven
procedure to choose the threshold. Using a likelihood ratio test, thresholds are detected sequen-
tially from observations residing in the right tail of the generalized pareto distribution. The test
terminates once a tail is no longer detected at a statistically significant level. Solari et al. (2017)
automates the threshold selection process based on the Anderson-Darling EDF statistic and
goodness of fit test. As an alternative approach, Northrop et al. (2016) uses a Bayesian procedure
to select the optimal threshold using a Bayesian implementation of leave-one-out cross-validation
to compare the ability of the generalized pareto (GP) to correctly predict the density of withheld
observations using a range of thresholds as compared to the densities obtained using a valida-
tion threshold. Zoglat et al. (2014), inspired by the work of Beirlant et al. (2005), developed an
analytical method that selects the optimal threshold from a range of equally spaced thresholds
that minimizes the square error between the simulated and the observed quantiles for a variety
of probabilities. Zoglat et al. (2014) also used the likelihood ratio test to sequentially detect the
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Figure 1: Mean residual life plot of 1-day snow accumulations at the Pittsburgh Intl. Airport
weather station. The green lines represent the 95% confidence interval. Threshold values are in
millimeters.

Figure 2: Parameter stability plot of 1-day snow accumulations at the Pittsburgh Intl. Airport
weather station. The vertical line represents the 95% confidence interval. Threshold values are
in millimeters.

optimal threshold from a range of potential thresholds. Rather than selecting an optimal thresh-
old, Deidda (2010) used the concept of parameter threshold-invariance to develop a multiple
threshold method that provides parameter estimates as median values of re-parameterizations
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over a range of thresholds. This method was appropriate for regional data subjected to site-to-
site variability. Curceac et al. (2020) developed an automated threshold selection method based
on the threshold stability plot. This method fits a cubic smoothing spline and calculates the
rate of change. The optimal threshold is the point on the plot where the modified scale and
shape parameters reach a plateau. When compared to two previously discussed methods (Zoglat
et al., 2014; Thompson et al., 2009), Curceac et al. (2020)’s method provided more robust pa-
rameter estimates for hydrological extremes. In this paper, we compare versions of the POT and
mean-adjusted quantile (MAQ) method against the traditional block maxima (BM) method. For
the POT version, we consider a zero threshold along with the threshold selection approaches of
Northrop et al. (2016) and Durrieu et al. (2015). The mean-adjusted quantile method estimates
extreme value using Equation 9. For the MAQ version, we consider the gamma distribution and
the generalized extreme value distribution in the estimation process for extreme values.

3 Data Preparation and Estimation
All of the above-referenced approaches require direct measurements of the weight, or snow water
equivalent, of snow in order to apply them to structure design. Unfortunately, direct measure-
ments of the SWE are substantially more challenging to measure than other climate variables
such as temperature, wind speed, and snow depth. As such, there are relatively few weather
stations with consistent measurements of snow load to rely on in this analysis. The data spar-
sity problem is further exacerbated by data quality issues typical of any weather measurement,
but especially problematic in an analysis focused on extreme values. This section describes the
data collection process undertaken in this paper to screen out misrecorded measurements before
analysis. We then separately present a random forests (RF) model that imputes missing values
of snow load using the snow depth, snow duration, and other climate variables.

3.1 Data Collection

The daily snow depth (SNWD) and SWE measurements, both in millimeters, used in this analy-
sis were obtained from the National Oceanic and Atmospheric Administration’s (NOAA) Global
Historical Climatology Network – Daily (GHCND) (Menne et al., 2012). This dataset includes
measurements at National Weather Service (NWS) first-order stations (FOS), NWS co-operative
observer (COOP) stations, and Snowpack Telemetry (SNOTEL) stations across the contermi-
nous U.S. We examined snow seasons between 1858 and 2021, but not all stations were active
for all 164 seasons. A snow season begins in November of the previous year and ends in May of
the current year. Estimations of extreme x-day snow loads require long histories of continuous
snow measurements. Because of this, stations were only retained if there was at least 50% mea-
surement coverage (SWE or SNWD) of the snow season in at least ten different years. Using the
measurement coverage filter, we obtained 6,245 stations (428 SNOTEL, 5,566 COOP, and 251
FOS) suitable for consideration in our analysis.

3.2 Quality Control

It is common for SNWD/SWE measurement pairs to express a physically impossible relationship
within the historical record. These unrealistic measurements may cause serious misrepresenta-
tions of the distribution tail. Fortunately, many of these misreported values are already flagged
by NOAA as provided in the GHCND data download Menne et al. (2012). All NOAA-flagged
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Table 1: Percentage of missing values in snow information per station type. These percentages
are computed for snow years.

