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Abstract

Bayesian methods provide direct uncertainty quantification in functional data analysis applica-
tions without reliance on bootstrap techniques. A major tool in functional data applications is
the functional principal component analysis which decomposes the data around a common mean
function and identifies leading directions of variation. Bayesian functional principal components
analysis (BFPCA) provides uncertainty quantification on the estimated functional model com-
ponents via the posterior samples obtained. We propose central posterior envelopes (CPEs) for
BFPCA based on functional depth as a descriptive visualization tool to summarize variation
in the posterior samples of the estimated functional model components, contributing to un-
certainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and
targets model parameters within a hierarchical modeling framework using modified multiplica-
tive gamma process shrinkage priors on the variance components. Functional depth provides
a center-outward order to a sample of functions. We utilize modified band depth and modi-
fied volume depth for ordering of a sample of functions and surfaces, respectively, to derive at
CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are
showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a
sample of power spectral densities from resting state electroencephalography where they lead to
novel insights on diagnostic group differences among children diagnosed with autism spectrum
disorder and their typically developing peers across age.

Keywords electroencephalography; functional data analysis; modified band depth; modified
volume depth; uncertainty quantification

1 Introduction
The literature on functional data analysis (FDA) has seen rapid growth in the past two decades
in the analysis of data where the basic unit of measurement is a high-dimensional object such as
a curve, surface or an image (Ramsay and Silverman, 2005). The wide spectrum of application
areas include neuroscience, engineering, medicine, economics and geosciences. A major tool for
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dimension reduction is the functional principal component analysis (FPCA) for modeling func-
tional variability in the data in lower dimensions (Wang et al., 2016; Yao et al., 2012; Cardot,
2007). Recent literature on FPCA models complex dependencies among the functional observa-
tions that are observed in close proximity with respect to time or space (Chen and Müller, 2012;
Greven et al., 2010; Crainiceanu et al., 2009; Di et al., 2009; Hasenstab et al., 2017; Scheffler
et al., 2020; Campos et al., 2022; Zipunnikov et al., 2011; Baladandayuthapani et al., 2008;
Staicu et al., 2010). Bayesian FPCA (BFPCA) offers uncertainty quantification on the func-
tional model components, including the mean and eigenfunctions, via credible intervals, without
the need for bootstrap. Developments are typically based on expansion of the functional obser-
vation or the functional model components on a set of basis functions, followed by dimension
reduction. Suarez and Ghosal (2017) expanded functional model components on a basis set and
modeled the covariance function via an approximate spectral decomposition, while Montagna
et al. (2012) proposed a Bayesian latent factor regression model (BLFRM) that expands each
functional observation as a linear combination of a high-dimensional basis set and placed a
latent factor model on the basis coefficients. Effective basis selection is achieved in the latter
approach via the multiplicative gamma process shrinkage (MGPS) prior of Bhattacharya and
Dunson (2011) placed on the factor loadings. Traditional data summaries for uncertainty in the
Bayesian setting rely on parametric assumptions or the use of pointwise quantiles. Parametric
credible intervals employed in Crainiceanu et al. (2007) assume approximate posterior normality
to form pointwise or simultaneous credible intervals through estimation of pointwise variation
in the posterior sample. Krivobokova et al. (2010) proposed quantile credible intervals using the
estimated posterior pointwise quantiles, and extended developments to simultaneous quantile
credible intervals by rescaling of the bounds of the pointwise credible intervals by a common
factor.

The parametric and quantile credible intervals, used to describe uncertainty of the functional
posterior estimates, have some drawbacks. Parametric credible intervals are by-design symmetric
around the pointwise mean and are dependent on distributional assumptions that may not hold
when modeling assumptions are violated. Quantile credible intervals allow for asymmetry using a
rank-based approach, however they rely on pointwise ranks while approximating the ordering of a
posterior sample of functions. To address these drawbacks, we propose central posterior envelopes
(CPEs), which are not credible intervals, but are descriptive visualization tools to summarize
the variation in the posterior summaries of the functional model components, contributing to
uncertainty quantification in BFPCA. The proposed CPEs do not have to be symmetric around
the estimated mean and are based on functional depth in ordering of a posterior sample of curves,
rather than pointwise quantiles. Additionally, CPEs are formed using envelopes delineated by
subsets of the posterior functional sample, and hence are fully data-driven, summarizing the
variation in the posterior sample without any parametric assumptions.

Functional depth has been proposed to generalize order statistics to functional data, pro-
viding a center-outward order to a sample of functions (López-Pintado and Romo, 2009; Sun
et al., 2012) and have been extended in a variety of FDA applications including construction of
the median or a trimmed mean function, functional boxplots (Sun and Genton, 2012), surface
boxplots (Genton et al., 2014), outlier detection via the outliergram (Arribas-Gil and Romo,
2014), robust rank, permutation and location tests for distributional and dispersion differences
in two-sample functional data groups (López-Pintado and Wrobel, 2017; López-Pintado and
Qian, 2020). López-Pintado and Romo (2009) introduced the notion of modified band depth
(MBD), extending the definition of band depth based on a graph-based approach, by measuring
the proportion of time that a curve lies in the band delimited by a subsample of curves. Sun
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et al. (2012) derived a computationally efficient algorithm for calculating MBD that can rank
millions of curves in seconds. Genton et al. (2014) further extended MBD to higher dimensional
functional data through modified volume depth (MVD). We utilize both MBD and MVD to
propose functional depth based CPEs for the mean function and eigenfunctions in BFPCA.
MBD-CPEs are formed by ranking the posterior estimates and forming an envelope of a sub-
set of the posterior estimates with the largest depth values. MVD-CPEs for eigenfunctions are
formed via ranking of the posterior covariance surfaces.

The paper is organized as follows. The BFPCA model considered is introduced in Section 2
along with an outline of the traditional posterior summaries for the BFPCA model compo-
nents. The considered BFPCA is a simplification of previous formulations in literature, where
a Bayesian estimation for model components is followed by derivation of the estimated mean
and eigenfunctions through singular value decomposition of the estimated covariance surfaces.
The proposed model uses a latent factor model to represent the functional observations where
the mean function and latent factors are further expanded on a basis set. A normal-inverse
gamma prior is placed on the coefficients of the mean function, and a modified multiplicative
gamma process shrinkage (MMGPS) prior is placed on the factor loadings to induce sparsity in
basis selection similar to BLFRM. A computationally efficient estimation procedure is proposed
for the considered BFPCA via fully conjugate priors that leads to implementation through a
Gibbs sampler. The proposed CPEs based on functional depth are outlined in Section 3, followed
by simulation studies to showcase their finite sample performance in the presence of different
types of additional variation in the functional sample (Section 4). Section 5 outlines application
of CPEs to analysis of a sample of power spectral densities (PSD) from resting state elec-
troencephalography (EEG). Novel insights are provided on diagnostic group differences in the
evolution of PSD across age among children diagnosed with autism spectrum disorder and their
typically developing peers. A brief discussion is included in Section 6.

