Impact of COVID-19 Pandemic on Oncology Clinical Trials - Simulation Results for Time Off-Treatment (Section 3.4) and Missed Visits (Section 3.3) on Efficacy Assessment


Jiabu Ye, Binbing Yu, Zsolt Szijgyarto and Helen Mann
for the COVID-19 Oncology Biometrics Working Group
AstraZeneca Oncology Biometrics

July 10, 2021

Simulated Clinical trial and Questions

Analysis Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
1 PFS 26 0.69 Interim 0.736 233 530 45
2 PFS 26 0.69 Final 0.796 311 530 59

Simulation for Section 3.3. Impact of missing visits on HR, Type 1 error and Power

The missingness indicator for a clinical visit follows a Bernoulli distribution during the COVID-19 pandemic (a,b)

Supplementary Table 5. Impact of 2-missed visits censoring rule on bias of HR estimates and power/Type 1 error of the interim PFS (patient-level missing)

Design characteristics
Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
PFS 26 0.69 Interim 0.736 233 530 45
H1: HR=0.69
H0: HR=1.0
Use missing-2-visit rule?
Yes
No
Yes
No
Time COVID to DCO Duration P(Miss) P(2 missing) % Bias Power %Bias Power P(2 missing) % Bias Alpha %Bias Alpha
0 0 0.00 0.00 0.76 67.06 0.76 67.06 0.00 0.76 1.98 0.76 1.98
24 3 0.25 0.01 0.76 66.46 0.76 67.08 0.01 0.78 2.06 0.76 1.96
24 3 0.50 0.03 0.76 66.34 0.76 67.06 0.02 0.78 2.10 0.76 1.96
24 6 0.25 0.16 0.67 64.88 0.77 66.94 0.14 0.81 1.88 0.76 1.96
24 6 0.50 0.31 0.54 62.86 0.78 66.98 0.29 0.88 1.94 0.75 2.08
24 9 0.25 0.16 0.81 64.50 0.77 67.00 0.15 0.80 2.02 0.77 1.98
24 9 0.50 0.32 0.78 61.68 0.78 67.04 0.30 0.85 2.04 0.76 2.02

Supplementary Tabels 6 and 7. Impact of 2-missed visits censoring rule on bias of HR estimates and power/Type 1 error of the final PFS (patient-level missing)

-The COVID start time (months after FPR) = total study time (59m) - Time from COVID to DCO (data cutoff)

Design characteristics
Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
PFS 26 0.69 Final 0.796 311 530 59
H1: HR=0.69
H0: HR=1.0
Use missing-2-visit rule?
Yes
No
Yes
No
Time COVID to DCO Duration P(Miss) P(2 missing) % Bias Power %Bias Power P(2 missing) % Bias Alpha %Bias Alpha
0 0 0.00 0.00 0.50 90.30 0.50 90.30 0.00 0.50 5.10 0.50 5.10
24 3 0.25 0.01 0.50 89.86 0.51 90.30 0.01 0.51 5.08 0.50 5.08
24 3 0.50 0.03 0.48 89.82 0.52 90.16 0.02 0.52 5.10 0.49 5.02
24 6 0.25 0.16 0.39 87.18 0.60 90.14 0.14 0.53 5.18 0.51 5.00
24 6 0.50 0.31 0.23 83.68 0.71 89.60 0.29 0.64 5.34 0.49 5.38
24 9 0.25 0.16 0.23 86.82 0.62 90.08 0.15 0.53 5.30 0.50 5.28
24 9 0.50 0.32 0.01 83.94 0.72 89.96 0.30 0.66 5.24 0.48 4.92
6 3 0.25 0.00 0.50 90.30 0.50 90.30 0.00 0.50 5.10 0.50 5.10
6 3 0.50 0.00 0.50 90.30 0.50 90.30 0.00 0.50 5.10 0.50 5.10
6 6 0.25 0.05 0.56 90.04 0.50 90.26 0.05 0.50 5.16 0.50 5.10
6 6 0.50 0.11 0.62 89.96 0.50 90.28 0.09 0.51 5.50 0.50 5.06

Figure 2A. Plot of # events, # of having 2 missing and # events being impacted by missing 2 visit rule by total study duration (COVID-19 pandemics starts 24 months before the target DCO (59m) and has duration of 9 months, patient-leve missing probably 50% during pandemic)

Figure 2B. Plot of patients being impacted: a sensitivity analysis by changing patient-level missing probability from 0.5 to 0.25

Figure 2C. Plot of patients being impacted: a sensitivity analysis by changing Pandemic duration 9m to 3m

Figure 2D. Plot of patients being impacted: a sensitivity analysis by changing patient-level missing to visit-level missing

Simulation for Section 3.2. Impact of excess/reduced hazard due to time off-treatment during COVID-19 on HR and power

Supplementary Table 1. Impact of time off-treatment on PFS HR estimates and Type 1 error under the null hypothesis for PFS

