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Abstract

Single-index models are becoming increasingly popular in many scientific applications as they
offer the advantages of flexibility in regression modeling as well as interpretable covariate ef-
fects. In the context of survival analysis, the single-index hazards models are natural extensions
of the Cox proportional hazards models. In this paper, we propose a novel estimation procedure
for single-index hazard models under a monotone constraint of the index. We apply the pro-
file likelihood method to obtain the semiparametric maximum likelihood estimator, where the
novelty of the estimation procedure lies in estimating the unknown monotone link function by
embedding the problem in isotonic regression with exponentially distributed random variables.
The consistency of the proposed semiparametric maximum likelihood estimator is established
under suitable regularity conditions. Numerical simulations are conducted to examine the finite-
sample performance of the proposed method. An analysis of breast cancer data is presented for
illustration.
Keywords isotonic regression; pool-adjacent-violators algorithm; profile likelihood;
semiparametric estimation

1 Introduction
Single-index models have received much attention in many fields, including medicine, economics,
finance, and environmental science. The single-index models can be viewed as a natural extension
of the generalized linear models, where the link function is left unspecified and the covariate
effects are summarized using a one-dimensional variable, referred to as the index (Powell et al.,
1989; Härdle and Stoker, 1989; Ichimura, 1993; Härdle et al., 1993). In this paper, we consider
single-index models for right-censored survival data. Let T denote the failure time of interest
and let X be a p × 1 vector of covariates. The popular Cox proportional hazards model assumes
that, given X = x, the conditional hazard function λ(t | x) satisfies

λ(t | x) = λ(t) exp(x�β),

where β is a p-dimensional vector of regression parameters and the baseline hazard λ(t) is left
unspecified. The Cox model imposes an exponential functional form for the covariate effects on
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the hazard of failure, so that the covariates have a linear effect on the log hazard function. As
pointed out by many authors, including Prentice (Prentice and Self, 1983), such assumption can
be easily violated and it is desirable to consider a more flexible class of regression models

λ(t | x) = λ(t) exp{φ(x�β)}, (1)

where φ is the link function. This model allows characterization of covariate effects on the risk of
experiencing the failure event in a parsimonious way via a single index x�β. When φ is known,
the partial likelihood method (Cox, 1975) can be applied directly to estimate the regression
parameters β with right-censored survival data.

When the link function φ is unspecified, local partial likelihood methods, derived by employ-
ing either spline or local polynomial smoothing approximations for the unknown link function,
have been proposed for estimating the link function in the case where X is an univariate contin-
uous variable (Tibshirani and Hastie, 1987; Fan et al., 1997; Chen and Zhou, 2007). The local
partial likelihood method can be inefficient because only data from individuals with covariate
values in the neighborhood of x0 are used to estimate φ(x0). Gentleman and Crowley (Gentleman
and Crowley, 1991) considered the local version of the full likelihood and developed an estima-
tion procedure that alternates between estimating λ and estimating φ. Lately, Chen et al (Chen
et al., 2010) proposed a global partial likelihood method that use all observations to estimate the
value of the link function at any x0. Statistical methods for Model (1) with multi-dimensional
X have been developed in the same spirit as that for the univariate case. In particular, Wang
et al (Wang et al., 2009) described an algorithm that iterates between maximizing the local
partial likelihood function with respect to the smoothed approximation of φ for a given β and
maximizing the global partial likelihood with respect to β with the estimated φ. Huang and
Liu (Huang and Liu, 2006), on the other hand, proposed to approximate φ with cubic splines,
thus reduces to a parametric model for φ which can be estimated directly using standard partial
likelihood methods. However, large sample properties of the spline based approach are not well
studied as, in theory, an infinite number of spline bases may be needed to span the unknown
link function.

In many applications, it is desirable to impose shape restrictions, such as monotonicity
and concavity, on the form of the covariate effects. Incorporating such a constraint can lead
to improved efficiency and reduction in model complexity while allowing for more straightfor-
ward interpretation. For example, in dose finding trials for combination therapies, the marginal
dose-response curve is often believed to be monotonic. While estimation procedures have been
proposed for estimating the usual single-index models under shape-constraints with complete
data (Foster et al., 2013; Groeneboom and Hendrickx, 2019), less attention has been paid to
single-index hazards models under shape-constraints with right-censored data. Recently, Chung
et al (Chung et al., 2018) considered a Cox model with shape constraints on the covariate effects,
where, conditioning on covariates X = x and Z = z, the hazard function is assumed to take the
form