2 Bayesian Functional Principal Component Analysis

2.1 Model Specification

Let Yi(t) = fi(t) + εi(t) denote the observed noisy response measurements for subject i, i =
1, . . . , n, represented as a sum of a smooth underlying function fi(t), and measurement er-
ror εi(t). The measurement error εi(t) is assumed to be i.i.d. with mean zero and variance
σ 2

ε . The smooth function fi(t) is assumed to be square integrable with mean μ(t) and covari-
ance C(s, t) = Cov{fi(s), fi(t)} = ∑∞

k=1 ρkψk(s)ψk(t), where ρ1 � ρ2 � . . . denote the ordered
nonnegative eigenvalues, and ψ1(t), ψ2(t), . . . denote the corresponding eigenfunctions. While
the eigenfunctions describe direction of leading modes of variation in the functional data, the
eigenvalues quantify the amount of variation explained by the different modes of variation.
The Karhunen-Loève (KL) expansion of fi(t) is then given by fi(t) = μ(t) + ∑∞

k=1 ξikψk(t),
where ξik = ∫

t
{fi(t) − μ(t)}ψk(t)dt denotes the kth subject-specific FPCA score with mean

zero and variance ρk. In practice, the expansion is truncated to include K eigencomponents,
fi(t) ≈ μ(t) + ∑K

k=1 ξikψk(t), based on fraction of variance explained (FVE), where the co-
variance is approximated by C(s, t) ≈ ∑K

k=1 ρkψk(s)ψk(t). The first few eigencomponents are
typically enough to explain the majority of variability in the data, leading to effective dimension
reduction.

The BFPCA model considered is based on a latent factor model constructed for fi(t) =
μ(t) + ∑L

�=1 ηi�φ�(t), where φ�(t), � = 1, . . . , L, denote the L latent components and ηi� ∼
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N(0, 1), � = 1, . . . , L, denote the corresponding uncorrelated subject-specific scores. Next, the
mean function and latent components are expanded on a set of R B-spline basis functions
(b1(t), . . ., bR(t)), μ(t) = ∑R

r=1 βrbr(t) and φ�(t) = ∑R
r=1 λr�br(t), where βr and λr� denote

the mean coefficients and factor loadings, respectively. This leads to the following expansion
of fi(t) = ∑R

r=1[βr + ∑L
�=1 ηi�λr�]br(t), which in vector form can be given as the hierarchical

model (James et al., 2000)

Y i = f i + εi = B(β + �ηi ) + εi , (1)
ηi ∼ NL(0L, IL), εi ∼ NT (0T , σ 2

ε IT ), i = 1, . . . , n,

where Y i = {Yi(t1), . . . , Yi(tT )}� denotes the response observed at a total of T time points,
f i = {fi(t1), . . . , fi(tT )}� denotes the T × 1 vector of underlying smooth functions and εi =
{εi(t1), . . . , εi(tT )}� denotes the T × 1 vector of measurement error. Furthermore, in (1), B =
(b1, . . . , bR) denotes the T ×R matrix of B-spline basis functions with br = {br(t1), . . . , br(tT )}�,
β = (β1, . . . , βR)� denotes the R × 1 vector of mean coefficients, � = (λ1, . . . , λL) denotes the
R ×L factor loading matrix with λ� = (λi�, . . . , λR�)

� and ηi = (ηi1, . . . , ηiL)� denotes the L× 1
vector of subject-specific scores. Finally, 0L and 0T are used to denote the L×1 and T ×1 vectors
of zeros, respectively, and IL and IT are used to denote the L × L and T × T identity matrices.

Fully conditional conjugate priors on the variance components are selected to achieve ef-
ficient posterior estimation in BFPCA. More specifically, using Gaussian priors for the mean
coefficients β and factor loadings λ�, noninformative prior for the error variance σ 2

ε (propor-
tional to some constant), gamma prior for the variance of the mean coefficients σ 2

β and a modi-
fied multiplicative gamma process shrinkage (MMGPS) prior (Bhattacharya and Dunson, 2011;
Montagna et al., 2012) for the variance components of the factor loading matrix σ 2

λr�
,

β ∼ NR

(
0R,

1

σ 2
β

−1

)
, σ 2

β ∼ Gamma
(aβ

2
,
aβ

2

)
,

1

σ 2
ε

∝ 1 (2)

λ� ∼ NR

(
0R, �λ�

)
, �λ�

= diag(σ 2
λ1�

, . . . , σ 2
λR�

), σ 2
λr�

= ϕ−1
r� τ−1

� , ϕr� ∼ Gamma
(ν

2
,
ν

2

)
,

τ� =
�∏

h=1

δh, δ1 ∼ Gamma(a1, 1), δh ∼ Gamma(a2, 1)I (δh > 1), h � 2,

we target the posterior distributions in model (1) using a Gibbs sampler (posterior distributions
and details on choice of hyperparameters, aβ , ν, a1, a2, are deferred to Supplementary Materials
Appendix A). In (2), 0R denotes an R × 1 vector of zeros,  is a positive-definite R × R penalty
matrix, �λ�

is a R ×R diagonal matrix comprised of the variance components, σ 2
λ1�

, . . . , σ 2
λR�

, for
the �th factor loading λ�, and I (·) denotes the indicator function. The variance components of
the factor loading matrix, denoted by σ 2

λr�
, are given a MMGPS prior adapted from Bhattacharya

and Dunson (2011), where ϕr� and τ� denote the element-wise and column-wise precisions, re-
spectively. The column-wise precision τ� is the cumulative product of gamma distributed δh for
h = 1, . . . , �. The truncation of δh to be larger than one when h � 2 guarantees that τ� increases
with �, forcing columns of �, λ�, to get stochastically smaller as � increases. Note that this mim-
ics the estimation of eigenfunctions in FPCA with ordered (decreasing) eigenvalues and results
in effective basis selection (Montagna et al., 2012).