Design characteristics
Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
PFS 26 1 Final 0.796 311 530 59
Excess HR of patients during pandemic among control and treatment groups (HR0,HR1)
10% Impacted
30% Impacted
(1.0,1.4)
(1.1,1.4)
(1.0,1.4)
(1.1,1.4)
Time COVID-DCO COVID duration Delta % Bias Alpha Delta % Bias Alpha Delta % Bias Alpha Delta % Bias Alpha
0 0 0.0 0.5 5.1 0.0 0.5 5.1 0.0 0.5 5.1 0.0 0.5 5.1
6 3 2.9 0.9 5.3 2.1 1.0 4.8 2.9 1.3 5.1 2.1 0.8 4.4
6 6 5.6 1.0 5.1 4.2 0.5 4.8 5.6 1.5 5.1 4.2 1.4 5.5
24 3 2.9 0.9 4.8 2.1 0.8 4.8 2.9 1.8 5.3 2.1 0.9 5.4
24 6 5.6 1.3 5.2 4.2 1.2 5.2 5.6 2.1 5.1 4.2 1.7 5.0
24 9 8.3 1.6 5.2 6.1 1.3 5.2 8.3 3.1 6.0 6.1 2.6 4.9

Supplementary Table 2. Impact of time off-treatment on PFS HR estimates and power under the alternative hypothesis for PFS .

Design characteristics
Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
PFS 26 0.69 Final 0.796 311 530 59
Excess HR of patients during pandemic among control and treatment groups (HR0,HR1)
10% Impacted
30% Impacted
(1.0,1.4)
(1.1,1.4)
(1.0,1.4)
(1.1,1.4)
Time COVID-DCO COVID duration Delta % Bias Power Delta % Bias Power Delta % Bias Power Delta % Bias Power
0 0 0.0 0.5 90.5 0.0 0.5 90.5 0.0 0.5 90.5 0.0 0.5 90.5
6 3 2.7 0.9 89.7 2.0 0.7 89.6 2.7 1.1 89.4 2.0 1.2 89.3
6 6 5.4 1.1 89.2 3.9 0.6 90.2 5.4 1.8 87.9 3.9 1.6 88.9
24 3 2.7 0.9 89.4 2.0 1.1 89.0 2.7 1.4 89.4 2.0 1.2 89.1
24 6 5.4 1.2 89.0 3.9 0.8 90.3 5.4 2.5 87.1 3.9 1.9 88.2
24 9 8.0 1.6 88.9 5.8 1.2 89.4 8.0 3.2 85.7 5.8 2.5 87.7

Supplementary Table 3. Impact of time off-treatment on OS HR estimates and Type 1 error under the null hypothesis for OS

Design characteristics
Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
OS 38.6 1 Final 0.791 300 530 74
Excess HR of patients during pandemic among control and treatment groups (HR0,HR1)
10% Impacted
30% Impacted
(1.0,1.4)
(1.1,1.4)
(1.0,1.4)
(1.1,1.4)
Time COVID-DCO COVID duration Delta % Bias Alpha Delta % Bias Alpha Delta % Bias Alpha Delta % Bias Alpha
0 0 0.0 0.2 4.8 0.0 0.2 4.8 0.0 0.2 4.8 0.0 0.2 4.8
6 3 0.0 0.3 5.4 0.0 0.6 5.2 0.0 0.6 4.7 0.0 0.5 4.6
6 6 0.0 0.5 5.1 0.0 0.4 4.6 0.0 0.7 4.7 0.0 0.5 5.5
21 3 2.1 1.1 5.3 1.5 0.7 5.2 2.1 1.2 5.0 1.5 1.0 4.8
21 6 4.1 0.9 5.2 3.0 0.7 4.6 4.1 1.6 5.1 3.0 1.4 5.4
39 3 2.1 1.1 5.2 1.5 0.7 4.5 2.1 1.4 5.3 1.5 1.2 5.4
39 6 4.1 1.0 5.0 3.0 0.9 5.1 4.1 2.3 4.5 3.0 1.7 5.0
39 9 6.1 1.1 4.6 4.5 1.1 4.8 6.1 2.8 5.7 4.5 2.4 5.0

Supplementary Table 4. Impact of time off-treatment on OS HR estimates and power under the alternative hypothesis for OS .

Design characteristics
Endpoint SOC.median Target.HR Analysis.Stage HR.cv Number.events Number.of.patients Followup.Time
OS 38.6 0.72 Final 0.791 300 530 74
Excess HR of patients during pandemic among control and treatment groups (HR0,HR1)
10% Impacted
30% Impacted
(1.0,1.4)
(1.1,1.4)
(1.0,1.4)
(1.1,1.4)
Time COVID-DCO COVID duration Delta % Bias Power Delta % Bias Power Delta % Bias Power Delta % Bias Power
0 0 0.0 0.5 80.9 0.0 0.5 80.9 0.0 0.5 80.9 0.0 0.5 80.9
6 3 0.0 0.5 81.4 0.0 0.7 80.5 0.0 0.5 80.8 0.0 0.4 81.1
6 6 0.0 0.5 80.5 0.0 0.5 81.7 0.0 0.6 81.3 0.0 0.9 80.0
21 3 2.0 0.9 80.7 1.4 0.9 80.7 2.0 1.0 80.6 1.4 1.0 79.8
21 6 3.9 1.0 80.5 2.8 1.1 79.8 3.9 1.7 78.3 2.8 1.4 79.7
39 3 2.0 1.0 79.5 1.4 0.9 79.7 2.0 1.8 77.8 1.4 1.0 80.1
39 6 3.9 1.2 79.2 2.8 1.2 79.4 3.9 1.9 78.1 2.8 1.8 78.0
39 9 5.8 1.1 80.4 4.2 1.1 79.9 5.8 2.6 76.1 4.2 2.1 78.2