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Abstract

In the last few decades, the size of spatial and spatio-temporal datasets in many research areas
has rapidly increased with the development of data collection technologies. As a result, classical
statistical methods in spatial statistics are facing computational challenges. For example, the
kriging predictor in geostatistics becomes prohibitive on traditional hardware architectures for
large datasets as it requires high computing power and memory footprint when dealing with
large dense matrix operations. Over the years, various approximation methods have been pro-
posed to address such computational issues, however, the community lacks a holistic process to
assess their approximation efficiency. To provide a fair assessment, in 2021, we organized the
first competition on spatial statistics for large datasets, generated by our ExaGeoStat software,
and asked participants to report the results of estimation and prediction. Thanks to its widely
acknowledged success and at the request of many participants, we organized the second compe-
tition in 2022 focusing on predictions for more complex spatial and spatio-temporal processes,
including univariate nonstationary spatial processes, univariate stationary space-time processes,
and bivariate stationary spatial processes. In this paper, we describe in detail the data generation
procedure and make the valuable datasets publicly available for a wider adoption. Then, we re-
view the submitted methods from fourteen teams worldwide, analyze the competition outcomes,
and assess the performance of each team.
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1 Introduction
With the explosion of spatial and spatio-temporal data coming from different sources such as
sensors and satellites, it has become crucial to handle these data in a robust manner. In the
last few decades, studies focusing on spatial statistics have followed one main direction to deal
with large geospatial data: adopting an approximation approach to reduce the modeling and
prediction process complexity. However, these methods have been mostly benchmarked using
small and medium-sized datasets because of the prohibitive computation of the exact solution
for comparison purposes.
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Abdulah et al. (2018a) proposed the ExaGeoStat software to perform large-scale statistical
modeling and prediction for geospatial data on leading-edge parallel hardware architectures.
ExaGeoStat is able to deal with millions of spatial locations and complete the statistical esti-
mation and prediction in exact and approximate formats (Abdulah et al., 2018b, 2021). It is
also supported by a data generation tool that is able to generate synthetic spatial datasets from
different realizations with millions of locations. As mentioned by Vu et al. (2021), ExaGeoStat
can be described as the gold standard for spatial statistical data modeling tools since it can gen-
erate and analyze large geospatial data with exact computations for millions of spatial locations.
Thus, in 2021, we organized the first KAUST spatial statistics competition for large synthetic
datasets for the spatial statistics community to assess existing geospatial modeling methods us-
ing ExaGeoStat. The competition involved a set of synthetic datasets generated from univariate
spatial processes with up to 1M locations. Out of twenty-nine research teams worldwide who
registered to participate in the competition, twenty-one teams successfully submitted their re-
sults; see Huang et al. (2021) for the analysis of the submissions. Over the past year, ExaGeoStat
has been further developed to support richer classes of models for spatial and spatio-temporal
processes. Therefore, we organized a second competition in 2022 by providing geospatial datasets
with new features.

This work follows several studies that have aimed to assess the efficiency of existing tools and
methods to perform kriging for geospatial datasets. For instance, in Englund (1990), a collection
of spatial datasets were sent to twelve investigators to analyze them and perform spatial inference
for missing locations. The “Walker Lake” dataset (Srivastava, 1987) was the core source of the
study datasets. The author illustrated the clear variability in the submitted results, motivating
and encouraging the statistics community to develop a set of performance-based guidelines
to assess the quality of the statistical analysis with different models and methods. The work
in Weber and Englund (1992) is an extension of Englund’s work, where the relative accuracy
of fifteen inference methods was assessed for analyzing the fifty-four datasets of the “Walker
Lake” data. For example, the spatial predictions based on the inverse distance were compared to
those obtained by the kriging method. The study explained in detail the pros and cons of each
method for these datasets. More recently, a study by Heaton et al. (2019) assessed existing kriging
tools with simulated and real datasets by introducing one competition to a pre-selected set of
research groups. Twelve methods were compared in the competition, with the code and details
of each method made available to the statistics community. Wikle et al. (2017) proposed the
“secret sauce” to build a benchmarking framework for objective comparison of spatial prediction
methods, which has been called a Common Task Framework (CTF). The article argues that any
fair comparison between spatial prediction methods should follow this framework by including a
set of publicly available spatial datasets, predefined prediction assessing rules, and an automatic
scoring referee. The datasets should be complete and well described, and the scoring referee
should be unique for all the submissions. In the literature, other studies for the assessment of
geospatial methods exist but with different perspectives and performed on other datasets, such
as the work in Li and Heap (2011, 2014), Shahbeik et al. (2014), and Bradley et al. (2016).

Following the success of the 2021 competition, this year we organized another competition
by providing synthetic datasets generated by ExaGeoStat. These datasets include three types of
data: spatial nonstationary datasets, space-time and bivariate spatial stationary datasets. The
evaluation criteria focuses on point prediction performance only. Specifically, we organized six
sub-competitions, two sizes for each type of data: one medium-sized and the other large-sized.
The competition was launched on March 1st, 2022, with twenty teams registered to participate
in one or more sub-competitions. This year, the competition was hosted on the Kaggle platform,
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which allows fast and accurate assessment of the teams’ submissions. The competition ended on
May 1st, 2022, and fourteen teams successfully submitted their results to the platform.

The rest of the paper is organized as follows. In Section 2, we provide an overview of the
ExaGeoStat software. In Section 3, we describe in detail the models used for the generation of
the competition datasets. In Section 4, we highlight the competition results and list the ranks
of different teams based on their performance in different sub-competitions. In Section 5, we
summarize the methods used by different teams in this competition. Finally, in Section 6, we
conclude with observations and discussions.