Based on empirical studies, Shamshoian et al. (2022) report that the estimation of the mean
function and the covariance surface is robust to different choices of R, the total number of basis
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functions used in the expansion. Following guidance from Shamshoian et al. (2022), R is selected
to be a fraction of the total number of time points T , R = �T/2	, for adequate smoothing of
fi(t), provided L is large. In particular, the MMGPS prior is robust when the choice of L is
large, but if L is chosen to be too small, then the MMGPS prior may not be robust and lead
to potentially unreliable posterior estimates (Bhattacharya and Dunson, 2011; Montagna et al.,
2012). Note that in the BFPCA formulation in (1), the total number of latent components L are
typically larger than K, the number of eigencomponents retained in the FPCA expansion. Thus,
following results in Shamshoian et al. (2022) and considering the properties of the MMGPS
prior, L is selected to be a fraction of R, L = max(6, �R/4	), where the lower bound of L = 6
should be a sufficiently large enough number of latent components when R is relatively small.

2.2 Traditional Posterior Summaries for BFPCA Components
Posterior estimates of the mean coefficient vector β(m) = (β

(m)
1 , . . . , β

(m)
R )� and factor loading ma-

trix �(m) = (λ
(m)
1 , . . . , λ

(m)
L ), with λ

(m)
� = (λ

(m)
1� , . . . , λ

(m)
R� )�, where the superscript m, m = 1, . . . , M,

is used to index the posterior estimates obtained from the MCMC sampler after burn-in and
thinning, leads to the posterior estimates of the mean function, μ(m)(t) = ∑R

r=1 β(m)
r br(t), and

the covariance C(m)(s, t) = ∑R
r=1

∑R
r ′=1

∑L
�=1 λ

(m)
r� λ

(m)

r ′� br(s)br ′(t). In an attempt to recover the ad-
ditional interpretations offered by the lower dimensional representation of FPCA (where eigen-
functions describe the leading modes of variation in the functional data), we consider the singular
value decomposition of C(m)(s, t) ≈ ∑K

k=1 ρ
(m)
k ψ

(m)
k (s)ψ

(m)
k (t), targeting the posterior estimates of

the eigenfunctions, ψ
(m)
k (t), and eigenvalues, ρ

(m)
k (Suarez and Ghosal, 2017). The total number

of eigencomponents retained, K, is chosen by the mean or the median FVE calculated across
the posterior samples. Since the sign of the eigenfunctions are not identifiable, we implement
an additional alignment step in obtaining the posterior estimates of the eigenfunctions (see
Supplementary Materials Appendix B for further details).

The mean estimate is obtained by averaging the posterior estimates, μ̂(t) = (1/M)
∑M

m=1
μ(m)(t). The eigenfunctions and eigenvalues can be targeted in two ways. The first approach
is to average the posterior estimates, ψ̂k(t) = (1/M)

∑M
m=1 ψ

(m)
k (t), ρ̂k = (1/M)

∑M
m=1 ρ

(m)
k ,

k = 1, . . . , K, similar to the mean estimate. An alternative approach is to first target the
mean of the posterior covariances, C̃(s, t) = (1/M)

∑M
m=1 C(m)(s, t), followed by SVD of C̃(s, t) ≈∑K

k=1 ρ̃kψ̃k(s)ψ̃k(t), leading to the eigenfunction and eigenvalue estimates obtained via covariance
estimation, denoted by ψ̃k(t) and ρ̃k, respectively. While we evaluate the finite sample perfor-
mance of both point estimates for the eigenfunctions and eigenvalues via simulations, we center
the traditional credible intervals for these quantities around the posterior average estimates.

A main advantage of BFPCA is the readily available inference provided for the FPCA
components based on the posterior sample. While credible intervals can be constructed for the
scalar components (including eigenvalues or FVE) using the standard deviation or percentiles
obtained from the posterior sample, we center our discussion mainly on inference for the func-
tional components, which is the focus of the proposed functional depth based approach. For the
functional components of FPCA, i.e. the mean and eigenfunctions, traditional posterior sum-
maries include pointwise and simultaneous, parametric and quantile credible intervals. In the
formulations below, parametric and quantile credible intervals will be denoted by capital ‘P’
and ‘Q’, respectively, for ease of notation, while pointwise and simultaneous credible intervals
will be distinguished by the superscripts ‘p’ and ‘s’. While the parametric intervals are based
on variance of the estimates in the posterior sample, the quantile intervals leverage pointwise
quantiles obtained from the posterior sample. Let g(t) denote either the mean or eigenfunction of
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interest, observed at time points tj , j = 1, . . . , T , and let ĝ(tj ) and V ar
∧

{g(tj )} denote the sample
mean and variance of g(tj ) calculated from the M MCMC samples g(m)(t). The (1 − α)100%
pointwise parametric credible interval for g(t) is given by [̂g(tj ) ± zα

√
V ar
∧

{g(tj )}; j = 1, . . . , T ]
(denoted as P

p

1−α{g(t)}), where zα = �−1(1 − α/2) with � denoting the cumulative distribution
function of the standard normal distribution. For defining the simultaneous parametric credible
intervals, let cα denote the (1−α) sample quantile of maxj=1,...,T | {g(m)(tj )− ĝ(tj )}/

√
V ar
∧

{g(tj )} |
over the M posterior samples. Then the (1 − α)100% simultaneous parametric credible interval
for g(t) is given by [̂g(tj ) ± cα

√
V ar
∧

{g(tj )}; j = 1, . . . , T ] (denoted as P s
1−α{g(t)}) (Crainiceanu

et al., 2007).
For the pointwise and simultaneous quantile credible intervals, let gα/2(tj ) and g1−α/2(tj )

denote the pointwise α/2 and (1 − α/2) sample quantiles of g(m)(t), m = 1, . . . , M at t =
tj , respectively. Then (1 − α)100% pointwise quantile credible interval for g(t) is given by
[{gα/2(tj ), g1−α/2(tj )}; j = 1, . . . , T ] (denoted as Q

p

1−α{g(t)}). The (1−α)100% simultaneous quan-
tile credible interval for g(t) is given by [̂g(tj )+q{gα/2(tj )− ĝ(tj )}, ĝ(tj )+q{g1−α/2(tj )− ĝ(tj )}; j =
1, . . . , T ] (denoted as Qs

1−α{g(t)}), where q is a common factor that rescales the upper and lower
bounds until (1 − α)100% of the posterior estimates are contained inside the credible inter-
val (Krivobokova et al., 2010). Note that the factor q is common across all time points tj in the
above formulation and that both pointwise and simultaneous quantile credible intervals rely on
pointwise quantiles while trying to quantify uncertainty in estimation of a functional compo-
nent. The proposed central posterior envelopes based on functional depth consider ranking of the
entire functional estimates in the posterior sample, rather than relying on pointwise quantiles.
The code for implementation of the quantile credible intervals can be found in the R package
acid. The notations used for the traditional posterior summaries outlined above, as well as the
functional depth based intervals proposed in the next section, are summarized for the readers
reference in Supplementary Materials Table S1.