SNWD SWE

FOS 13.3% 78.9%
COOP 9.9% 94.2%
SNOTEL 28.8% 3.7%

outliers were removed prior to analysis. While NOAA-flagged values significantly improve qual-
ity control, Bean et al. (2021) demonstrate that the NOAA quality controls do not flag many
isolated and systemic data errors. Their efforts culminated in a manual list of misreported outlier
observations flagged using interactive explorations of historical snow measurements facilitated
by R’s plotly package (Sievert, 2020). This paper removes all outlier values manually flagged in
Bean et al. (2021) to ensure quality control. Additionally, stations were subjected to additional
quality control procedures, including:
• SWE observations with negative values are clearly in error and removed from consideration.
• SWE observations with snow density above 0.8 (i.e. density of pre-glacial snow) are clearly

outliers and are removed from considerations (Copland, 2022).
• In accordance with the precedent set by Tobiasson and Greatorex (1996), observations with

snow density less than 0.05 are not used in our analysis.
• SWE observations below 10 millimeters (mm) that increase or decrease by a factor of 100

on a daily basis are removed from consideration. Such errors in snow measurement usually
result from misplaced decimal points.

• SWE observations that show a 50% single-day increase when the previous day’s observation is
greater than 1000 mm are removed. Such a large daily increase exceeds the rainfall, let alone
snowfall, records for most of the United States (Donegan, 2019) and are likely unrealistic.

3.3 Estimating SWE

The prevalence of direct measurements of SWE is highly related to geographic location and
elevation. Table 1 shows that SWE data have a higher percentage of missing values than SNWD
for FOS and COOP stations. This implies that some or most low-elevation stations do not mea-
sure the weight of snow directly. For this reason, estimating SWE from snow depth is necessary
to characterize extreme loads for the entire country, and not just in the mountains of western
states where the SNOTEL stations are located.

Estimating SWE from snow depth is difficult due to the complex relationship snow density
shares with the local topography and climate (Sturm et al., 2010). The SWE/SNWD ratio at a
point in time is referred to as the specific gravity of snow, which is directly related to the snow
density (ηt). Numerous models have been developed in the literature as a general-purpose tool
to estimate SWE directly, or snow density which is converted to SWE using snow depth. Jonas
et al. (2009) developed a bulk density model using 12 different regression models to account
for different altitude and snow season classes on a bi-weekly basis. Their model was trained on
stations in the Swiss Alps, which likely have different climate and topography than most locations
in the United States. Sturm et al. (2010) used a nonlinear ANCOVA model within a Bayesian
framework to estimate monthly snow densities for snow climate classes. These conversion models
were developed using only mountainous snowpack measurements and are not necessarily well
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suited on a national scale or a daily basis. Wheeler et al. (2022) addresses the scaling issue using
annual maximum snow depth/SWE data pairs as input into a RF model to capture complex
nonlinear interactions between expected depth SWE ratios across the continental United States.
However, this model is not intended for use on sub-seasonal data. On the other hand, McCreight
and Small (2014) addresses the time step issue by developing a daily model using regression.
This model predicts SWE using multi-equation models calibrated according to the month of
the year and different climate classes. However, McCreight and Small (2014), like Sturm et al.
(2010) trained their model using only information from mountainous snowpack, which tends to
have greater snow densities than areas with mid-season snow melt. In light of this, we develop a
random forests daily density model to impute SWE using SNWD and other climate information
across the United States.

3.4 Snow Density RF model

This paper employs a RF model (Breiman, 2001) to approximate the complex relationship
between snow density and other environmental factors. Given that SWE is highly correlated
with SNWD, it is inefficient to model SWE directly, as the individual trees of the RF will be
dominated by splits on the variable SNWD. Thus, modeling the specific gravity of snow allows
us to focus on what factors influence the specific gravity of snow, which can then be multiplied
by SNWD to recover SWE. Sturm et al. (2010) highlights that bulk density model errors are
homoskedastic, while SWE errors are heteroskedastic.

The core dataset used to train and evaluate the snow density model came from contermi-
nous United States’ weather stations included in the GHCND Menne et al. (2012). This dataset
includes only available SWE/SNWD pairs from November 1, 1980, to May 30, 2021, for a total
of 41 snow seasons. The data is limited from the 1980 snow year because climate reanalysis
information used in the RF model only extends as far back as 1979. The initial data collection
resulted in nearly 3.5 million measurements in all conterminous forty-eight states. The snow
measurements are supplemented with daily climate reanalysis data from gridMET CLIMATE
source (Abatzoglou, 2011), which includes mean temperature, vapor pressure deficit, wind ve-
locity, and solar radiation. The gridMET is a dataset of daily high-spatial resolution ( 4km)
surface meteorological data covering the conterminous US. Table 2 contains the full list of vari-
ables used in model building, as well as their relative importance in the RF model predictions.
A total of 2.6 million observations (≈ 75%) are used to train the model with roughly 0.9 million
(≈ 25%) observations used for validation. Because the model is expected to impute SWE in
different snow years and climates, observations are partitioned into training and test sets using
snow years rather than randomly separating individual observations.