2 The ExaGeoStat Software
Gaussian processes (GPs) are widely used to model geospatial data, for which the covariance
function plays an important role. The modeling process relies on likelihood-based methods that
require constructing a covariance matrix whose entries represent the covariance between any
two observations via a predefined covariance function. Suppose the covariance function has a
parametric form C(si , sj ; θ), where si , sj ∈ R

2 (i, j = 1, . . . , n) are the spatial locations and θ is
a parameter vector of interest. The Gaussian log-likelihood function is:

l(θ) = −n

2
log(2π) − 1

2
log |�(θ)| − 1

2
Z��(θ)−1Z, (1)

and needs to be maximized with respect to θ to obtain its maximum likelihood estimator (MLE).
Here �(θ) = {C(si , sj ; θ)}ni,j=1 is the n × n covariance matrix (symmetric and positive definite)
of the n-dimensional data vector Z, n represents the number of spatial locations, and |�(θ)| is
the determinant of �(θ).

The computation of the log-likelihood (1) is prohibitive for large sample size n as the com-
plexity of computing the inverse of the covariance matrix, �(θ)−1, is O(n3), and requires O(n2)

memory. This computation becomes even more expensive when considering the multivariate and
spatio-temporal case because the sample size becomes pnm, where p is the number of spatial vari-
ables and m is the number of time points. Thus, dealing with large geospatial datasets requires
more advanced computational techniques, and integrating the capabilities of HPC with existing
spatial statistics methods becomes mandatory with the vast increase in the sizes of geospatial
datasets. Abdulah et al. (2018a) introduced the ExaGeoStat parallel software to help in scaling
the geospatial operations using leading-edge parallel hardware architectures. ExaGeoStat relies
on the state-of-the-art parallel linear algebra libraries to allow fast and efficient computation
of the log-likelihood function. ExaGeoStat also depends on modern runtime systems such as
StarPU and PaRSEC to improve the portability of the code on the different parallel hardware
architectures, including GPUs. ExaGeoStat has driven breakthroughs in the spatial statistics
field by supporting rich classes of covariance models for large-scale spatial and spatio-temporal
data; see, e.g., Salvaña et al. (2021), Mondal et al. (2022), and Salvaña et al. (2022).

Several studies have demonstrated the capabilities of ExaGeoStat in utilizing today’s high-
performance hardware for spatial statistics. Figure 1 explains in detail the statistical tasks
supported by ExaGeoStat and a visual literature review of the software portability on different
hardware architectures. The figure shows at a high-level the five main components currently
included in the software, i.e., data generation, MLE modeling, geospatial prediction, mean loss
of efficiency (MLOE) and mean misspecification of the mean square error (MMOM) tools, and
the Fisher information matrix (FIM) computing. The MLOE/MMOM tools are used to as-
sess the loss of the prediction efficiency by using the approximated or misspecified covariance
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Figure 1: Statistical tasks supported by ExaGeoStat with a visual literature review of the software
portability on different hardware architectures.

models (Hong et al., 2021). The Fisher information matrix provides information about the im-
portance of a single observation in estimating unknown statistical parameters, i.e., uncertainty
quantification. Figure 1 also highlights the parallel linear algebra libraries on which ExaGeoStat
relies to perform the required covariance matrix operations, i.e., Chameleon and DPLASMA for
dense matrix computations and HiCMA for Tile Low-Rank (TLR) matrix approximations. In
addition, as seen Figure 1, ExaGeoStat relies on two different runtime systems, i.e., StarPU and
PaRSEC.

3 Detailed Description of the Competition Datasets
In this competition, we generated three types of data: univariate nonstationary spatial data,
univariate stationary space-time data, and bivariate stationary spatial data. We consider differ-
ent settings for each type. The following subsections give more details about the data generating
models and the associated settings. A summary of the six sub-competitions can be found in
Table 3 at the end of this section.

3.1 Univariate Nonstationary Spatial Model (Sub-competitions 1a and 1b)

We consider a univariate Gaussian random field (GRF), Z(s), s ∈ [0, 1]2, modeled as:

Z(s) = m(s) + Y (s) + ε(s), (2)

where m(·) is the mean function, Y (·) is a spatially dependent and zero-mean GRF with co-
variance function C(·, ·), ε(·) ∼ N(0, τ 2) is an independent noise process with τ 2 denoting the
nugget effect, and ε(·) is independent of Y (·). In Sub-competitions 1a and 1b, four nonstationary
datasets were generated under the model in equation (2).
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For datasets 1a-1 and 1b-1, the nonstationarity is in the deterministic mean function as
described in Xiong et al. (2007) and Ba and Joseph (2012). Data were generated by Z(s) =
m(s)+ ε(s), s = (sx, sy) on a regular grid. For the dataset 1a-1 of size 100K, τ = 0.1 and m(s) is:

m(s) = 5 sin

{
30

(
sx + sy

2
− 0.9

)3
}

cos

{
20

(
sx + sy

2
− 0.9

)4
}

+ 1

2
exp{sin(30sx) + sin(13sy)} + 1

2

(
sx + sy

2
− 0.2

)
.

(3)

For the dataset 1b-1 of size 1M, τ = 0.3 and m(s) takes the form:

m(s) = 3 sin

{
20

(
sx + sy

2
+ 1.9

)}
cos

{
20

(
sx + sy

2
− 1.2

)6
}

+ 3

5
exp{sin(25sx) + sin(13sy)} + 1

2

(
sx + sy

2
− 0.2

)
.

(4)

Datasets 1a-2 (100K) and 1b-2 (1M) were generated at irregular locations from a zero-mean
Gaussian process Z(s) with a nonstationary Matérn covariance function (Li and Sun, 2019, and
references therein):

CNS(si , sj ; θ) = τ 21[i=j ](si , sj ) + σ(si)σ (sj )

�(ν)2ν−1
|�(si )|1/4|�(sj )|1/4

×
∣∣∣∣�(si ) + �(sj )

2

∣∣∣∣
−1/2 (

2
√

νQij

)ν

Kν

(
2
√

νQij

)
,

(5)

where σ(si) is the spatially varying standard deviation, �(si ) is the kernel matrix at si , Kν is
the modified Bessel function of the second kind of order ν > 0, ν is the smoothness parameter,
and Qij is the square Mahalanobis distance between si and sj .