3 Proposed Functional Depth Based CPEs for BFPCA
The traditional posterior summaries outlined in Section 2.2 have potential pitfalls when de-
scribing posterior distributions of functional data. The parametric credible intervals rely on
distributional assumptions, which may be violated under deviation from modeling assumptions.
In addition, the parametric credible intervals are symmetric around the pointwise mean, which
is restrictive when capturing potential asymmetry in posterior distributions in the presence of
highly variable and/or skewed posterior samples. Although the quantile credible intervals are
data-driven and more flexible with potential asymmetry, their construction relies on pointwise
quantiles. In particular, instead of treating posterior samples as functional data, the quantile
credible intervals are estimated by ranking of the posterior samples at each time point. Further-
more, scaling the pointwise quantiles by a common factor q across all time points in construction
of the simultaneous quantile credible intervals may be too restrictive in modeling the spread in
the functional posterior samples. In order to circumvent these issues, the use of functional depth
is proposed to rank the functional posterior estimates to obtain fully data-driven CPEs that
capture uncertainty in a flexible way.

Functional depth is a measure that provides a center-outward ordering of a sample of
functional observations. In particular, functional depth ranks a sample of functions from the
‘deepest’ curve with the highest functional depth value, defined as the median curve, to the
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most outlying curve with the lowest functional depth value. Although there are a number of
functional depth measures that have been proposed in the literature (see Zuo and Serfling (2000)
and Gijbels and Nagy (2017)), modified band depth based on a graph-based approach has been
quite popular in applications López-Pintado and Romo (2009). Let g(1)(t), . . ., g(M)(t), t ∈ I,
denote a sample of M functional posterior estimates, either for the mean or eigenfunctions,
defined on a compact interval I, where I ∈ R. The band in R

2 delineated by a subset of u,
2 � u � M, posterior estimates, g(m1)(t), . . ., g(mu)(t), drawn from the full posterior sample
{g(1)(t), . . . , g(M)(t)} is given by

B
{
g(m1)(t), . . . , g(mu)(t)

} =
[
{t, g(t)} : t ∈ I, min

v=m1,...,mu

g(v)(t) � g(t) � max
v=m1,...,mu

g(v)(t)

]
.

Supplementary Materials Figures S1 (a) and (b) represent two bands B
{
g(1)(t), g(2)(t)

}
and

B
{
g(3)(t), g(4)(t)

}
, delimited by two curves, where in the first figure the entire graph of g(m)(t)

and in the second a proportion of it is included in the band. Band depth of López-Pintado
and Romo (2009) considers the proportion of bands B

{
g(m1)(t), . . . , g(mu)(t)

}
determined by u

different curves g(m1)(t), . . ., g(mu)(t) containing the graph of g(t). Modified band depth (MBD)
extends band depth, such that rather than the proportion of bands that contain the entire graph
of g(t), MBD considers the proportion of time that the graph of g(t) lies inside the bands. More
specifically, let

Au

{
g(m)(t); g(m1)(t), . . . , g(mu)(t)

} =
{
t ∈ I : min

v=m1,...,mu

g(v)(t) � g(m)(t) � max
v=m1,...,mu

g(v)(t)

}
,

denote the set in the interval I where the function g(m)(t) lies inside the band B{g(m1)(t), . . .,
g(mu)(t)}. Further, let

A∗
u

{
g(m)(t); g(m1)(t), . . . , g(mu)(t)

} = θ
[
Au

{
g(m)(t); g(m1)(t), . . . , g(mu)(t)

}]
/θ (I) ,

denote the proportion of time that the curve g(m)(t) lies inside the band B{g(m1)(t), . . ., g(mu)(t)},
where θ(·) denotes the Lebesgue measure on I. If 2 � U � M denotes a fixed total number of
curves used to delineate a band, then the modified band depth (MBD) for the curve g(m)(t) in
g(1)(t), . . ., g(M)(t) given U is

MBDM,U

{
g(m)(t)

} =
U∑

u=2

⎡⎣(
M

2

)−1 ∑
1�m1<m2<···<mu�M

A∗
u

{
g(m)(t); g(m1)(t), . . . , g(mu)(t)

}⎤⎦ .

MBD ranks each curve in the sample g(1)(t), . . ., g(M)(t) as the sum of A∗
u{g(m)(t); g(m1)(t), . . . ,

g(mu)(t)} over all possible combinations of bands delineated by 2 � U � M total curves that can
be formed. Functions where a higher proportion of the curve lies in a higher number of bands
get a higher MBD value, representing curves that are closer to the center of the sample. Those
curves with lower MBD values have a lower proportion of the curve lying in a lower proportion
of bands, representing outlying observations, resulting in an effective ranking of the sample.
We follow common practice and set U = 2 in applications for computational efficiency (and
drop U from the MBD notation), where bands delineated by all combinations of two curves are
considered in the MBD definition (i.e. MBDM{g(m)(t)} ≡ MBDM,2{g(m)(t)}) (López-Pintado and
Romo, 2009).

MBD of the posterior estimates are utilized to obtain point estimates (i.e. MBD median) and
functional band depth central posterior envelopes (i.e. MBD-CPEs for the BFPCA functional
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Algorithm 1: MBD Median and MBD-CPE for g(t) ≡ μ(t) or g(t) ≡ ψk(t)

Step 1: Calculate the MBD of the posterior samples: MBDM{g(1)(t)}, . . ., MBDM{g(M)(t)}.
Step 2: Order the MBD values of the posterior sample from the smallest to the largest and

denote the corresponding ordered samples as g[1](t), . . ., g[M](t).
Step 3: Calculate the (1 − α)100% MBD-CPE as

D1−α{g(t)} = B
{
g[�αM	+1](t), . . . , g[M](t)

}
,

and the MBD median as m̂{g(t)} = g[M](t).

components (μ(t) and ψk(t)). While the MBD median equals the functional median of the
posterior sample, the (1 − α)100% MBD-CPE is formed by the band delineated by the 1 − α

deepest posterior estimates in the sample. The MBD median and (1−α)100% MBD-CPE formed
for the functional BFPCA component g(t), denoted by m̂{g(t)} and D1−α{g(t)}, respectively, are
targeted via Algorithm 1. Note that similar to functional depth based central envelopes proposed
for functional data, CPEs are not credible intervals, but they rather are descriptive visualization
tools that help summarize the variation in the posterior sample. When plotted for a grid of α

values, CPEs display the central envelopes allowing for visualization of the most central regions
of the functional posterior distributions.