While RF permutation variable importance measures provide a sense of the individual in-
fluence of explanatory variables, it does not capture the interactive influence of the collection
of variables. To explore such collective influence, we fit two different RF models to the training
data. The two main hyper-parameters of the RF model – the minimum number of observations
in a terminal node and the number of randomly selected variables considered for splitting at each
mode – were tuned prior to conducting a 10-fold cross-validation. The first RF model, called
the “Snow Density RF_1”, is represented in Equation 10. This model incorporates information
within the current accumulated snowstorm for which the SWE is required. The term accumu-
lated snowstorm refers to snow that has accumulated on the ground from a single or several
different snowstorm events. It is important to note that as snow builds up on the ground, its
density is influenced both by climate variables and non-climate variables, resulting in different
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Table 2: Description of predictor variables used in the RF regression model. The larger the value
of “Importance”, the greater the loss in predictive accuracy due to the loss of information from
the associated variable in the RF model. The variable importance is computed on the storm-level
RF on the full dataset (1980-2021).

Climate Variables

Name Description Units Variables Importance

SRAD Mean Solar Radiation W/m^2 Sm 4660
TEMP Mean Air Temperature degK Tm 4430
ROLL_TEMP Rolling Average of TEMP degK Tr 2413
ROLL_VPD Rolling Average of VPD kPa Vr 1541
VPD Mean Vapor Pressure Deficit kPa Vm 1317
WIND Mean Wind Velocity m/s Wm 927

Other Variables

DAYS Number of days from
the current snow year Ds 7155

SNWD Snow Depth mm h 3413

GROUND Number of days snow
has been on ground G 3391

D2C Distance to Coast m Dc 2434
ELEV Elevation of station m Es 1995
ECO3 Level III Ecoregion E3 1239
ECO2 Level II Ecoregion E2 304
ECO1 Level I Ecoregion E1 209

accumulation and melting processes. Due to this reason, the Snow Density RF_1 model includes
the information from the current day’s estimation of the SWE and factors affecting the changing
conditions of accumulated snow on the ground. With variables such as ROLL_T EMP , DAYS,
GROUND, and ROLL_V PD, the RF can infer the changing conditions of accumulated snow,
thereby improving its prediction capability. The second RF model, called the “Snow Density
RF_2”, is represented in Equation 11. The model is designed to incorporate general information
on the day of the SWE estimation. That is, the RF model is trained based on the current climate
and non-climate variables without accounting for changes in snow conditions within the accu-
mulated snowstorm. Thus, both RF models take into account current-day of SWE estimation
information when training the models. Besides current-day information, the Snow Density RF_1
also takes into consideration changes in accumulated snow from the beginning of the storm. This
is the primary difference between the two models. Lastly, a classical regression model is trained
to serve as a benchmark comparison using Equation 12. The variable definitions for all these
equations are provided in Table 2.

RF_1 : ηt = f1(h, Tm, Tr, Vm, Vr, Sm, Wm, Dc, Es, E1, E2, E3, Ds, G) + εt (10)
RF_2 : ηt = f2(h, Dc, Es, E1, E2, E3, Ds, Tm, Vm, Sm, Wm) + εt (11)

Regression : ηt = β0 + β1h + β2Tm + β3Tr + β4Vm + β5Vr + β6Sm + β7Wm

+ β8Dc + β9Es + β10E1 + β11Ds + β12G + εt

(12)
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Table 3: Comparison of snow density estimation model on the test and train dataset. Error
measures include the root mean square error (RMSE) and the mean absolute deviation (MAD).

RF_1 RF_2 Regression

Train Test Train Test Train Test

RMSE 0.0332 0.0436 0.0539 0.0663 0.0721 0.0714
MAD 0.0196 0.0285 0.0352 0.0459 0.0501 0.0502

Table 4: Percentage of missing values vs relative percent reduction per station type after SWE
imputation. These percentages are computed for snow years.

Missing SWE Reduction in Missing SWE

FOS 13.1% 65.8%
COOP 35.3% 58.9%
SNOTEL 2.5% 1.2%

After training the three models, we used them to make predictions on the test data. A
comparison of the model performance on the training and test data is provided in Table 3. It is
apparent that the Snow Density RF_1 model has the smallest mean squared error (MSE) and
mean absolute deviation (MAD) on the test data, suggesting that it is better compared to the
regression model and the Snow Density RF_2 model. Hence, the Snow Density RF_1 model is
chosen as the best model, and it is used as a general-purpose tool for imputing missing SWE
values in this paper. The final model is re-trained using the full dataset. To impute the SWE,
the predicted snow density (̂η) is multiplied by the snow depth. This implies that missing snow
depth observations are propagated through the RF model. The percentage of missing SWE for
snow seasons after imputation, along with the percent reduction in missing values relative to
the data before imputation, are provided in Table 4.

4 Methodology
The data extraction process for single-day and multi-day change methods allows for consideration
of accumulated snow loads over short periods of time rather than across an entire season. This
allows us to investigate extreme value distributions under various snow-shedding scenarios, as
might be expected on GMSPs or other slick, steep-pitched surfaces. The following subsections
describe the methodology for extracting storm-level observations, along with the approach for
estimating 50-year MRI short-term snow loads at weather stations across the conterminous U.S.