The nonstationarity of the GRF is controlled by the spatially varying parameters θ(si) ∈
{�(si ), σ (si)}. The kernel matrices are obtained through a spectral decomposition:

�(si ) =
[

cos(φ) − sin(φ)

sin(φ) cos(φ)

] [
λ1(si ) 0

0 λ2(si)

] [
cos(φ) sin(φ)

− sin(φ) cos(φ)

]
,

where λ1(si ) > 0 and λ2(si) > 0 are eigenvalues that represent spatial ranges and φ ∈ [0, π/2]
represents the angle of rotation.

The generation process depends on dividing the spatial region into a grid of subregions
centered at reference locations (s̃k)

M
k=1. A spatially varying parameter θ at location si is defined

as follows:

θ(si) =
M∑

k=1

w(si , s̃k)θk, w(si , s̃k) = K(si , s̃k)∑M
k=1 K(si , s̃k)

,

where M represents the number of subregions, θk is the parameter value at the reference
location s̃k associated with the k-th subregion, w(si , s̃k) is a weight function, and K(·) de-
notes a bivariate kernel function. Herein, we chose a Gaussian kernel defined as K(si , s̃k) =
exp{−‖si − s̃k‖2/(2h)}, where h > 0 is the bandwidth parameter fixed to 0.09.

We chose M = 4 subregions with four reference locations with the coordinates (0.25, 0.25),
(0.25, 0.75), (0.75, 0.25), (0.75, 0.75) in the unit square. Parameter settings at the 4 reference
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Figure 2: Synthetic univariate nonstationary spatial datasets in Sub-competitions 1a and 1b:
(1a-1) A 100K nonstationary dataset generated using the deterministic mean function in (3);
(1b-1) A 1M nonstationary dataset generated using the deterministic mean function in (4);
(1a-2) A 100K nonstationary dataset generated using the covariance function in (5); and
(1b-2) A 1M nonstationary dataset generated using the covariance function in (5).

locations are σ = (3.5, 1.9, 1.8, 0.7), λ1 = λ2 = (0.03, 0.07, 0.1, 0.3), with constant ν = 0.7,
τ 2 = 0.3, and φ = π/2.

For Sub-competitions 1a and 1b, 90% of the data were randomly selected as the training
datasets, and the remaining 10% were used as testing datasets. Training datasets were given to
the participants to perform prediction on the locations of the testing data. Figure 2 shows the
visual images of the four training datasets in Sub-competitions 1a and 1b that illustrate different
features of nonstationarity.

3.2 Univariate Stationary Space-Time Model (Sub-competitions 2a and 2b)

The second part of the competition includes eighteen univariate space-time datasets generated
from a zero-mean Gaussian process with a non-separable stationary space-time covariance func-
tion (Gneiting, 2002) at space-time locations (s, t) ∈ [0, 1]2 × R:

C(h, u; θ) = σ 2

at |u|2α + 1
Mν

{ ‖h‖/as

(at |u|2α + 1)β/2

}
, (6)
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Table 1: The settings to generate datasets in Sub-competitions 2a and 2b using a non-separable
stationary space-time Matérn covariance model.

Dataset # spatial
locations

# time
slots

σ 2 α β ν as at Time
EffRange

Space
EffRange

Prediction
setting

ST1 (2a-1) 1K 100 0.9 0.6 0.9 1 0.02 1 11.63 0.08 RS
ST2 (2a-2) 1K 100 0.9 0.6 0.9 1 0.08 0.24 38.20 0.32 RS
ST3 (2a-3) 1K 100 0.9 0.08 0.9 1 0.4 1 ∞ 1.6 RS
ST4 (2a-4) 1K 100 0.9 0.6 0.9 1 0.02 1 11.63 0.08 RST
ST5 (2a-5) 1K 100 0.9 0.6 0.9 1 0.08 0.24 38.20 0.32 RST
ST6 (2a-6) 1K 100 0.9 0.08 0.9 1 0.4 1 ∞ 1.6 RST
ST7 (2a-7) 1K 100 0.9 0.6 0.9 1 0.02 1 11.63 0.08 T10
ST8 (2a-8) 1K 100 0.9 0.6 0.9 1 0.08 0.24 38.20 0.32 T10
ST9 (2a-9) 1K 100 0.9 0.08 0.9 1 0.4 1 ∞ 1.6 T10

ST10 (2b-1) 10K 100 0.9 0.6 0.9 1 0.02 1 11.63 0.08 RS
ST11 (2b-2) 10K 100 0.9 0.6 0.9 1 0.08 0.24 38.20 0.32 RS
ST12 (2b-3) 10K 100 0.9 0.08 0.9 1 0.4 1 ∞ 1.6 RS
ST13 (2b-4) 10K 100 0.9 0.6 0.9 1 0.02 1 11.63 0.08 RST
ST14 (2b-5) 10K 100 0.9 0.6 0.9 1 0.08 0.24 38.20 0.32 RST
ST15 (2b-6) 10K 100 0.9 0.08 0.9 1 0.4 1 ∞ 1.6 RST
ST16 (2b-7) 10K 100 0.9 0.6 0.9 1 0.02 1 11.63 0.08 T10
ST17 (2b-8) 10K 100 0.9 0.6 0.9 1 0.08 0.24 38.20 0.32 T10
ST18 (2b-9) 10K 100 0.9 0.08 0.9 1 0.4 1 ∞ 1.6 T10

where σ 2 > 0 is the variance, ν > 0 and α ∈ (0, 1] are the smoothing parameters, as and at > 0
are the range parameters in space and time, respectively, β ∈ (0, 1] is the space-time interaction
parameter, and Mν is the univariate Matérn correlation function:

Mν(r) = 1

2ν−1�(ν)
rνKν(r).