An alternative way for obtaining point estimates and CPEs for the eigenfunctions ψk(t),
k = 1, . . . , K, is to rank the posterior covariance surfaces using modified volume depth (MVD).
MBD has been extended to surface data as MVD to provide a way to rank two-dimensional
functional data (Sun et al., 2012; Genton et al., 2014) (for extensions to higher-dimensional
functional data, see López-Pintado and Wrobel (2017)). Let C(1)(s, t), . . ., C(M)(s, t), (s, t) ∈ S,
denote a sample of M posterior covariance estimates, defined on S ∈ R

2. Further, let

Au

{
C(m)(s, t);C(m1)(s, t), . . . , C(mu)(s, t)

}
=

{
(s, t) ∈ S : min

v=m1,...,mu

C(v)(s, t) � C(m)(s, t) � max
v=m1,...,mu

C(v)(s, t)

}
,

denote the region in S where the covariance C(m)(s, t) lies inside the simplex delineated by the
covariances C(m1)(s, t), . . ., C(mu)(s, t). In addition,

A∗
u

{
C(m)(s, t);C(m1)(s, t), . . . , C(mu)(s, t)

}
= ϑ

[
Au

{
C(m)(s, t);C(m1)(s, t), . . . , C(mu)(s, t)

}]
/ϑ (S) ,

is used to denote the proportion of time that the covariance C(m)(s, t) lies inside the simplex
formed by the covariances C(m1)(s, t), . . ., C(mu)(s, t), where ϑ(·) denotes the Lebesgue measure
extended to R

2. Considering U = 2 total covariances to delineate a simplex (similar to the
definition of MBD), MVD for the covariance C(m)(s, t) in C(1)(s, t), . . ., C(M)(s, t) is given as

MVDM

{
C(m)(s, t)

} =
(

M

2

)−1 ∑
1�m1<m2�M

A∗
2

{
C(m)(s, t);C(m1)(s, t), C(m2)(s, t)

}
.

MVD of the posterior covariance estimates are utilized to obtain point estimates (i.e. MVD
median) and functional volume depth CPEs (i.e. MVD-CPEs) for ψk(t), k = 1, . . . , K. The MVD
median and (1 − α)100% MVD-CPE formed for ψk(t), denoted by m̃{ψk(t)} and D�

1−α{ψk(t)},
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Algorithm 2: MVD Median and MVD-CPE for ψk(t)

Step 1: Calculate the MVD of the posterior covariances:

MVDM{C(1)(s, t)}, . . . , MVDM{C(M)(s, t)}.
Step 2: Order the MVD values of the posterior sample from smallest to largest and denote the

corresponding covariances as C[1](s, t), . . ., C[M](s, t).
Step 3: The SVD of the ordered covariances lead to their corresponding ordered eigenfunctions

ψ
[1]
k (t), . . ., ψ

[M]
k (t).

Step 4: Calculate the (1 − α)100% MVD-CPE as

D�
1−α{ψk(t)} = B

{
ψ

[�αM	+1]
k (t), . . . , ψ

[M]
k (t)

}
,

and the MVD median as m̃{ψk(t)} = ψ
[M]
k (t).

respectively, are targeted via Algorithm 2. The algorithm starts with ranking the posterior
covariances using MVD and obtaining their corresponding eigenfunctions. The MVD median for
ψk(t) equals the functional median of the posterior eigenfunctions, while the (1 −α)100% MBD-
CPE for ψk(t) is formed by the band delineated by the 1−α deepest eigenfunction estimates in the
sample, where the eigenfunction estimates are ordered according to MVD of their corresponding
posterior covariances.

Functional depth based medians proposed above (m̂{μ(t)}, m̂{ψk(t)} and m̃{ψk(t)}) estimate
the central tendency in the posterior distributions of the mean and eigenfunctions and provide
a realistic estimate equal to one of the observed functional posterior samples rather than relying
on pointwise averages as is done in most of the traditional posterior summaries. In addition, the
proposed functional depth based CPEs (denoted by D1−α{g(t)} and D�

1−α{ψk(t)}, corresponding
to MBD and MVD based summaries, respectively), are formed from a band delineated from
the 1 − α deepest subset of the functional posterior estimates. Hence, the proposed methods
use functional depth measures to construct fully data-driven summaries that capture the un-
certainty in the posterior estimates in a flexible way. Notations used for point estimates and
credible intervals both in the traditional summaries and in the proposals are summarized in
Supplementary Materials Table S1.

4 Simulation Studies
We consider five simulation scenarios to display the use of CPEs in describing the variation in
the posterior samples. We also study the finite sample properties of the traditional summaries
from Section 2.2 under different simulation scenarios. More specifically five simulation scenarios
are proposed: Case 1 – no additional variation in the i.i.d functional sample, Case 2 – additional
constant variation, Case 3 – variation added through eigenvalues, Case 4 – variation added
through time-shifted eigenfunctions, Case 5 – variation added through higher-frequency eigen-
functions. Case 2 generates observations with added variation by adding a constant deviation
(with a random sign) to μ(t) for t � Ti , where Ti ∼ Unif[0, 1]. This adds constant variation
to randomly selected portions of the unit time domain in [0, 1], where more of the variation is
added to the latter part of the domain. Case 3 generates observations with additional variation
using larger eigenvalues ρk, which result in increased variation throughout the unit interval. Fi-
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nally, observations with additional variation are generated from time-shifted (Case 4) or higher
frequency (Case 5) eigenfunctions in Cases 4 and 5, where additional variation is added along
the direction of the time-shifted or higher frequency eigenfunctions used. Results are reported
for simulation cases where observations with additional variation constitute q = 10 and 20%
of the functional sample (n = 50), where details of data generation under the five simulation
scenarios are deferred to the Supplementary Materials (Appendix C).