λ(t | x, z) = λ(t) exp{ψ(x) + zβ},
with ψ(x) being an unspecified monotone function of the univariate variable X. The authors
modified the iterative convex minorant algorithm of Jongbloed (Jongbloed, 1998) and proposed
a pseudo-iterative convex minorant algorithm to maximize the partial likelihood. Specifically, the
partial likelihood is sequentially approximated by quadratic functions and, as a result, the pool
adjacent violators algorithm (PAVA) (Ayer et al., 1955) can be readily applied. In this paper,
we fill in the gap by studying the single index model (1) with an unspecified, monotonic link
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function φ. Instead of maximizing the partial likelihood, we embed the full likelihood function
in the isotonic regression problem with exponentially distributed random variables and develop
an iterative convex maximization algorithm. Our method provides a computationally stable
estimation and, as demonstrated by the simulation studies, offers substantial efficiency gains
over the Cox proportional hazards model when the link function is misspecified.

2 An Iterative Convex Maximization Algorithm
For ease of discussion, we write r(z) = exp{−φ(z)} and assume that r(z) is an unspecified non-
decreasing function; or, equivalently, φ(z) is non-increasing in z. We adopt the convention with
upper case letters, such as (Y, �, X), for random variables, and lower case letters, such as (y, δ, x)

for observed values of (Y, �, X). With a minor modification, the estimation procedure discussed
below can be applied to deal with the case where φ is non-decreasing or unimodal. Under the
single-index model (1), the conditional hazard function of the survival time T is given by

λ(t | x) = λ(t)/r(x�β), t ∈ [0, τ ],
where one is interested in making inference about the survival time distribution on a prespecified
time interval [0, τ ]. Define the baseline cumulative hazard function 	(t) = ∫ t

0 λ(u)du. It is easy
to see that, for any constant k > 0, the pair r∗(z) = kr(z) and λ∗(t) = kλ(t) gives the same
model as r(z) and λ(t), owing to the semiparametric nature of the Cox model. Moreover, the
pair r∗(z) = r(kz) and β∗ = k−1β also yields the same model as that from r(z) and β. In this
paper, we impose 	(τ) = 1 and ‖β‖ = 1 to ensure model identifiability and note that the
hazard function for the reference group (X = 0) is given by 	(t)/r(0). A proof of the model
identifiability is given in the Appendix.

In practice, the observation of the survival time T is usually subject to right censoring
due to study end or premature dropout. Thus, instead of observing the actual value of T , we
observe the possibly censored survival time Y = min(T , C), where C is the time of censoring.
In many applications, it is reasonable to assume that C is independent of T given the observed
covariates X. Denote by � = I (T � C) the indicator function of a failure event. Assume that
the observed data {(yi, δi, xi), i = 1, . . . , n} are independent realizations of (Y, �, X). Then the
likelihood function based on the observed data is

L(β, r, 	) =
n∏

i=1

{
λ(yi)

r(x�
i β)

}δi

exp

{
− 	(yi)

r(x�
i β)

}
.

Given β and r(·), the full likelihood L is maximized by the Breslow-type estimator

	̂∗(t) =
n∑

i=1

δiI (yi � t)∑n
j=1 I (yj � yi)/r(x�

j β)
.

It is easy to see that replacing 	 with 	̂∗ in the full likelihood L yields the partial likelihood

n∏
i=1

{
1/r(x�

i β)∑n
j=1 I (yj � yi)/r(x

�
j β)

}δi

.

However, direct maximization of the partial likelihood under the monotonicity constraint of r(·)
is challenging and the conventional isotonic regression methods are not directly applicable.
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In what follows, we consider semiparametric maximum likelihood estimation for Model
(1) under the monotonicity constraint of r(·). We note that the maximum likelihood estimator
derived without imposing the monotonicity constraint on the link function can be inconsistent.
It is known that the nonparametric maximum likelihood estimate of a function concentrates
its masses only on (some or all of) the observed data points. Without constraints, the masses
may take any values and make the likelihood arbitrarily large. Thus we impose the monotone
constraint on the link function r(·). Instead of directly maximizing the partial likelihood, we
embed the full likelihood into the isotonic regression problems with exponential random variables
and apply the pool adjacent violators algorithm (PAVA) to obtain the constrained maximizer
for the link function. The proposed algorithm uses an inner loop to calculate {	(·), r(·)} that
maximize the full likelihood function L(β, r, 	) at a given value of β and an outer loop to
maximize the profile likelihood with respect to β.