The sizes of the generated datasets were 1K and 10K locations, with 100 time-slots. We
considered different spatial and temporal dependencies: strong, moderate and weak for a non-
separable model with β = 0.9. The parameter settings for each case were as follows: weak-strong
(as, at ) = (0.02, 1), moderate-moderate (as, at ) = (0.08, 0.24), strong-strong (as, at ) = (0.4, 1),
α = (0.08, 0.6), and (σ 2, β, ν) = (0.9, 0.9, 1). Table 1 summarizes the parameter settings used
for each dataset, as well as the time/space effective range (EffRange).

We considered three different scenarios of leaving out space-time points for prediction:
1. Random spatial locations with all times left out (RS);
2. Random locations in space/time left out (RST);
3. All spatial locations are missing on the last 10 time points (T10).

There were eighteen space-time datasets generated by considering different parameter set-
tings and leaving out schemes. Figure 3 visualizes datasets at t = 0, t = 1, and t = 2 generated
under the first three settings of each sub-competition in Table 1 with RS left out. Other datasets
(under RST and T10) were generated using the same parameter settings.
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Figure 3: (2a-1, 2a-2, 2a-3) Synthetic space-time datasets with 1K locations and 100 time-slots
generated from a non-separable space-time covariance function; (2b-1, 2b-2, 2b-3) Synthetic
space-time datasets with 10K locations and 100 time-slots generated from a non-separable space-
time covariance function. The figure visualizes the datasets at t = 0, t = 1, t = 2 generated
under the first three settings of each sub-competition in Table 1 with RS left out.

3.3 Bivariate Stationary Spatial Model (Sub-competitions 3a and 3b)

The third part of the competition involved generating datasets from bivariate zero-mean Gaus-
sian random fields (Z1(s),Z2(s))

� using two different cross-covariance functions (without nugget):
the parsimonious (Gneiting et al., 2010) and the flexible (Apanasovich et al., 2012) Matérn.

The parsimonious Matérn cross-covariance function has the following form:

Cij (h; θ) = ρijσiiσjj

2νij −1�(νij )

(‖h‖
a

)νij

Kνij

(‖h‖
a

)
, (7)

for i, j = 1, 2. Here θ consists of the following parameters: marginal smoothnesses νii > 0, a
common range a > 0, marginal variances σ 2

ii > 0, and the collocated correlation ρij , i �= j . The
cross-smoothness νij = 1

2(νii + νjj ) and ρij are related:

ρij = βij

�(νii + d
2 )

1
2

�(νii)
1
2

�(νjj + d
2 )

1
2

�(νjj )
1
2

�{ 1
2(νii + νjj )}

�{ 1
2(νii + νjj ) + d

2 } ,
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Table 2: The settings to generate datasets in Sub-competitions 3a and 3b using a parsimo-
nious/flexible Matérn covariance model.

Dataset Size σ 2
11 σ 2

22 β12 ν11 ν22 a11 a22 EffRange
of C11

EffRange
of C22

ρ12 Matérn
Model

3a-1 50K 0.9 0.9 0.9 0.6 1.4 0.03 0.03 0.097 0.138 0.824 Parsimonious
3b-1 500K 0.9 0.9 0.9 0.6 1.4 0.03 0.03 0.097 0.138 0.824 Parsimonious

3a-2 50K 0.9 0.9 0.9 0.9 0.9 0.02 0.3 0.077 1.15 0.9 Flexible
3a-3 50K 0.9 0.9 0.9 0.6 1.4 0.03 0.1 0.097 0.46 0.824 Flexible
3b-2 500K 0.9 0.9 0.9 0.9 0.9 0.02 0.3 0.077 1.15 0.9 Flexible
3b-3 500K 0.9 0.9 0.9 0.6 1.4 0.03 0.1 0.097 0.46 0.824 Flexible

where d = 2 and (βij )
p

i,j=1 is a symmetric and positive definite correlation matrix. More descrip-
tions can be found in Salvaña et al. (2021).

The flexible Matérn cross-covariance function has the following form:

Cij (h; θ) = ρijσiiσjj

2νij −1�(νij )

(‖h‖
aij

)νij

Kνij

(‖h‖
aij

)
, (8)

where a2
ij = (a2

ii + a2
jj )/2 + τ̄ (aii − ajj )

2, 0 � τ̄ < ∞. In this case, the marginal ranges aii are no
longer constant across variables.

Table 2 shows two different settings to generate a 50K (3a-1) and a 500K (3b-1) datasets
using the parsimonious bivariate model, with β12 = 0.9, a = a11 = a22 = 0.03, ν11 = 0.6 and
ν22 = 1.4. Table 2 also shows two different settings of the flexible bivariate Matérn model with
β12 = 0.9 and τ̄ = 0:
• Same smoothness parameters ν11 = ν22 = 0.9 and different range parameters with a11 = 0.02

indicating weak dependence and a22 = 0.3 indicating strong dependence (3a-2 and 3b-2);
• Mixed parameters setting: smoothness parameters ν11 = 0.6 and ν22 = 1.4, and range pa-

rameters a11 = 0.03 and a22 = 0.1 (3a-3 and 3b-3).
Figure 4 shows visual images of datasets generated from the parsimonious and the flexible

Matérn models, respectively. For prediction, 90% of each dataset were provided as training data,
while 10% were kept as testing data with both variables left out simultaneously.