The BFPCA model is fitted using R = 20 B-spline basis functions with equidistant knots in
[0, 1] and L = 6 latent factors, for functional data observed on a uniform grid of 40 time points.
Results are reported based on a total of 200 Monte Carlo runs with 25, 000 MCMC iterations (5,
000 for burn-in and thinning at every 5th iteration), and M = 4, 000 posterior estimates for each
Monte Carlo run. The number of eigencomponents K selected for each simulation case was based
on a fixed cutoff of 90% FVE explained. While the leading two eigencomponents explained more
than 90% variation in the data in simulation cases 1, 3 and 4, the leading three eigencomponents
were retained to explain 90% variation in cases 2 and 5. Finite sample performance of point
estimates of the functional model components (i.e. mean and eigenfunctions) and scalar model
components (i.e. eigenvalues) are assessed via the standardized integrated mean squared error
(IMSE) and the standardized mean squared error (MSE), respectively. The mean IMSE and
MSE values from 200 Monte Carlo runs for the five simulation scenarios are summarized in
Supplementary Materials Table S2. The traditional and proposed point estimates for the mean
function and the three leading eigenfunctions from the Monte Carlo run with the median IMSE
are given in Supplementary Materials Figure S2, S3, S4 and S5, respectively. The discussion on
the finite sample performance of the point estimates are deferred to Supplementary Materials
Appendix C.

We assess how well traditional credible intervals and proposed CPEs reflect variation in
the posterior sample under the five simulation scenarios. Supplementary Materials Figure S6,
Figures 1, 2 and Figure S7 display CPEs from α cutoffs ranging from 0.05 to 0.95 for the
mean function and the leading three eigenfunctions, respectively, from a single Monte Carlo run
overlaying M = 4, 000 posterior estimates (given in gray) for the five simulation scenarios (for
q = 20%). In addition, Supplementary Materials Figures S8, S9, S10 and S11 display the 95%
parametric and quantile credible intervals and 95% CPEs for reference, for the mean function
and the leading three eigenfunctions, respectively, from a single Monte Carlo run overlaying
M = 4, 000 posterior estimates for the five simulation scenarios (for q = 20%). CPEs from
increasing α cutoffs help visualize regions with the most central functional posterior observations
in the sample. Note that while MBD-CPEs for the eigenfunctions are nested in each other for
increasing α values, MVD-CPEs are not necessarily nested since they are based on the functional
depth rankings of the posterior covariance surfaces, rather than posterior eigenfunctions. This is
also the reason why MVD-CPEs are typically wider than MBD-CPEs, incorporating variation
from the entire covariance process, rather than only eigenfunction-specific variation.

The added variation in the posterior estimates of especially the eigenfunctions really help
portray the shortcomings of the symmetry restrictions and constant multipliers used in enlarging
of the simultaneous parametric and quantile credible intervals, respectively. Figures S9 and S10
(d), (g), (j) and (m) show that the symmetry restriction (around the pointwise mean) of the
parametric credible intervals force the credible intervals to be too wide in one bound and too
narrow in the other, especially when the variation in the posterior sample is not symmetric.
While the quantile credible intervals perform better relative to their parametric counter parts,
they also include regions that do not represent posterior sample variation, perhaps due to the
restrictive enlargement of the credible intervals by a constant multiplier that is kept the same
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Figure 1: CPE contours of ψ1(t) for each simulation case with q = 20% of observations with
added variation. The light grey solid lines, overlaying the true function in solid black, represent
the sample of M = 4000 posterior estimates. The left and right hand columns display the MBD
and MVD-CPEs, denoted by D1−α{ψ1(t)} and D�

1−α{ψ1(t)}, respectively, at a grid of α levels
marked by varying contour colors.
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Figure 2: CPE contours of ψ2(t) for each simulation case with q = 20% of observations with
added variation. The light grey solid lines, overlaying the true function in solid black, represent
the sample of M = 4000 posterior estimates. The left and right hand columns display the MBD
and MVD-CPEs, denoted by D1−α{ψ1(t)} and D�

1−α{ψ1(t)}, respectively, at a grid of α levels
marked by varying contour colors.
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over the entire time domain. The latter point is best observed in Table 1, reporting two metrics:
negative area ratio (NAR) and area ratio (AR). NAR and AR capture the ratio of the area
of the credible interval or CPE that lies outside and inside of posterior sample (proportional
to the area of the posterior sample), respectively. Hence, while higher AR values (AR ∈ [0, 1])
correspond to a more realistic portrayal of the variation in the posterior sample estimates in
the presence of additional variation, NAR values greater than zero can signal problems with
the credible intervals (i.e. via inclusion of regions that do not represent the posterior sample),
possibly due to symmetry constraints. Similar to previous sections, let g(1)(t), . . ., g(M)(t) denote
the M MCMC samples, where g(t) ≡ μ(t) or ψk(t). In addition, denote the pointwise lower
and upper bounds of the posterior sample by gmin(tj ) = minm=1,...,M{g(m)(tj )} and gmax(tj ) =
maxm=1,...,M{g(m)(tj )}, respectively, at a total of T grid points tj , j = 1, . . . , T . Finally denote the
pointwise lower and upper bounds of the discretized (1 −α)100% credible interval H1−α{g(t)} by
H1−α{g(tj )} = [L(tj ), U(tj )] for tj , j = 1, . . . , T . Then NAR and AR are given as follows

NAR[H1−α{g(t)}] =
∑T

j=1[{U(tj ) − gmax(tj )}I {U(tj ) > gmax(tj )}]∑T
j=1{gmax(tj ) − gmin(tj )}

+
∑T

j=1[{gmin(tj ) − L(tj )}I {gmin(tj ) > L(tj )}]∑T
j=1{gmax(tj ) − gmin(tj )}

AR[H1−α{g(t)}] =
∑T

j=1[min{U(tj ), gmax(tj )} − max{L(tj ), gmin(tj )}]∑T
j=1{gmax(tj ) − gmin(tj )}

.

For the proposed CPEs and pointwise quantile credible intervals, NAR always equals zero, since
these summaries are based on pointwise or functional ordering of the data and therefore have to
lie within the posterior sample. However the simultaneous quantile credible intervals may have
NAR values larger than zero, since the bounds of the pointwise quantile intervals are rescaled
by a common factor that is constant across tj . The mean NAR and AR values based on the 200
Monte Carlo runs across the five simulation scenarios are summarized in Table 1. In summary,
simultaneous credible intervals lead to higher AR values than their pointwise counterparts (para-
metric and quantile), as expected, and have nonzero NAR values except for pointwise quantile
credible intervals. This also confirms that they can cover regions not representing posterior sam-
ple variation as is observed from the figures. The CPEs have AR values equal to or larger than
all traditional credible intervals and have NAR equal to zero by definition. Hence, CPEs provide
a more flexible representation of the shape and spread of the posterior sample in the presence of
added variability in estimation and can contribute to the visualization of the functional posterior
sample in applications.