Specifically, given β and r(·), we derive the maiximiser 	̂∗ of the full likelihood and es-
timate 	 by 	̂(t) = 	̂∗(t)/	̂∗(τ ), where rescaling is carried out to ensure the identifiability
condition 	(τ) = 1. Next, for given β and 	(·), we define Zi = X�

i β and sort the observed
data {(yi, δi, xi), i = 1, . . . , n} according to the value of zi ’s, so that x�

1 β � · · · � x�
n β. Write

ηi = 	(yi) and ri = exp{−φ(zi)} = exp{−φ(x�
i β)}. Then, for fixed β and 	, the full likelihood is

proportional to

Lr =
n∏

i=1

(
1

ri

)δi

exp

(
−ηi

ri

)
We maximize Lr with respect to ri ’s under the monotone constraint r1 � r2 � · · · � rn by
embedding into the isotonic regression problem with exponential random variables. Let z∗

1, . . . , z
∗
L

be the ordered, distinct values of the zi ’s from uncensored observations. We further define the
subintervals I1 = (−∞, z∗

1], . . . , IL = (z∗
L−1, z

∗
L], and IL+1 = (z∗

L, ∞). It’s easy to see that, if the
event time of the ith subject is censored, the contribution of the observation to the likelihood
is given by exp(−ηi/ri), so that the likelihood increases with ri . If zi falls into the subinterval
Il, then, under the monotone constraint, maximization is achieved by setting ri = r(z∗

l ). In
other words, Lr is maximized by setting ri = rl if zi ∈ Il, l � L, and ri = ∞ if zi > z∗

L. To
perform isotonic regression, we exclude data from individuals whose z value is greater than z∗

L

and consider the following likelihood based on the reduced dataset

L∗
r =

L∏
l=1

(
1

r∗
l

)md
l

exp

(
−md

l η̄l

r∗
l

)
,

where r∗
l is the value of r(z) evaluated at z = z∗

l , md
l = ∑n

i=1 δiI (zi = z∗
l ) is the number of

uncensored individuals whose Z value is z∗
l , and η̄l = 1

md
l

∑n
i=1 	(yi)I (zi ∈ Il), l = 1, . . . , L. Note

that the numerator of η̄l include data from all individual, either censored or uncensored, but
the denominator only include data from uncensored individuals. Maximisation of L∗

r subject
to the monotone constraint can be viewed as an isotonic regression problem because L∗

r is
mathematically equivalent to the likelihood of a sequence of L independent trials, where the
outcomes are exponentially distributed with means satisfying r∗

1 � r∗
2 � · · · � r∗

L and the sample
size of the lth trial is md

l . As pointed out in Chapter 1 of Robertson et al (Robertson et al., 1988),
the pool-adjacent-violators algorithm (PAVA) (Ayer et al., 1955) can be used to solve exponential
family isotonic regression problems. Hence, given β and 	(·), we propose to maximize L∗

r with
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the PAVA estimator,

r̂∗
l = max

k�l
min
l�q

∑
k�l�q wlη̄l∑
k�l�q wl

.

Thus we obtain r̂(zi) = r̂∗
l for zi ∈ Il, l � L, and r̂(zi) = r̂∗

L for zi ∈ IL+1.
For a given β, the estimation algorithm for {	(·), r(·)} is summarized below. We alternate

between (M1) and (M2) below repeatedly until some convergence criteria are met. Specifically,
suppose the value of parameters in the bth step is (	(b), r(b)). Then in the (b + 1)th step,
(M1) Calculate η̄

(b+1)
l = 1

md
l

∑n
i=1 	(b)(yi)I (zi ∈ Il). Apply PAVA to obtain

r
(b+1)
l = max

k�l
min
l�q

∑
k�l�q md

l η̄
(b+1)
l∑

k�l�q md
l

.

Set r(b+1)(zi) = r
(b+1)
l for zi ∈ Il, l � L, and r(b+1)(zi) = r

(b+1)
L for zi ∈ IL+1.

(M2) Update 	 with the Breslow-Type estimator

	(b+1)∗(t) =
n∑

i=1

δiI (yi � t)∑n
j=1 I (yj � yi)/r(b+1)(zj )

to obtain 	(b+1)(t) = 	(b+1)∗(t)/	(b+1)∗(τ ).
For fixed β, we iterate between (M1) and (M2) until convergence. Denote the limit by
(	̂(·;β), r̂(·;β)).