4.1 Daily Change Method

In order to analyze the storm-level accumulations of ground snow load, we analyze the positive
sequential differences for a single or multi-day snow accumulations. This is different from an-
alyzing the measured snowfall, as fallen snow may melt on contact with the ground and does
not result in a structurally relevant accumulation of load. Further, note that the process only
considered positive accumulations of snow, which differs from typical time series modeling that
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considers all sequential changes in the measured variable of interest. As an example, let us
assume a time series of daily ground snow load for a single snow year of length n as:

{Xt}nt=1 = {X1, X2, . . . , Xn}, (13)

where t = 1 is the first day of the snow year and t = n is the last day of the snow year.
To obtain the daily sequential changes, we take the first-order difference of the series shown

in (13). In this paper, non-positive accumulations are assumed to imply the end of the snow load
accumulation and are represented as zero. Mathematically, we define the length n− 1 first-order
difference of the series as:

	Xpt
=

{
	Xt Xt > Xt−1

0 otherwise.
(14)

Single-day (D-1 or 1-day) Change method: The single-day change method assumes
a perfect weather condition with enough sunlight that ensures snow melts off panels within
24 hours. Thus, the method retains positive observations from Equation 14 that represent daily
snow on panels. Mathematically, we define the observations of the D-1 method from Equation 14
as:

{	Xp2, 	Xp3, . . . , 	Xpk
} (15)

where 	Xpi
> 0 for i = 1, 2, . . . , k, and k is the total number of positive changes.

Multi-day Change method: The single-day change method may be risky for use in
engineering practice as it is not guaranteed that all snow will shed off of a slick surface (like a
solar panel). There are many weather factors that may cause snow to “stick” between storms.
As a result, we introduce the multi-day change method, which considers sequential consecutive
positive differences in snowpack conditions over an arbitrary time. Given the sequential nature
of the method, a D-2 method is made up of up to two consecutive sequential positive daily
changes in a snow load. This implies that the D-2 day method includes both single day storms,
as well as the sum of two consecutive single day storms when relevant. As an example, we define
a consecutive ten-day series of daily changes from Equation 14 to describe the D-2 method. The
following steps show how the multi-day change method captures D-2 observations.

{	Xp2, 	Xp3, 	Xp4, 	Xp5, 	Xp6, 0, 0, 	Xp9, 0, 	Xp11}
{(	Xp2 + 	Xp3), (	Xp4 + 	Xp5), (	Xp6), (	X9), (	Xp11)} (16)

Equation 16 shows that sequential positive changes in snow accumulation are treated in
blocks rather than using a moving window. Thus, if we have five days of positive consecutive
differences, we will calculate the quantity 	Xp2 + 	Xp3 , 	Xp4 + 	Xp5 and 	Xp6 , but we will
not calculate the quantity 	Xp2 + 	Xp3 . This limitation was imposed due to computational
constraints, as the blocking approach allows for fast dataset segmentation. Additionally, sliding
window approaches would make it so that some observations would be considered more than
once in the distribution fitting, creating strong correlations between measurements that we
are not currently equipped to address. Future studies should consider ways to overcome the
computational and statistical barriers to incorporating moving window approaches.

This process can be extended to accumulation periods longer than two days. In this paper,
the x-day method, where x > 2, extracts observations as a sum of x-consecutive positive daily
sequential changes. The requirement of consecutive positive daily changes means that any re-
duction in accumulated snow within an x-day period will result in a reset of the x-day sequence.
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Table 5: Percentage of storms eliminated by the snowfall indicator for Day-1,-2, and -3 loads.
Snowfall indicator marks the start of the data extraction process.

Day 1 Day 2 Day 3

FOS 55.2% 52.3% 51.3%
COOP 60.8% 57.2% 55.7%

SNOTEL 38.2% 33.3% 29.8%

This strategy assumes that any melting or reduction of snow will be associated with a “sliding”
event on relevant structures, which will reset the snow accumulation totals to zero. For this
reason, multiple-day periods are only counted if each day in the sequence has a positive snow
accumulation. One future extension of this study would be to allow for slight reductions in the
accumulated snow in the middle of an x-day period as long as the start-to-finish change in the
snow load is larger than any of the individual one-day accumulations within the same period.

As part of our methodology, we distinguish legitimate increases in snow load caused by
snowfall from random increases not caused by snowfall for the start of the individual extraction
process. SWE, or snow load, is the water content of accumulated snow at a given point in time.
It is impossible for the weight of accumulated snow to increase without snowfall feeding the
snowpack. However, there are times when snow load (SWE) measurements show small increases
simply due to a lack of measurement precision. These spurious increases in the snow load have
the potential to infect our daily change method with an excess of small, positive daily changes.
To avoid this, the variable snowfall is used to validate recorded increases in the snow load at a
daily scale. This paper uses non-zero measurements of 24 hr snowfall as an indicator variable to
trigger the start of a single and/or multiple-day snow accumulation event. In other words, a non-
zero Xpt

, which is based on accumulated snow, is only retained if the weather station separately
recorded a positive value for snowfall in any amount. This indicator variable is available for
FOS and COOP stations but not SNOTEL stations. Due to a lack of information on snowfall
data at SNOTEL stations, positive sequential changes above 3 mm are used to trigger a snow
accumulation event. This was an arbitrarily selected threshold intended to capture small, yet
legitimate, accumulations of snow while removing the majority of spurious snowpack increases.
Table 5 shows the percentage of storms eliminated after accounting for snowfall. Since the trigger
for a snow accumulation event at SNOTEL stations is fixed (at 3mm), the table shows a low
storm removal rate when compared to FOS and COOP stations with a snowfall variable.