5 Data Application
We use CPEs in the analysis of EEG power spectral densities obtained on a sample of 58 children
with autism spectrum disorder (ASD) and 39 of their typically developed (TD) peers at resting
state (Dickinson et al., 2018). The goal of the study was to characterize the shift in the peak
alpha frequency (PAF), a neurological biomarker defined as the location of a single prominent
peak in the alpha frequency band (6–14Hz) of the spectral density, across development. It was
of particular interest to compare ASD and TD groups in their evolution of the alpha peak across
chronological age. PAF has been shown to shift from lower to higher frequencies as children
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Table 1: The mean AR and NAR values for traditional and functional-depth based 95% credible
intervals and CPEs over 200 Monte Carlo runs for all simulation cases with q = {10, 20}%
of observations with added variation. P

p

1−α{g(t)}, P s
1−α{g(t)}, Q

p

1−α{g(t)}, Qs
1−α{g(t)}, D1−α{g(t)}

and D�
1−α{g(t)} denote the pointwise parametric and simultaneous credible intervals, quantile

pointwise and simultaneous credible intervals, and MBD and MVD-CPEs, respectively.
AR for g(t) NAR for g(t)

g(t) q Case P
p

0.95{·} P s
0.95{·} Q

p

0.95{·} Qs
0.95{·} D0.95{·} D�

0.95{·} P
p

0.95{·} P s
0.95{·} Qs

0.95{·}

μ(t)

- Case 1 0.523 0.797 0.524 0.798 0.872 - 0.000 0.000 0.000

10%

Case 2 0.524 0.789 0.525 0.790 0.908 - 0.000 0.000 0.000
Case 3 0.523 0.792 0.524 0.793 0.866 - 0.000 0.000 0.000
Case 4 0.522 0.793 0.523 0.795 0.868 - 0.000 0.000 0.000
Case 5 0.523 0.802 0.523 0.803 0.891 - 0.000 0.000 0.000

20%

Case 2 0.526 0.783 0.527 0.785 0.909 - 0.000 0.000 0.000
Case 3 0.521 0.787 0.522 0.788 0.857 - 0.000 0.000 0.000
Case 4 0.523 0.793 0.523 0.794 0.871 - 0.000 0.000 0.000
Case 5 0.523 0.807 0.524 0.808 0.906 - 0.000 0.000 0.000

ψ1(t)

- Case 1 0.424 0.649 0.425 0.653 0.666 0.833 0.000 0.012 0.000

10%

Case 2 0.472 0.692 0.480 0.702 0.740 0.922 0.007 0.067 0.007
Case 3 0.428 0.648 0.429 0.652 0.659 0.842 0.001 0.016 0.000
Case 4 0.435 0.651 0.437 0.658 0.662 0.863 0.002 0.029 0.001
Case 5 0.422 0.662 0.423 0.663 0.703 0.857 0.000 0.005 0.000

20%

Case 2 0.421 0.633 0.425 0.639 0.655 0.884 0.002 0.028 0.003
Case 3 0.430 0.635 0.433 0.642 0.639 0.844 0.003 0.033 0.001
Case 4 0.457 0.661 0.463 0.672 0.668 0.880 0.005 0.063 0.001
Case 5 0.427 0.673 0.429 0.673 0.724 0.909 0.000 0.013 0.000

ψ2(t)

- Case 1 0.473 0.734 0.473 0.738 0.783 0.891 0.000 0.011 0.001

10%

Case 2 0.561 0.793 0.568 0.799 0.856 0.980 0.010 0.111 0.010
Case 3 0.471 0.724 0.472 0.730 0.764 0.893 0.001 0.014 0.001
Case 4 0.479 0.726 0.481 0.734 0.757 0.907 0.001 0.026 0.002
Case 5 0.472 0.733 0.472 0.735 0.788 0.947 0.001 0.028 0.002

20%

Case 2 0.490 0.717 0.495 0.724 0.767 0.962 0.003 0.057 0.003
Case 3 0.467 0.702 0.470 0.711 0.728 0.884 0.002 0.030 0.002
Case 4 0.492 0.718 0.497 0.733 0.736 0.908 0.004 0.060 0.004
Case 5 0.587 0.841 0.582 0.843 0.911 0.989 0.004 0.109 0.010

ψ3(t)

10%
Case 2 0.518 0.772 0.521 0.781 0.828 0.984 0.003 0.058 0.008
Case 5 0.503 0.799 0.505 0.800 0.872 0.995 0.001 0.035 0.004

20%
Case 2 0.486 0.740 0.489 0.748 0.794 0.985 0.002 0.037 0.006
Case 5 0.600 0.859 0.592 0.860 0.928 0.995 0.004 0.106 0.011
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grow older in the TD group (Somsen et al., 1997; Stroganova et al., 1999; Dustman et al., 1999;
Chiang et al., 2011; Cragg et al., 2011; Miskovic et al., 2015), however previous research has
suggested that this chronological shift in the location of the PAF may be delayed or absent in
children with ASD (Edgar et al., 2015). In our motivating study, electroencephalogram (EEG)
data was sampled at 500Hz for 2 minutes using a 128-channel HydroCel Geodesic Sensor Net
during an “eyes-open” resting-state paradigm in which bubbles were presented on a screen in a
sound-attenuated room. The participants in the two diagnostic groups were age-matched with
ages ranging from 25 to 146 months old with a median age of 66 and 65.8 months in the
TD and ASD groups, respectively. To more generally capture the shape of the PSD in the
alpha frequency band and to avoid the challenges involved in identifying a unique PAF for each
subject, we consider scalp-averaged relative PSD from the alpha frequency band as our sample of
functional data observed over T = 33 equidistant frequencies within 6–14Hz. The BFPCA model
was estimated using R = 16 B-spline basis functions and L = 6 latent components, leading to
M = 4000 posterior samples for each model component. Further information on pre-processing
of the EEG data and the experiment are deferred to Supplementary Materials Appendix D.

Figures 3 (a) and (b) display a sample of the data obtained on 10 subjects from the TD and
ASD diagnostic groups, respectively. Note that the data is quite noisy, where PAF is distinctly
visible in only a subset of the subjects, where there is considerable variation in PAF and the
amplitude of the alpha peak. Our goal is to summarize the mean and variation trends in the
data using the BFPCA model and to characterize the variability in the posterior estimates of
the model components using CPEs in both diagnostic groups. Given in Figure 3 (c) are the
MBD-CPEs of the mean function at a grid of specified α-level contours in which both diagnostic
groups were included in estimation. Additionally, in Figure 3 are the MBD median and 95%
MBD-CPEs for the mean function estimated in age-based subgroups within the TD and ASD
samples (Figures 3 (d) and (e), respectively). The age-based subgroups were obtained within
each diagnostic group by using the group-specific median age. While the PAF of the estimated
overall mean is around 9.5Hz, the trend in PAF across age-based subgroups is quite different
within the TD and the ASD samples. While a clear developmental shift is observed in the TD
sample (with PAF at 8.75 and 10.25Hz for young and old TD groups, respectively), the PAF
in the ASD sample is quite similar across the two age-groups (observed around 9.5Hz). These
results are consistent with previous literature and findings from our own work (Scheffler et al.,
2019, 2022).