3.4 Assessment Metric

We hosted the competition this year on the Kaggle machine learning and data science platform.
Six different Kaggle competitions were created to represent the 6 sub-competitions as follows:
• Sub-competition 1a: two 100K univariate nonstationary spatial datasets:

https://www.kaggle.com/competitions/2022-kaust-ss-competition-1a
• Sub-competition 1b: two 1M univariate nonstationary spatial datasets:

https://www.kaggle.com/competitions/2022-kaust-ss-competition-1b
• Sub-competition 2a: nine 1K spatial locations at 100 time points (space-time) datasets:

https://www.kaggle.com/competitions/2022-kaust-ss-competition-2a
• Sub-competition 2b: nine 10K spatial locations at 100 time points (space-time) datasets:

https://www.kaggle.com/competitions/2022-kaust-ss-competition-2b

https://www.kaggle.com/competitions/2022-kaust-ss-competition-1a
https://www.kaggle.com/competitions/2022-kaust-ss-competition-1b
https://www.kaggle.com/competitions/2022-kaust-ss-competition-2a
https://www.kaggle.com/competitions/2022-kaust-ss-competition-2b
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Figure 4: Bivariate datasets (Z1(s), Z2(s))
� using the parsimonious and flexible Matérn models

with two sizes: 50K (3a-1, 3a-2, and 3a-3) and 500K (3b-1, 3b-2, and 3b-3).

• Sub-competition 3a: three 50K bivariate spatial datasets:
https://www.kaggle.com/competitions/2022-kaust-ss-competition-3a

• Sub-competition 3b: three 500K bivariate spatial datasets:
https://www.kaggle.com/competitions/2022-kaust-ss-competition-3b
The participating teams were ranked independently for each sub-competition. We used the

Root Mean Square Error (RMSE) criterion to evaluate the prediction accuracy for each sub-
competition:

RMSE =
√√√√ 1

Ntest

Ntest∑
i=1

(
Ẑi − Zi

)2
,

where Ẑi and Zi are respectively the predicted and true realization values in the testing dataset,
and Ntest is the total number of data points in the testing dataset. Depending on the sub-
competitions, Ẑi and Zi are either spatial only or spatio-temporal variables. The final score
of each team for a given sub-competition is calculated in Kaggle using the Mean Columnwise
Root Mean Squared Error (MCRMSE), i.e., the averaged RMSE over datasets for each sub-
competition.

https://www.kaggle.com/competitions/2022-kaust-ss-competition-3a
https://www.kaggle.com/competitions/2022-kaust-ss-competition-3b
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Table 3: Summary of the six sub-competitions.

Sub-competition Setting True Data Model # of
Datasets

Training
Data Size

Testing
Data Size

1a Univariate GP with 2 90K 10K
Nonstationary Nonstationary
Spatial Mean or Cov

1b Univariate GP with 2 900K 100K
Nonstationary Nonstationary
Spatial Mean or Cov

2a Univariate GP with 9 90K 10K
Stationary
Space-Time

Non-Separable Cov

2b Univariate GP with 9 900K 100K
Stationary
Space-Time

Non-Separable Cov

3a Bivariate GP with 3 45K 5K
Stationary Parsimonious or Flexible
Spatial Matérn Cross-Cov

3b Bivariate GP with 3 450K 50K
Stationary Parsimonious or Flexible
Spatial Matérn Cross-Cov

4 Analysis of the Submitted Results
In this section, we summarize the results submitted from different teams (list provided in Ta-
ble S1 of the Supplementary Material) and compare their performances. Specially, we have
designed visual graphs to highlight the teams’ performance related to each dataset and its im-
pact on the teams’ final rank in each sub-competition. The RMSE values for different teams
on all datasets are provided in the Supplementary Material (Tables S2 to S11) as well as those
obtained with ExaGeoStat for reference purpose.

4.1 Results of Sub-competitions 1a and 1b (Univariate Nonstationary Spa-
tial)

In Sub-competition 1a, there were two 100K datasets, 1a-1 and 1a-2, where 1a-1 has been
generated using the deterministic mean function in (3), while 1a-2 has been generated using
the nonstationary covariance function in (5) with specific settings as mentioned in Section 3.1.
Figure 5a shows the competition results of the participating teams in Sub-competition 1a. All the
teams except the SubSample team got close RMSE values for all the datasets. The SubSample
team utilized a subsampling technique to fit the given data. However, their approach seems
inappropriate for the given nonstationary data. In dataset 1a-2, the top eight teams, i.e., RESSTE,
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Figure 5: Sub-competitions 1a and 1b leaderboard.

GeoModels, TripleU, Team IITK, GpGp, AppStatUZH, Spatial Special, and UOW obtained very
close RMSEs with a variation of around 7 × 10−6. The next three teams, i.e., Chessplayers, UH
Cougars, and SubSample have larger RMSEs than the top eight teams. More details are needed
to understand how to improve the performance of these three teams.

In Sub-competition 1b, we had two 1M datasets, 1b-1 and 1b-2, where dataset 1b-1 has been
generated using the deterministic mean function in (4), while dataset 1b-2 has been generated
using the nonstationary covariance function in (5) with the settings mentioned in Section 3.1.
Figure 5b summarizes the results from different teams. As shown by the figure, all the teams
except the UOW team were able to obtain very close RMSEs in datasets 1b-1 and 1b-2 with
variation around 10−5. In dataset 1b-2, the UOW team performed better than TripleU, Team
IITK, and Chessplayers teams with RMSE equal to 0.0375 compared to 0.0403, 0.0463, and
0.0476 for the three teams, respectively. However, the overall MCRMSEs are better for the three
teams than the UOW team, as shown in the figure, because of the performance of the UOW team
in dataset 1b-1.
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4.2 Results of Sub-competitions 2a and 2b (Univariate Stationary Space-
time)