Finally, we plug in 	̂(·;β) and r̂(·;β) back to the full likelihood function L(β, r, 	) to
obtain the profile likelihood function Lp(β) = L(β, r̂(·;β), 	̂(·;β)). For a given β, r̂(·;β) is only
uniquely defined at the ordered, distinct values of x�

i β from uncensored observations. With a
finite sample, the maximizer of Lp(β) is not unique, as Lp(β) only depends on the ordering of
x�

i β from uncensored observations induced by β. As shown in Theorem 1 below, the maximizer
converges to the true parameters β0 as the sample size goes to infinity. To account for the
constraint ‖β‖ = 1, we use the spherical coordinate system to represent β on the unit sphere
B = {β : ‖β‖ = 1, β ∈ R

p}. Following Balabdaoui et al (Balabdaoui et al., 2019), we use the
following map to reduce the parameters to a (p−1)-dimensional vector, S : [0, π ](p−2)×[0, 2π ] �→
B; θ �→ β, where θ = (θ1, θ2, . . . , θp−1), and

β = (cos(θ1), sin(θ1) cos(θ2), . . . , sin(θ1) · · · sin(θp−2) cos(θp−1),

sin(θ1) · · · sin(θp−2) sin(θp−1)).

Maximization of Lp(β) can be implemented using Nelder-Mead’s downhill simplex method
(Nelder and Mead, 1965) with respect to (θ1, θ2, . . . , θp−1). Different initial values can be used
in the optimization for improved performance.

Let R be the collection of monotone increasing functions on R, and A be a collection of
monotone increasing functions on R

+ such that the function takes value 1 at τ . Denote by
(β̂, r̂, 	̂) the maximum likelihood estimator of the true parameters (β0, r0, 	0), that is,

(β̂, r̂, 	̂) = arg max(β,r,	)∈(B,R,A)L(β, r, 	).

The consistency of the maximum likelihood estimator (β̂, r̂, 	̂) is stated in Theorem 1, with
proof given in the Appendix.
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Theorem 1. Let [z1, z2] be a bounded interval in the support of X�β0. Under conditions
(C1)∼(C4) in the Appendix, as n → ∞, we have

β̂
a.s.→ β0 , sup

z∈[z1,z2]
| r̂(z) − r0(z) |a.s.→ 0 , sup

t∈[0,τ ]
| 	̂(t) − 	0(t) |a.s.→ 0.

For single index models where the nonparametric component is estimated by nonparametric
maximum likelihood estimation under shape constraints, the

√
n-convergence rate and asymp-

totic normality of the estimator for regression parameters is an open question (Huang and Well-
ner, 1997; Murphy et al., 1999; Groeneboom and Hendrickx, 2018). Our estimation procedure
encounters similar technical challenges. The main reason is that r̂ is a step function which is not
smooth, and the regression part is bundled inside it. As a result, the asymptotic distribution of
(β̂, r̂, 	̂) requires further investigation. Let [z1, z2] be a bounded interval in the support of X�β0.
Define ‖̂r −r0‖ = [∫ z2

z1
{̂r(z)−r0(z)}2dz]1/2 and ‖	̂−	0‖ = [∫ τ

0 {	̂(t)−	0(t)}2dt]1/2. In Theorem 2,
we show that the convergence rate of (β̂, r̂, 	̂) is at least n1/3. The proof of Theorem 2 is given
in the Supplementary Material.

Theorem 2. Under conditions (C1)∼(C5) in the Appendix, we have

‖β̂ − β0‖ + ‖̂r − r0‖ + ‖	̂ − 	0‖ = Op(n−1/3).

It is worthwhile to point out that when the covariates have elliptically symmetric distribu-
tion, fitting a Cox model to the data yields consistent estimate of the direction of β0. The result
is summarized in Proposition 1 and the proof is given in the Appendix.

Proposition 1. Let β̂P be the maximum partial likelihood estimator under the usual Cox model
with a (potentially misspecified) exponential link function, λ(t | x) = λ(t) exp(x�β). If X has
an elliptically symmetric distribution and the censoring is completely random, then β0 can be
consistently estimated by −β̂P /‖β̂P ‖.

3 Simulation Studies
We conduct simulation studies to evaluate the performance of the proposed method. Given
covariates X, we generated survival times from the Weibull distribution with shape parameter 2
and scale parameter