Next, we perform BFPCA on the entire sample and based on interpretations of the leading
eigenfunctions using the proposed CPEs, we assess effects of age and diagnostic group on the
leading eigenscores through regression analysis. The CPEs from α cutoffs ranging from 0.05 to
0.95 for the leading two eigenfunctions based on BFPCA on all subjects, overlaying M = 4, 000
posterior estimates in gray, are given in Figure 4. The two leading eigencomponents explain more
than 70% of the total variation with median and (2.5th, 97.5th) percentiles of FVE at 72.0%
(66.9%, 76.5%). The CPEs of the third and fourth leading eigenfunctions, explaining 15.8%
(12.6%, 19.6%) and 12.2% (9.7%, 15.0%) FVE, respectively, are deferred to Supplementary Ma-
terials Figure S12. While the leading eigenfunction mostly signals variation in the magnitude of
the alpha peak around 10Hz (Figures 4 (a) and (b)), the second leading eigenfunction captures
variation in PAF (location of the prominent alpha peak) and varies between 9Hz-10.75Hz (Fig-
ures 4 (c) and (d)). Note that the MVD-CPE envelopes are wider at lower alpha levels up to
0.55 and 0.45 for the first and second leading eigenfunctions, respectively, similar to the observa-
tions from our simulation study. For the reader’s reference CPEs for the third and fourth leading
eigenfunctions, capturing remaining variation in the concavity of the PSD in the alpha frequency
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Figure 3: The left-hand columns display a sample of relative PSD obtained on 10 subjects from
the TD (a) and ASD (b) diagnostic groups. The right-hand columns display the MBD-CPEs
at a grid of α levels marked by varying contour colors for both TD and ASD groups (c) and
estimated MBD medians (solid or dashed black lines) and 95% MBD-CPEs (colored area) for
the mean function in the TD young and old groups (d) and ASD young and old groups (e).

band and 95% parametric and quantile credible intervals along with 95% CPEs are deferred to
Supplementary Materials Figure S13. Consistent with results from the simulation section, si-
multaneous parametric credible intervals include regions that do not represent variation in the
posterior sample (Figures S13 (g) and (j)).

Finally, in order to perform diagnostic group comparisons in the amount of variation in alpha
peak amplitude and PAF, we regress the leading two eigenscores on diagnostic group (ASD),
age (in months, mean-centered) and their interaction (see Supplementary Materials Table S3 for
estimated regression components). Since a positive score on the leading eigenfunction indicates a
larger amplitude of the prominent alpha peak, the positive regression coefficient of age (p-value:
0.0124) implies that older kids have larger alpha peak amplitudes across both diagnostic groups.
The negative coefficient of ASD (p-value: 0.0354) indicates that the ASD group has a smaller
amplitude of the alpha peak at the mean age of 70 months compared to the TD group. Since a
negative score on the second leading eigenfunction indicates a later PAF, the negative regression
coefficient of age (p-value: 0.0016) implies that the TD group displays the PAF shift from lower
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Figure 4: CPE contours of the two leading eigenfunctions for in our data application (with
% FVE reported in (a) and (c)), overlaying the posterior estimates given in gray. The left and
right hand columns display the MBD and MVD-CPEs, denoted by D1−α{ψ1(t)} and D�

1−α{ψ1(t)},
respectively, at a grid of α levels marked by varying contour colors. The estimated MBD and
MVD median are given in solid black in the right and left columns, respectively.

to higher frequencies as the children age. This shift is not observed in the ASD group since the
significant group by age interaction cancels this age effect in the ASD group.

6 Discussion
We propose a descriptive tool to visualize the variation in the posterior sample of the functional
model components of BFPCA. The BFPCA modeling considered relies on a latent factor model
and MMGPS priors on the variance components, leading to an easy to implement estimation
framework and a direct way for inference on the model components. We recover the highly
interpretable mean and eigenfunctions following Bayesian estimation and propose functional
depth based summaries for these quantities. The novel summaries proposed are shown to lead
to a data-driven approach in portraying the variability of the functional model components.
Traditional summaries rely on distributional assumptions or suboptimal symmetry constraints,
and fail to treat the posterior sample as functional data. In contrast, the proposed summaries
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are based on ranking of the posterior sample for the functional components using functional
depth. Two functional depth based summaries are considered, one based on direct ranking of
the entire posterior functional sample and another through ranking of the associated covariance
surfaces. Both approaches have been shown to lead to flexible modeling of the variation in the
posterior sample, where the second leads to wider CPEs as expected, incorporating variation
from the entire covariance process, rather than a single eigenfunction. Note that the proposed
visualization tools are general and not model specific and hence can easily be applied to different
formulations of BFPCA.

Extensions of the proposed methodology to higher dimensional functional data would be
of interest, especially in EEG applications. EEG data is collected across the scalp, creating
spatially indexed functional data. In addition, data are collected across multiple trials time
locked to presentation of a sequence of stimuli in stimulus-based experiments and across time in
resting state paradigms. When changes across experimental time are of interest, these repetitions
can be viewed as an additional dimension of the observed data (i.e. as longitudinally observed
functional data) and be part of analysis rather than collapsed via averaging. FPCA modeling
has been considered for high-dimensional functional data, especially in EEG data applications
involving a spatial or a longitudinal dimension (Shamshoian et al., 2022; Li et al., 2020; Campos
et al., 2022; Scheffler et al., 2019, 2020; Hasenstab et al., 2017). Developments rely on simplifying
assumptions on the higher dimensional covariance via strong or weak separability. The proposed
functional depth based tools for visualization of the posterior sample can be extended to other
Bayesian models of higher-dimensional functional data.

Supplementary Material
Supplementary material online includes: derived posterior distributions for model estimation;
algorithm for alignment of posterior eigenfunction estimates; details on data generation for
simulation studies and additional simulation results; pre-processing of the EEG data featured
in Section 5; and plots illustrating band depth, and estimates from simulation studies and data
analysis. The R code for the proposed methodology is made publicly available on the Github
page https://github.com/dsenturk/FDpostSumms_BFPCA, along with a tutorial for step-by-
step implementation using simulated data.
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