4.2 50-year Mean Recurrence Interval (MRI) Estimation

This paper defines an x-day “design” snow load as a 50-year MRI snow load event. We exam-
ine six different approaches using three different MRI estimation methods. The MRI estimation
methods include the block maxima (BM), the mean-adjusted quantile (MAQ), and the peak over
threshold (POT) method. Table 6 shows the six different approaches using the three different
MRI estimation methods. The first method/approach, called the block maxima method, esti-
mates design loads by fitting maximum annual x-day loads to a GEV distribution and extracting
the 98th percentile. This method has long been acknowledged as data inefficient, as only one of
the potentially many large storm events in a single snow season is retained. This is one of the
primary arguments for the POT method to extreme value analysis, which considers all measured
values over a user-defined threshold. One complication with using traditional POT to analyze
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Table 6: Types of MRI estimation approaches explored in the analysis. Distributions include
generalized pareto (GP), generalized extreme value (GEV), and gamma distribution.

MRI Estimation Approach Name Distr.

Block Maxima BM GEV
POT using zero threshold ZERO GP
POT using Northrop et al. (2016)’s threshold selection BAYES GP
POT using Durrieu et al. (2015)’s threshold selection FREQ GP
Mean Adjusted Quantile (MAQ): GEV GEV GEV
Mean Adjusted Quantile (MAQ): Gamma GMA Gamma

accumulated ground snow loads is the high correlations between daily snowpack measurements
over the season. This is because the snow from the previous day is often fully present in the sub-
sequent day’s snow load value, creating large correlations in measurements of accumulated snow
across time. Our method of looking at x-day changes is more conducive to the POT approach
sequential changes in the snowpack across time are more likely to be independent.

The considered variations of the POT method are related to the processes used to se-
lect the threshold. For the second estimation approach, we consider a naive threshold of zero
(ZERO). Here, we select a threshold of zero for the x-day load values to model the generalized
pareto distribution. Evaluation of the sensitivity of the 50-year MRI events to the threshold
selection allows us to highlight the importance of the threshold in modeling extremes. Conse-
quently, the ZERO approach can be considered a benchmark for the third and fourth estimation
approaches that employ an automated threshold selection algorithm. The third estimation ap-
proach (BAYES) automatically selects the optimal threshold using a Bayesian method proposed
by Northrop et al. (2016). This methodology uses a Bayesian implementation of leave-one-out
cross-validation to compare the predictive ability of generalized pareto (GP) inference based
on different thresholds. In this framework, we validate training thresholds using no fewer than
50 threshold excesses when making inferences about a GP distribution as recommended by
Jonathan and Ewans (2013). We consider 30 unique training thresholds due to our relatively
small sample sizes with thresholds ranging from the 10th percentile to the largest observed value
with at least 50 threshold excesses. The fourth estimation approach (FREQ) also uses an auto-
mated threshold selection process. The optimal threshold is selected using a frequentist method
proposed by Durrieu et al. (2015). This method uses a point-wise data-driven procedure to select
the threshold in two steps. The first step employs a sequence of likelihood ratio tests to identify a
parametric fit to the GP distribution. Once a threshold is detected, the next step maximizes the
penalized likelihood of the GP distribution to select an adaptive threshold that is less than the
originally selected threshold. The penalization step is necessary to ensure that bias associated
with the original threshold is reduced. For the different POT approaches, once the threshold is
selected, the exceedances are fitted to the GP distribution. To estimate the 50-year design load,
the 98th percentile is adjusted based on the average number of exceedances per snow year as
demonstrated in Equation 9.

Lastly, we estimate the design loads using the mean adjusted quantile (MAQ) of a distri-
bution. Like the POT method, the MAQ method fits distributions to daily x-day values, but
the estimated quantile of the fitted distribution is adjusted based on the average accumulation
events observed each year. The adjustment is necessary given that we need to estimate a 50-year
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Extract x-day loads

METHODExtract annual loads Select threshold k

Fit GEV/Gamma dist
to loads

Qd = 1 − 1
R∗λ

Estimate MRI using Qd

Fit GEV dist to annual loads

Estimate MRI using
BM approach.

Fit GP dist with k threshold
to loads.

Fit Poisson dist to load
counts given k threshold

Estimate MRI using
POT approach.