In Sub-competition 2a, nine space-time datasets were generated using the non-separable station-
ary space-time covariance function in (6) with 1K locations and 100 time-slots. The generated
datasets were divided into a training dataset (90%) and a testing dataset (10%). The testing
datasets have been chosen with three settings, i.e., RS, RST, and T10, as described in Sec-
tion 3.2. We have seven participants in this sub-competition and the results are presented in
Figure 6. The Envstat.ai team was able to obtain the best MCRMSE, i.e., 0.2573, for all the
nine datasets in Sub-competition 2a. This result is 1.8× better than the second-ranked team,
i.e., GpGp. With a closer examination of the performance of the Envstat.ai team in different
datasets, we observe that the team was able to obtain the best RMSEs in datasets 2a-7, 2a-8,
and 2a-9, where all the spatial locations at the last 10 time-slots were missing (i.e., forecasting
case). The improvements compared to the GpGp team are 1.36×, 2.08×, and 3.47× in datasets
2a-7, 2a-8, and 2a-9, respectively, which also shows that the Envstat.ai team performed better
with strong space correlation and strong time correlation. The RMSEs were close to each other
for different datasets for all other teams.

In Sub-competition 2b, nine space-time datasets were generated using the non-separable
space-time covariance function in (6) with 10K locations and 100 time-slots. Eight teams have
successfully submitted their results to this sub-competition. The ranks of the first four teams
were the same as in Sub-competition 2a. The Envstat.ai team obtained the first rank with
a total MCRMSE value equals to 0.2687, which is 1.33× better than the second-ranked team,
i.e., GpGp. The Envstat.ai team outperformed the GpGp team in only three datasets, 2b-7,
2b-8, and 2b-9, by 1.32×, 2.14×, and 3.71×. Despite the fact that the GpGp team was able to
outperform the Envstat.ai team in six datasets 2b-1, 2b-2, 2b-3, 2b-4, 2b-5, and 2b-6 by 1.39×,
1.80×, 1.90×, 1.40×, 1.81×, 1.89×, the differences in RMSE values were not enough to have an
MCRMSE value lower than the Envstat.ai team.

Figure 7 shows the individual leaderboards in Sub-competition 2a and 2b for all the partic-
ipating teams. It clearly shows that the Envstat.ai team was able to obtain the lowest RMSE
values in the T10 datasets in both sub-competitions, i.e., forecasting case, with a noticeable
improvement compared to the other teams. However, it did not perform well in 3 out of the 4
remaining datasets. The figure also shows that the GpGp team performed quite well in all the
datasets compared to the Envstat.ai team. The performance of the Envstat.ai team in 2a-7,
2a-8, 2a-9, 2b-7, 2b-8, and 2b-9 was good enough to win both sub-competitions.

4.3 Results of Sub-competitions 3a and 3b (Bivariate Stationary Spatial)
In Sub-competition 3a, we generated one 50K bivariate datasets using the parsimonious Matérn
covariance function in (7), i.e., 3a-1, and two 50K bivariate datasets using the flexible Matérn
covariance function in (8), i.e., 3a-2 and 3a-3. Six teams submitted their results to this sub-
competition. Figure 8 shows the two leaderboard lists of Sub-competitions 3a and 3b. As shown,
the GpGp team outperformed all the other teams, slightly improving the final MCRMSE. The
difference between teams was minimal. The only observation is that the TripleU team has a
high RMSE in 3a-2, representing the flexible Matérn model under ν11 = 0.6 and ν11 = 1.4,
compared to the other teams.

In Sub-competition 3b, we generated one 500K bivariate dataset using the parsimonious
Matérn covariance function in (7), i.e., 3b-1, and two 500K bivariate datasets using the flex-
ible Matérn covariance function in (8), i.e., 3b-2 and 3b-3. Six teams submitted their results
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Figure 6: Sub-competitions 2a and 2b leaderboard.
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Figure 7: Sub-competitions 2a and 2b individual leaderboards where we combine datasets with
the same scenario of leaving out missing points for prediction (i.e., RS, RST, and T10).

to this sub-competition, i.e., Spatial Special, JPTIKKS, GpGp, Envstat.ai, AppStatZH, and
GeoModels. Although the main change in 3b compared to 3a is the sizes of the datasets, the
ranks of the teams changed in 3b vs 3a. The Spatial Special team ranked first and the GpGp
team ranked second in 3b, compared to third and first in 3a, respectively. The difference in the
MCRMSE was very small, and there is no special observation from the final results for individual
datasets.
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Figure 8: Sub-competitions 3a and 3b leaderboard.

5 Methods Used in the Competition: A Closer Look
The participants have relied on different methods to tackle the various sub-competitions. In
this section, we comment on the performance of the top-ranked teams and the strategies they
adopted based on the description they submitted to us.

5.1 Sub-competition 1a (Univariate Nonstationary Spatial, 100K)

Sub-competition 1a included two 100K nonstationary datasets: one was generated using a pre-
defined deterministic mean function and the other using a nonstationary covariance function
under certain settings. The RESSTE team ranked first in this sub-competition. The team applied
the Vecchia composite likelihood approximation method (Vecchia, 1988; Katzfuss et al., 2020;
Katzfuss and Guinness, 2021) to model the datasets in 1a. The Vecchia approximation method
generally depends on a sparse covariance matrix instead of the usual dense matrix to allow
faster computation of the matrix inverse operation. The RESSTE team used the GpGp R pack-
age (Guinness et al., 2018) to implement their model for datasets 1a-1 and 1a-2. For 1a-1, the
team realized the nonstationarity of the given data and decided to split the region into two parts,
i.e., upper and lower, by the line sx + sy = 0.85. The intercept 0.85 was chosen by experimenting
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with several options and selecting the one with the lowest mean square prediction error values
on one part of the training dataset. They used an anisotropic Matérn covariance function in
the upper area, while an isotropic Matérn function was chosen for the lower area. To apply the
Vecchia approximation to 1a-1, the team set the number of neighbors to 10 for estimation and
to 500 for prediction. For 1a-2, an isotropic Matérn covariance function was used for the whole
region without splitting. Herein, the team set the number of neighbors to 50 for estimation and
to 70 for prediction.