√
r(X�β∗), where r(X�β∗) = exp{|X�β∗|asign(X�β∗)}. The hazard function

is λ(t | X) = 2t exp{−|X�β∗|asign(X�β∗)}. We included p covariates and set β∗ = (β∗
1 , . . . , β∗

p),
where β∗

2m−1 = −1 and β∗
2m = 1 for m � 1, thus the true value is β0 = β∗/√p. We considered the

following scenarios: (I) p = 2, Xj were generated from the exponential distribution with rate
parameter 1, denoted by exp(1), for j = 1, 2. (II) p = 2, Xj were generated from the standard
normal distribution N(0, 1) for j = 1, 2. (III) p = 5, X1, X2 were generated from exp(1),
X4, X5 were generated from N(0, 1), and X3 was generated from the Bernoulli distribution
with success probability 1/2. (IV) p = 5, X1, . . . , X5 were generated from N(0, 1). We also
considered three cases under each scenario, that is, (A) a = 1/5, (B) a = 1/3, and (C) a =
1. The censoring time was set as C = min(C∗, τ ), where C∗ was generated from exponential
distributions with rate parameters λC , and λC and τ were chosen to yield approximately 25%
and 50% censoring rates. In each simulation, we generated 1000 datasets with sample sizes
of 200 and 800. We compared the proposed method with the negative normalized coefficients
from maximum partial likelihood estimator (MPLE) assuming an exponential link function.
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In the Supplementary Material, we also included the simulation results of an estimator without
imposing the monotone constraint. Specifically, the estimator replaces the PAVA estimator of the
link function with a kernel smoothing estimator. More details can be found in the Supplementary
Material.

The non-smoothness of the profile likelihood function precludes the use of methods that
utilize derivative because its derivative does not exist. Thus we considered applying Nelder-
Mead’s method, which only requires the value of likelihood functions. Moreover, we used multiple
initial values to improve the search for the maximizer. The first initial value of the Nelder-Mead
algorithm is chosen as the negative normalized MPLE transformed to a (p−1)-dimensional vector
via the map S

−1. When the solution is obtained, we further add a small perturbation (e.g., a
random vector whose elements are generated from the uniform distribution on [−0.5, 0.5]) to
the solution. We then run the Nelder-Mead’s algorithm with the perturbed solution as the initial
value. If the likelihood function value is larger than that of the previous step, we replace the
estimated parameters with the solution from the current step. We repeat this procedure twenty
times and use the parameter value that yields the largest profile likelihood. In our current
implementation, we applied the R function optim (R Core Team, 2020) for the Nelder-Mead
algorithm to maximize Lp(β). To obtain {r, 	} that maximize L(β, r, 	) at each value of β,
we applied the R function squarem in the package SQUAREM (Du and Varadhan, 2020), which
is used to accelerate the convergence of general fixed-point iterations. We used the stopping
criteria from the default setting in each function.

The results are reported in Table 1 and 2. In Scenario I, the covariates were generated from
the exponential distribution, and the survival data was not generated from the Cox model. It
can be observed that, when the link function is misspecified (i.e., a = 1/3 and a = 1/5, MPLE
has substantially larger bias and variance compared to the proposed approach, and the bias
does not decrease as the sample size increases; when the link function is correctly specified,
the MPLE has smaller variances. In Scenarios II and IV, the covariates were generated from
the normal distribution. Both methods yield small biases, and the variance decreases as the
sample size increases. This is consistent with Proposition 1, that is, when the covariates have
elliptically symmetric distribution, the negative normalized MPLE is consistent for β0 even if the
proportional hazards model assumption is violated. When the link function is misspecified, the
proposed method has smaller variances; when the link function is correctly specified, the MPLE
has smaller variances. In Scenario III, we include more covariates generated from different types
of distributions. The biases and variances of the proposed estimator decrease as the sample size
increases. However, when the link function is misspecified, the biases of MPLE remain large
when n = 800, and the variances of MPLE are larger compared to the proposed method. In
summary, the proposed method performs well and outperforms MPLE when the assumption on
the link function does not hold.

4 Breast Cancer Data Example
The proposed method is applied to a multicenter randomized clinical trial conducted by the
German Breast Cancer Study Group (Schumacher et al., 1994). The aim of the trial was to
compare the time-to-event outcomes between different treatment modalities. The data used in
this paper to illustrate our findings are available in the R package mfp on the Comprehensive
R Archive Network (Ambler and Benner, 2015). The primary outcome is the recurrence-free
survival time, which is a composite endpoint of breast cancer recurrence and death. The median
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Table 1: Summary of simulation studies (n = 200).

a = 1/5, cen = 25% a = 1/3, cen = 25% a = 1, cen = 25%

Proposed MPLE Proposed MPLE Proposed MPLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

I β̂1 2 60 64 107 2 69 60 96 2 88 −1 51
β̂2 −3 61 45 93 −5 71 45 83 −9 89 −4 52

II β̂1 3 53 10 78 2 61 9 70 4 63 4 43
β̂2 −1 53 1 77 −3 62 2 69 −2 63 1 43

III β̂1 6 68 −5 92 4 71 −6 80 −3 52 −0.2 36
β̂2 −6 71 11 95 −5 73 10 82 −5 52 −0.1 37
β̂3 17 119 4 162 16 119 4 140 11 90 7 65
β̂4 −7 76 5 100 −10 77 10 88 −6 61 −4 43
β̂5 8 94 100 102 10 92 83 89 4 54 0.1 37