BM POT

MAQ

Figure 3: Workflow for estimating the 50-year mean recurrence interval (MRI) value from short-
term loads. Distributions include generalized Pareto (GP), generalized extreme value (GEV),
Gamma and Poisson. λ - mean of load count per snow season, R - return period (50 years).

event from daily data as shown in Equation 9. For the fifth and sixth estimation approaches
(GEV and GMA), the mean adjusted quantile method is utilized, in which the GEV and gamma
distributions are employed, respectively. These distributions are commonly used probability dis-
tributions for climate variables such as rainfall and snow. In Figure 3, we show a flowchart of
the different methods employed in MRI estimation. We require a station with at least 30 obser-
vations to estimate the x-day design snow load, except for the POT Bayesian approach, which
requires 200 observations. The 200 observations allow us to consider a wide range of potential
thresholds while ensuring a minimally acceptable sample size in the tail of the distribution for
inference.

5 Results

5.1 Short-Term Design Snow Load Estimates

In this study, we estimate the x-day design snow loads for several weather stations across the
country. As discussed in the previous section, the design loads are estimated using six different
estimation approaches from three different MRI estimation methods. Table 7 shows the number
of qualified stations used in each MRI estimation approach. From the table, the BAYES approach
has the lowest convergence rate despite requiring at least 200 observations for distribution fitting.
Only stations with MRI values across all six approaches are included in the comparison.

For engineers, it is necessary to determine the maximum weight of snow that can collapse a
structure, in this instance, ground-mounted solar panels. Historically, the design snow load has
been associated with the 50-year MRI snow load event multiplied by a safety factor. Using the
return level approach discussed in the background section, the 50-year event can be estimated
by fitting a distribution to the data set and extrapolating from the tails of the distribution. The
extrapolation process is necessary since the magnitude of the event value exceeds the amount of
data that can be observed. Extrapolations are, however, difficult to validate directly since they
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Table 7: Comparison of station convergence rate for each MRI estimation approach. See Table 6
for MRI estimation approaches names and descriptions.

MAQ
(GEV) BM POT

(BAYES)
MAQ

(GMA)
POT

(FREQ)
POT

(ZERO)

Day 1 Number of stations 3,124 3,124 1,696 1,232 3,124 3,124
Convergence rate 100% 100% 69.3% 100% 99.4% 100%

Day 2 Number of stations 3,031 3,031 1,449 1,232 3,031 3,031
Convergence rate 100% 100% 92.3% 100% 99% 100%

Day 3 Number of stations 3,005 3,005 1,359 1,232 3,005 3,005
Convergence rate 100% 100% 94.7% 100% 99.3% 100%

Day 4 Number of stations 2,996 2,996 1,342 1,232 2,996 2,996
Convergence rate 100% 100% 94.8% 100% 99.3% 100%

Day 5 Number of stations 2,994 2,994 1,329 1,232 2,994 2,994
Convergence rate 100% 100% 95.1% 100% 99.2% 100%

Day 6 Number of stations 2,993 2,993 1,324 1,232 2,993 2,993
Convergence rate 100% 100% 95% 100% 99.2% 100%

would require data in the extrapolation area, which is not available. In this regard, it is difficult
to determine the true value of the 50-year event. As the actual 50-year event is unknown, the
only useful method for validating the MRI estimation approaches is to determine the relative
level of agreement across methods. Figure 4 displays the relative ratios across the different
MRI estimation approaches. These ratios are computed by dividing an x-day design snow load
estimate by the median x-day design snow load of the six approaches. This figure combines 50-
year MRI estimates from the D-1 to D-6 scenarios, and only shows results for qualifying stations
with estimates across the different estimation approaches. The block maxima approach uses
zero-inflated probability distributions to account for the fact that some locations have annual
maximum snow loads of zero in certain years. With that in mind, we observed that accounting
for zero-inflated snow years using precedence set by Buska et al. (2020) had a negligible effect
on the MRI estimates. Across the different station types (i.e., FOS, COOP, and SNOTEL),
we can see that the traditional block maxima (BM), the mean-adjusted gamma (GMA), and
POT Bayesian (BAYES) approach tend to be closer to the reference line of 1, which represents
values that equal the median of the six approaches. Figure 4 also shows that the BM approach
is conservative since most of the BM estimates fall about the reference line, with relatively
little variation in the relative values across stations. The approach’s conservative nature may be
attractive to structural engineers who find it advantageous to use overestimated design loads in
order to avoid structural failures. In contrast, the GMA and BAYES approach exhibits a greater
relative variation than the BM approach.

The relative change in the 1-day design snow load estimates for the BAYES and GMA
with the BM approach as the reference point is compared in Figures 5. The relative change is
computed as the difference between the design load estimate between the compared approach
(BAYES and GMA) and the reference approach, divided by the design load of the reference
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Figure 4: Comparison of relative ratios across the MRI estimation approaches. A relative ratio
of 1 (dashed grey line) means that the estimation approach is close to the median of the MRI
values for an x-day design snow load estimate. See Table 6 for MRI estimation approaches names
and descriptions.

approach. In the spatially continuous map, the layers are created using the RGAM (regional
generalized additive model) framework. The framework is accomplished by the remap R package
Wagstaff (2021). The response variable is 1-day 50-year event value, while the predictor variables
include elevation, mean temperature of the coldest month (30-year average), winter precipitation
(30-year average) latitude and longitude, as was used to map the current design snow loads in
ASCE 7 (ASCE, 2022) as explained in Bean et al. (2021). The framework creates separate
generalized additive models for different geographical regions represented with the 105 level
III ecoregions. An ecoregion is an area in the United States partitioned according to similar
ecological characteristics. The different prediction surfaces are then stitched together to create
a spatially continuous map. However, predictions are made for ecoregions and US states with
weather stations greater than 4. Figure 5a shows the BM method tends to produce higher MRI
estimates than the GMA method in the Midwest of the US by about 25%. On the west coast
and parts of the east coast, the BM method produces design loads that are 50% higher than
the GMA method. On the other hand, Figure 5b shows that the BM method predominately
produces MRI estimates that are about 25% higher than the BAYES approach.