The GeoModels team ranked second in Sub-competition 1a. The team applied the nearest
neighbor weighted composite likelihood method to model both datasets in 1a. The analysis and
the results were obtained using the GeoModels package (Bevilacqua et al., 2018). In 1a, the team
considered Gaussian random fields with a geometrically anisotropic Matérn correlation model
and Tukey non-Gaussian random fields.

5.2 Sub-competition 1b (Univariate Nonstationary Spatial, 1M)
Sub-competition 1b had two 1M datasets: 1b-1 was generated using a deterministic mean func-
tion, while 1b-2 was generated using a nonstationary covariance function in (4).

The Spatial Special team ranked first in this sub-competition. The team was able to
find that dataset 1b-1 is nonstationary, and they adopted a deformation technique to map the
locations from the original space to a latent space as follows: r = √

sx + sy and θ = tan−1(
√

sy/sx).
This deformation allowed the team to assume the data are stationary in the latent space.

The prediction was performed using a deep feed-forward neural network model with two
inputs (i.e., r and θ), four hidden layers (i.e., 50, 50, 20, and 20 neurons, respectively), and one
output (i.e., MSPE). The objective function was constructed as follows:

MSPE = 1

N

∑N

i=1
{Ẑ(ri, θi) − Z(ri, θi)}2,

where Ẑ(ri, θi) is the predicted value, Z(ri, θi) is the true value at the location (ri, θi), the
activation function was the hyperbolic tangent function, and the optimizer was the Adam opti-
mizer (Kingma and Ba, 2015). All the experiments were performed using TensorFlow 1.15.

In 1b-2, the Spatial Special team followed a different strategy since it assumed that the
data are stationary. The team fit the data with a Gaussian process, taking a constant mean μ and
a Matérn covariance function with nugget τ 2. Parameter estimation was done using the GpGp
package with 10-neighbors approximation, then the 30-neighbors approximation was maximized
using the 10-neighbors estimates as starting values. For the prediction, 200-neighbors have been
used to obtain predicted values. The parameter estimates are μ̂ = −0.8148, σ̂ 2 = 3.1046,
β̂ = 0.0031, ν̂ = 0.7250, and τ̂ = 8.01 × 10−5.

The GeoModels team was ranked second in Sub-competition 2b. They also applied the
nearest neighbor weighted composite likelihood-based methods to model both datasets in 1b
using the GeoModels R package. The strategy of modeling and prediction was the same as in
1a.

The RESSTE team was ranked third in this sub-competition. They also applied the Vecchia
approximation methods as in Sub-competition 1a. For dataset 1b-1, the data region was divided
using the line sx + sy = 0.85 as in 1a-1. However, an anisotropic Matérn model was chosen for
the lower region, and an isotropic Matérn model was chosen for the upper region. For Vecchia
approximation, the number of neighbors was set to 10 and the estimation step to 500. For 1b-2,
an anisotropic Matérn covariance function was used for the whole region without splitting. The
team set the number of neighbors to 50 and the estimation step to 70.
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5.3 Sub-competitions 2a and 2b (Univariate Stationary Space-time)
We combine two sub-competitions in this subsection since they have the same top-ranked teams
adopting the same methods to deal with the datasets. Sub-competition 2a has nine 1K datasets
in 100 time-lots, using three different settings. Sub-competition 2b has a larger size, 10K datasets
in 100 time-lots. The description of the datasets in both sub-competitions is shown in Section 3.2.

The Envstat.ai was ranked first in Sub-competitions 2a and 2b. The Envstat.ai relied on
a Deep Neural Network (DNN) for spatio-temporal predictions, an extension of the spatial ver-
sion in Chen et al. (2022). They used basis functions to capture the spatio-temporal dependence.
For interpolation, they relied on regression, whereas they used a 2-stage modeling approach for
forecasting at new locations. First, they interpolated at the new locations for the existing time
points. Then they trained Long-Short Term Memory Network (LSTM) on these points to get the
forecast for future time points. The results obtained by the Envstat.ai team show a considerable
improvement compared to the following ranked teams in this sub-competition.

The GpGp team was ranked second in Sub-competitions 2a and 2b. The team initially fit the
Matérn space-time covariance function in the GpGp package, i.e., matern_spacetime(args) to
estimate the model parameters. Then, they used the two estimated range parameters to rescale
the coordinates to select the ordering and neighbors for Vecchia’s approximation. They relied on
30-neighbors to fit the model for prediction purpose. The team used the prediction function in
the GpGp package, i.e., predictions(args), where the number of selected neighbors was m = 60.

The RESSTE team was ranked third in both sub-competitions. The team performed an
exploratory data analysis step on the given data using a space-time covariance function and found
that the data were generated from a positively non-separable space-time kernel. Based on this
finding, the team chose to rely on a covariance function from the Gneiting class, with a Matérn
spatial covariance and a Cauchy temporal covariance. Due to the size of the given datasets,
the team used a block-composite likelihood to estimate the spatial and temporal parameters
separately. Then, the team used the estimated parameters to fit the space-time model and
estimate the full set of parameters. To predict the missing values, the RESSTE team applied
ordinary kriging conditioned on the 1/9 nearest data points in space and 3 preceding, current,
and 3 following time-slots in time for 2a, and 1/100 nearest data points in space and 2 preceding,
and 3 following time-slots in time for 2b. The team applied slight changes to datasets 7, 8, and
9 in 2a and 2b by using 20 time-slots and 10 time-slots for 2a and 2b, respectively.