IV β̂1 −1 70 8 88 1 71 7 76 0.3 50 3 36
β̂2 −10 70 −14 87 −13 70 −11 76 −7 50 −4 36
β̂3 4 67 2 89 2 68 0.2 76 −1 49 −2 36
β̂4 −7 68 −12 88 −5 70 −8 75 −2 50 −1 35
β̂5 7 69 9 90 8 71 7 79 6 51 1 36

a = 1/5, cen = 50% a = 1/3, cen = 50% a = 1, cen = 50%

Proposed MPLE Proposed MPLE Proposed MPLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

I β̂1 3 84 95 131 5 97 85 118 5 107 0.1 64
β̂2 −7 87 65 108 −8 97 61 99 −11 111 −6 65

II β̂1 −0 75 3 91 4 83 3 82 3 77 −0.4 51
β̂2 −8 76 −8 90 −6 83 −7 82 −6 77 −4 52

III β̂1 −2 100 1 115 −1 98 1 102 1 63 3 45
β̂2 −13 100 −6 116 −13 96 −4 103 −5 64 −3 45
β̂3 25 152 11 187 27 153 8 162 8 106 3 73
β̂4 −15 107 10 124 −15 105 13 110 −12 75 −7 54
β̂5 30 127 108 122 22 120 88 107 6 60 −0.2 42

IV β̂1 5 94 17 107 4 93 12 94 0.3 60 3 42
β̂2 −9 90 −14 108 −8 91 −11 94 −6 62 −3 45
β̂3 4 95 8 108 6 91 6 94 0.2 62 1 44
β̂4 −19 91 −16 105 −19 88 −12 91 −7 58 −2 41
β̂5 11 93 9 105 9 90 7 93 8 63 2 43

Note: MPLE stands for the maximum partial likelihood estimator and cen stands for the censoring rate. Bias
and SE are the empirical bias (×1000) and empirical standard deviation (×1000) of 1000 simulated datasets,
respectively.

follow-up was 56 months. During the study period, 299 of the 686 patients had disease recurrence
or died. The covariates included in the model are hormonal treatment (yes/no), tumor size, tumor
grade (1/2/3), and the number of positive lymph nodes. To ensure stable numerical performance,
we standardize the covariates taking numeric values to have zero mean and unit variance.
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Table 2: Summary of simulation studies (n = 800).

a = 1/5, cen = 25% a = 1/3, cen = 25% a = 1, cen = 25%

Proposed MPLE Proposed MPLE Proposed MPLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

I β̂1 0.1 19 77 61 1 26 74 55 1 44 2 24
β̂2 −0.4 19 65 50 −0.1 26 64 45 −2 44 1 24

II β̂1 −1 20 −0.02 36 −1 26 −0.3 33 0.2 31 −0.1 20
β̂2 −1 20 −2 37 −2 26 −2 33 −1 31 −1 20

III β̂1 −0.03 24 −14 47 1 28 −11 41 0.4 26 1 18
β̂2 −1 25 16 47 −1 29 13 41 −2 26 −0.2 18
β̂3 4 39 −21 78 3 49 −17 68 4 45 2 30
β̂4 0.01 27 22 48 0.3 30 24 43 1 30 1 21
β̂5 0.4 31 104 53 3 38 88 46 1 26 1 18

IV β̂1 0.5 23 1 44 1 27 0.3 38 0.3 24 −0.1 17
β̂2 0.2 23 1 43 1 27 1 37 1 25 1 18
β̂3 0.5 24 5 44 1 28 3 38 1 25 1 17
β̂4 −1 23 −2 45 −1 27 −2 39 −1 25 −1 18
β̂5 2 23 4 44 2 27 3 38 2 24 1 17

a = 1/5, cen = 50% a = 1/3, cen = 50% a = 1, cen = 50%

Proposed MPLE Proposed MPLE Proposed MPLE

Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

I β̂1 1 26 104 70 1 35 94 63 0.02 52 −1 30
β̂2 0.05 26 86 53 −1 35 79 49 −4 53 −3 30

II β̂1 0.4 25 3 46 2 33 2 42 2 38 1 25
β̂2 −0.5 25 −0.3 46 0.05 33 −0.3 41 −0.2 38 0.3 25