The POT method has the limitation of sensitivity when it comes to threshold selection.
As demonstrated in Figure 7, the sensitive nature of the threshold leads to a higher variance.
Based on an x-day Daily Change method, it is expected that the estimated 50-year event will
increase or remain the same as the number of days increases. The POT, however, tends to have
unexpected behavior regarding some station estimates. Table 8 shows the x-day 50-year event
for the Algona weather station in Iowa. The table illustrates that the event estimates for the
POT Bayesian tend to increase and decrease as the extracting day increases from day 1 to
day 6. This unexpected behavior of non-increasing event value may be due to the selection of
different threshold values. As the threshold varies, different exceedances are fitted to the GP
distribution. Despite addressing the variance-bias issue with the POT method, the Northrop
et al. (2016) approach still leads to substantial variation. This issue applies to Durrieu et al.
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Figure 5: Difference plot for the GMA and BAYES approach for 1-day design snow load with
the traditional block maxima approach as the reference point. Negative relative change values
imply that the BM approach overestimates compared to BAYES or GMA approach.

(2015)’s method, where some weather stations have non-increasing 50-year event values as x-day
change increases.

We next examine how design loads using the Daily Change method compare with design
loads obtained using season-long accumulations of snow. Figure 6 shows a ratio plot between
annual season-long versus an extreme case of the x-day Daily Change method (1-day) on the
continental US map.The ratio is computed as the design load value of 1-day over design load of
the annual season-long method. The design load is estimated using the block maxima approach
for both methods. The mapped values shown in this figure use the same mapping procedure
described in conjunction with Figure 5. In Figure 6, we see that the lower ratio values (from
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Table 8: 50-year events for Algona weather station in Iowa across the BM, BAYES, and GMA
estimation approach. Event values are measured in Kilopascals (Kpa). See Table 6 for MRI
estimation approaches names and descriptions.

Day Change BM BAYES GMA

1 0.93 0.89 0.79
2 1.03 1.06 0.94
3 1.05 0.99 1.01
4 1.05 0.98 1.03
5 1.05 0.88 1.04
6 1.05 0.88 1.06

Figure 6: MRI ratio plot of Day-1 block maxima approach to peak, season-long accumulation
block maxima approach.

0 to 0.2) tend to congregate in the western part of the country. These low ratio areas tend
to be located in the mountainous locations. Figure 6 also shows that the northern part of
Minnesota, North Dakota, Michigan, and Maine have a ratio of 0.2 to 0.4. The ratio values tend
to increase from 0.2 to about 0.8 as we move from north to south for the Midwest, Mid-Atlantic,
and Northeast. This pattern shows that stations farther south across the conterminous U.S.
have similar short-term maximum snow load MRIs to their respective traditional design snow
load standards. That means that ground-mounted solar panels in the south of the Midwest, Mid-
Atlantic, and Northeast may have similar snow load requirements as traditional roofing systems.
Thus, using MRI values associated with season-long accumulations of snow for ground-mounted
solar panels (GMSP) may lead to overly conservative design requirements in the western U.S.
This would result in unnecessarily expensive solar panel mount designs.

This paper considers 1-day MRI to be the most extreme version of short-term snow accumu-
lation. When used in an engineering setting, 1-day design loads may be non-conservative, since
it is not guaranteed that there will be sufficient sunlight to shed all the snow within 24 hours in
all parts of the United States. The potentially inappropriately low design load obtained using
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Table 9: Average MRI change from Day 1 to Day 6 for the BM, GMA, and BAYES approach.
Ri - MRI rate of change from Day i to Day i+1, where i = 1, 2, 3, 4, 5. See Table 6 for MRI
estimation approaches names and descriptions.

R1 R2 R3 R4 R5

BM FOS 16.9% 7.2% 2.6% 1.4% 0.8%
COOP 17.8% 6.7% 3.1% 2.1% 0.9%
SNOTEL 34.6% 17.6% 14.5% 9.7% 6.9%

BAYES FOS 9.5% 8.8% 4.3% −0.8% 1.7%
COOP 14.1% 8.5% 4.6% 4% 1.9%
SNOTEL 36.9% 21.4% 16.7% 15.2% 9.2%

GMA FOS 17.9% 4.8% 1.8% 0.8% 0.4%
COOP 14.5% 5.5% 2.4% 1.1% 0.5%
SNOTEL 52.7% 25.5% 13.7% 8% 4.6%

1-day loads could result in structural failure. Table 9 illustrates the average increase in MRI for
the BM, GMA, and BAYES approaches. In these approaches, the rate of change decreases as
the number of days passes from day 1 to day 6. It is generally observed that design snow loads
increase consistently for mountainous locations (i.e., SNOTEL) as the x-day window increases,
whereas for non-mountainous and southern/mid-latitude locations (i.e., COOP and FOS), the
increases tend to level out around day 5 or 6.