5.4 Sub-competition 3a (Bivariate Stationary Spatial, 50K)
Sub-competition 3a included three bivariate spatial datasets, i.e., 3a-1, 3a-2, and 3a-3. Dataset
3a-1 was generated using the parsimonious Matérn cross-covariance function in (7). Datasets
3a-2 and 3a-3 were generated using the flexible Matérn cross-covariance function in (8). The size
of each dataset was 50K.

The GpGp team was ranked first in Sub-competition 3a. The team relied on the flexible
bivariate Matérn model in Apanasovich et al. (2012) to fit the data in 3a-1, 3a-2, and 3a-3.
It applied the Fisher scoring algorithm (Guinness, 2021) to perform the optimization of the
likelihood function through Vecchia’s approximation method. The team used the GpGp pack-
age to perform the modeling and the prediction tasks using 30-neighbors and 100-neighbors,
respectively.

The Spatial Special team was ranked second in this sub-competition. The team con-
sidered Z1 and Z2 as individual variables and modeled them separately and not jointly. The
team used the Matérn covariance function and its variogram to fit all the datasets in 3a (except
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for the Z2 variable in 3a-1) by weighted least squares for parameter estimation. It defined the
weights nh/h2, where nh is the number of point pairs and h is the distance. The team used the
gstat package (Pebesma, 2004) to implement their method. For 3a-1 (Z2), the team relied on
the same method it used in 1b-2, as described in Section 5.3. The only change is the number
of considered neighbors when performing the prediction, for which the team used 100-neighbors
instead of 200.

The GeoModels team was ranked third in this sub-competition. They applied the methods
of the weighted composite likelihood based on pairs, where the weight function was based on
the spatial nearest neighbors. The covariance function was assumed to be the bivariate isotropic
Matérn covariance function. The prediction was performed using local kriging.

5.5 Sub-competition 3b (Bivariate Stationary Spatial, 500K)
Sub-competition 3b included three bivariate spatial datasets, i.e., 3b-1, 3b-2, and 3b-3. Dataset
3b-1 was generated using the parsimonious Matérn cross-covariance function in (7). Datasets
3b-2 and 3b-3 were generated using the flexible Matérn cross-covariance function in (8). The
size of each dataset was 500K.

The Spatial Special team was ranked first. For 3b-1 (Z1) and 3b-1 (Z2), the team used
the same strategy as in 1b, with the number of nearest neighbors being 100 for prediction. For
3b-2 (Z1), 3b-2 (Z2), 3b-3 (Z1), and 3b-3 (Z2), the team divided the prediction region into 100
smaller prediction subregions. The team also used the ordinary kriging method to predict the
missing data in each subregion independently. The missing values at the intersection between
subregions were obtained by averaging the predicted values. The team fit the data using the
Matérn covariance function and its variogram. The weighted least squares method was used for
parameter estimation where the weights were again nh/h2. The modeling and the prediction
were implemented using the gstat R package.

The JPTIKKS team was ranked second in this sub-competition. The team used covariance
tapering with a bivariate Matérn covariance function to estimate the parameters for the first
dataset, 3b-1. For datasets 3b-2 and 3b-3, they adopted the sparse version of the scalable Geo-
graphically Weighted Regression (GWR) method (Murakami et al., 2020) with the help of scgwr
R package to model the data. The sparsity helped in dealing with large datasets and reduced
the computation complexity. Local regression was used to estimate spatially varying intercepts.
The kernel was considered as a linear combination of known exponential sub-kernels. Each sub-
kernel used 100-neighbors to estimate the parameter vector. The team used the leave-one-out
cross-validation method for estimation.

The GpGp team was ranked third in this sub-competition. The team fit the flexible bivariate
Matérn model to the data and used Vecchia’s approximation through the GpGp package. They
chose 30-neighbors when fitting the model and 100-neighbors to perform predictions.

6 Discussion
This work proposed a framework for designing and assessing a competition for predicting
missing values in large spatial and spatio-temporal datasets. Thanks to the ExaGeoStat soft-
ware, very large datasets with various settings were generated from popular spatial and spatio-
temporal models with exact computations. We have made all the datasets publicly available
online (http://dx.doi.org/10.25781/KAUST-4ADYZ) for future assessments of other existing or
new methods as needed. This work also serves as a reference for comparing new results with the

http://dx.doi.org/10.25781/KAUST-4ADYZ
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results obtained in this study. The competition covered three types of data: nonstationary spatial
data, stationary space-time data, and bivariate stationary spatial data. We have reviewed the
methods used by each participating team and ranked their performances based on prediction
accuracy. The ranks provide a fair comparison among these teams, which may shed light on
developing even better prediction methods.

In the process of evaluating the performance of different teams, we noticed the two top
performers in Sub-competitions 2a and 2b, outperforming other teams by a large margin. After
contacting them, we learned that both teams had combined several datasets from the same sub-
competition to perform predictions. Since the same model actually generated different datasets in
each sub-competition, the prediction accuracy was significantly improved by combing datasets.
Therefore, we decided to exclude both teams from the leaderboard of Sub-competition 2 for
fair comparisons. We believe this was an unintended flaw in the competition and such data-
generating problems should be avoided in future competitions.

For the second year, we had another successful competition with a wonderful response
from the community. We believe that conducting such competitions provides opportunities for
researchers to assess their methods on the same large datasets that are generated by exact
computations. These datasets are valuable to the community, and we have made them publicly
available. We also believe it is worthwhile to build benchmarking tools to assess the performance
of existing approximation methods, which will significantly help to better understand the ad-
vantages and disadvantages of these methods. Although we focused on point forecasts, there is
value in probabilistic forecasting for uncertainty quantification purpose and we plan to explore
this topic in a future competition.

Supplementary Material
In the Supplementary Material, we list the members of all the teams participating in this compe-
tition in Table S1. Moreover, Tables S2 to S11 summarize the RMSE values obtained by different
teams in each dataset of different sub-competitions, as well as those obtained with ExaGeoStat
for reference purpose.
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