III β̂1 −1 35 −10 58 −1 39 −8 51 1 29 1 21
β̂2 −0.1 33 11 58 −1 39 10 51 −2 30 −1 21
β̂3 4 55 −14 99 7 62 −12 85 3 52 1 37
β̂4 −1 37 34 66 −1 40 32 58 −1 38 −1 27
β̂5 5 44 113 64 5 51 95 56 2 29 −0.2 20

IV β̂1 −1 32 2 52 −2 36 1 45 0.2 28 0.1 20
β̂2 −2 32 −3 55 −1 36 −2 48 0.3 30 −0.2 21
β̂3 1 31 3 56 2 36 2 49 1 30 0.3 21
β̂4 −1 31 −4 55 −3 36 −3 47 0.02 28 −0.1 20
β̂5 3 33 6 56 4 37 5 48 4 30 2 21

Note: MPLE stands for the maximum partial likelihood estimator and cen stands for the censoring rate. Bias
and SE are the empirical bias (×1000) and empirical standard deviation (×1000) of 1000 simulated datasets,
respectively.

The conventional method to analyze this data is the standard Cox regression, which uses
a pre-specified monotonic link function. By using an unspecified monotonic link function, we
allow greater flexibility than the standard Cox regression. Moreover, compared to models with
non-monotonic link functions, the use of monotone link leads to an easier interpretation in
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Table 3: Estimated coefficients for the German Breast Cancer Study.

Proposed model1 Cox model2

Hormonal therapy −0.325 (−0.519, −0.047) −0.248
Tumor size 0.165 (−0.052, 0.344) 0.073
Tumor grade 2 0.444 (0.124, 0.642) 0.567
Tumor grade 3 0.474 (0.166, 0.843) 0.754
Number of positive nodes 0.667 (0.280, 0.862) 0.207
1 For the proposed model, we reported −β̂ so that the parameters can be compared with the Cox model. We
also reported the 2.5th and 97.5th percentiles from 500 Bootstrap replicates. Note that the coverage probability
of this interval may not be close to 95%.
2 For the Cox model, we reported the normalized regression parameters β̂P /‖β̂P ‖.

Figure 1: Estimated functions for the German Breast Cancer Study. The left and middle panel
shows the estimated baseline cumulative hazard function 	 and link function φ, respectively. In
the right panel, black lines are the predicted survival probabilities using the proposed model;
the red lines are the predicted survival probabilities using the Cox model; the dashed lines are
patients without hormonal therapy; the solid lines are patients with hormonal therapy.

practical applications. Table 3 reports the coefficients that are normalized to have a unit norm.
We reported −β̂ from the proposed method and β̂P /‖β̂P ‖ from the Cox model, and thus a
positive coefficient indicates a larger value of the covariate is associated with a higher risk. To
ensure identifiability, we assume the coefficient of hormonal therapy is negative. In both Cox
model and monotone single index model, hormonal therapy is associated with a lower survival
risk; larger tumors, higher tumor grades, and more positive lymph nodes are associated with
higher risks. The Cox model estimates a much smaller effect for the positive lymph node count
relative to other covariates.

The estimated hazard (normalized to have 	0(τ ) = 1, τ = 6 years) and estimated link
function are reported in Figure 1. The shape of the estimated link function φ̂(z) = − log r̂(z)

provides evidence against the assumption of the exponential link function in the Cox model. In
this case, the proposed method may yield less biased estimates. To provide more insight into
the difference between the proposed method with the Cox model, we plot the predicted survival
probability of two hypothetical patients in Figure 1. The two patients have tumors grade 3,
and the other covariates are set to be the median values among grade 3 patients; one of them
undergoes hormonal treatment while the other does not. The proposed method yields a smaller
difference in survival curves compared to the Cox proportional hazards model. When predicting
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the survival probability, the proposed method is expected to be more robust than the Cox model
under model misspecification. The difference in the predicted survival functions using the two
methods may suggest a potential violation of the Cox model assumption.

5 Remarks
This paper focuses on semiparametric maximum likelihood estimation of the single-index hazards
model under a shape-constraint. In our method, the link function is obtained from the PAVA
algorithm and is not smooth. One may also consider the monotone splines (see, for example,
Wang and Yan, 2021) to estimate the link function; this will be studied in our future work.
Extensions of the proposed estimation procedure to the partially linear single-index hazards
model under the same shape-constraint are straightforward, and their asymptotic properties
will be studied elsewhere.

Supplementary Material
The Supplementary Material includes the proof of Theorem 2, additonal simulation results, and
the R code to implement the proposed method.