5.2 Bootstrap Results

While it is desirable to have a consensus among approaches regarding the estimated 50-year
MRI event. It is also desirable to have approaches that are robust to slight changes in the input
data. Such changes can be the result of new snow measurements or corrections to measurements
in the historical record. In this section, we investigate the performance of the 6 MRI estimation
approaches via a bootstrap simulation. In our study, daily snow load measurements x1, ..., xN

at a given station are bootstrapped N times with replacement. For each qualified station, 100
bootstrap samples are created. In order to obtain bootstrap samples for the traditional block
maxima method, maximum daily loads in each snow year are taken from daily bootstrap loads.
Next, we use the six estimation approaches to estimate design snow load estimates for the 100
bootstrap samples. The coefficient of variation (COV), which is the standard deviation divided
by the mean, is then computed for each estimation method. Figure 7 shows the coefficient of
variation plot for each method across station types. A total of 806 weather stations with MRI
values across the six estimation approaches were used. The figure shows that the relative size
of standard deviation to the mean is lowest for the GMA approach as less emphasis is placed
on the tail of a gamma distribution. It can be seen that the two automated threshold selection
methods tend to have a high coefficient of variation compared to a fixed threshold at zero.
The results highlight the sensitivity of MRI values to automated threshold selection, due to
the sensitivity of the GPD parameter estimates to the selected threshold value. This sensitivity
could be problematic when trying to use an automatic threshold selection method on thousands
of stations across the country as the risk of degenerate distribution fits is higher than some of
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Figure 7: Comparison of the coefficient of variation (CoV) across MRI estimation approaches
for a 1-day load. See Table 6 for MRI estimation approach names and descriptions.

the other methods considered.

6 Conclusion
Despite their prevalence, design practices for structures that shed accumulated snow regularly
have remained largely unspecified. This paper presented a “storm-level” adaptation of previous
structure-related snow studies that is designed to estimate short-term, rather than season-long,
accumulations of snow load. Our proposed data extraction process, called the Daily Change
method, was based on the concept of sequential blocks of snow accumulations, which considers
the sequential consecutive positive differences in the weight of settled snow over an x-day period.
The process allowed us to investigate extreme values under various snow-shedding scenarios, such
as those observed on ground-mounted solar panels. It has been shown that most non-mountain
and non-northern (i.e., FOS, COOP) stations have season-long 50-year MRI snow loads that
are similar to the 5-day or 6-day MRI snow loads. This finding reinforces the idea that design
standards for structures known to shed snow regularly cannot rely upon traditional design
estimates, which assume season-long accumulations of snow on the structure.

This paper provided details on the quality control measures imposed on the data before
performing our analysis. This included the development of a random forests model that employed
rolling averages of relevant climate variables to estimate missing daily values of SWE or snow
weight. These estimates are crucial to supplement the lack of snow weight information at stations
that measure only snow depth. We compared six different approaches of extreme value estimation
on short-term snow accumulations to illustrate the implications of those approaches as applied
to snow load design. It has been observed that the POT Bayesian (BAYES) approach, as well
as the mean-adjusted quantile with a gamma distribution (GMA) approach and the traditional
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block maxima (BM) approach tend to form a consensus when it comes to estimating 50-year
MRI loads (i.e., the estimates are close to one another). However, through a bootstrap study,
the POT method exhibited a higher variance (CoV) for slight changes in the input data. The
results suggested that the advantage of data efficiency associated with the POT method is
invalidated due to the uncertainty in the threshold selection. A future avenue of research may
consider ensemble estimates of extreme snow loads using multiple extreme value approaches for
estimating these design events. We anticipate that ensemble estimates will prevent the serious
consequences of poor x-year MRI estimates of snow loads derived from degenerate distribution
fits, which are bound to occur when estimating extreme values at hundreds or thousands of snow
measurement locations. Most importantly, the paper has provided a framework for practical
comparisons of the efficacy of popularly used approaches for modeling extreme accumulations
of snow over short periods of time. This framework will be helpful as we consider the potential
evolution of snow accumulation patterns (both in terms of intensity and duration) in a changing
climate.

Software
All analysis for this paper was performed in R 4.2.0 (R Core Team, 2022) with the following
packages:
• rnoaa (Chamberlain, 2021)
• tidyverse (Wickham et al., 2019)
• snowload2 (Bean et al., 2021)
• extRemes (Gilleland and Katz, 2016)
• fitdistrplus (Delignette-Muller and Dutang, 2015)
• extremefit (Durrieu et al., 2018)
• remap (Wagstaff, 2021)
• threshr (Northrop and Attalides, 2020)
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