Appendix

Regularity Conditions
To establish the large sample property of the maximum likelihood estimator, we impose the
following conditions:
(C1) Pr(� = 1) > 0 and Pr(Y > τ) > 0 for a prespecified constant τ .
(C2) Define p(Y, � | X;β, r, 	) = {λ(Y )/r(β�X)}� exp{−	(Y)/r(β�X)}. For any (β, r, 	) ∈

(B,R,A), the Kullback-Leilber divergence,

E log

{
p(Y, � | X;β0, r0, 	0)

p(Y, � | X;β, r, 	)

}
,

is strictly larger than zero if (β, r, 	) �= (β0, r0, 	0).
(C3) There exit constants 0 < a < b < ∞ so that a � infz∈R r(z) � supz∈R r(z) � b, ∀r(·) ∈ R.
(C4) The support of X is a bounded convex set of Rd . For any β ∈ B, the density of β�X is

bounded from above and below by some constants.
(C5) The quantity E

[
�r2

0 (X�β0){r−1(X�β)−r−1
0 (X�β0)}2

]−E�{S(Y, r, β)−S(Y, r0, β0)}2S−2(Y,

r0, β0) is bounded from below and above up to some constants by E{r(X�β) − r0(X
�β0)}2,

where S(y, r, β) = E{I (Y � y)/r(X�β)}.

Proof of Model Identifiability
Assume that there exists two sets of parameters {β1, λ1(t), r1(z))} and {β2, λ2(t), r2(z))}, with∫ τ

0 λ1(t)dt = ∫ τ

0 λ2(t)dt = 1, r1(z) and r2(z) being non-decreasing, and ‖β1‖ = ‖β2‖ = 1, that
give the same conditional hazard function, that is,

λ1(t)

r1(x�β1)
= λ2(t)

r2(x�β2)
for all t, x,
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or, equivalently,
λ1(t)

λ2(t)
= r1(x

�β1)

r2(x�β2)
for all t, x.

We want to show that λ1 = λ2, r1 = r2, and β1 = β2. Since the left-hand-side of the equality
depends only on t while the right-hand-side depends only on x, the equality holds if and only if
there exists a constant k such that

λ1(t) = k λ2(t) and r1(x
�β1) = k r2(x

�β2) for all t, x.

The identifiability condition
∫ τ

0 λ1(t)dt = ∫ τ

0 λ2(t)dt = 1 implies k = 1, and hence we have
λ1(t) = λ2(t) for all t and r1(xβ1) = r2(xβ2) for all x. It is clear that r1 ≡ r2 under the monotone
constraint if β1 = β2, hence it suffices to show β1 = β2.

Since r is continuous and nonconstant, there exists B(x0, κ) = {x0+γ u, ‖γ ‖ = 1, u ∈ [−κ, κ]}
for some x0 such that r is nonconstant on B(x0, κ). For any w ∈ [−κ, κ], it follows from the
identifiability condition ‖β1‖ = β�

1 β1 = 1 that

r1(x
�
0 β1 + u) = r1((x0 + uβ1)

�β1) = r2((x0 + uβ1)
�β2) = r2(x

�
0 β2 + β�

1 β2u),

and, similarly,

r2(x
�
0 β2 + u) = r2((x0 + uβ2)

�β2) = r1((x0 + uβ2)
�β1) = r1(x

�
0 β1 + β�

2 β1u).

Without loss of generalizability, we assume that the first element of β is positive. So if β1 �= β2,
we have |β�

1 β2| < 1 by Cauchy-Schwartz inequality. As a result,

r1(x
�
0 β1 + u) = r2(x

�
0 β2 + β�

1 β2u) = r1(x
�
0 β1 + (β�

1 β2)
2u) = · · · = r1(x

�
0 β1).

For any x ∈ B(x0, κ), we can express it as x = x0 + γw for some unit vector γ and w ∈ [−κ, κ].
Thus we have r1(x

�β1) = r1(x
�
0 β1 + γ �β1w) = r1(x

�
0 β1). This implies r1 is constant on B(x0, κ),

which is a contradiction. Hence we show that β1 = β2, and therefore r1 ≡ r2.

Proof of Theorem 1

We denote expectation with respect to the empirical distribution of the data by Pn and denote
expectation with respect to the true underlying distribution of the data by P . Define

�(β, r, 	) = −δ log r(x�β) + δ log d	(y) − 	(y)/r(x�β),

where d	(y) = 	(y) − 	(y−). Let (β̂, r̂, 	̂) be the maximizer of the likelihood under the
constraints, that is, for any (β, r, 	),

Pn�(β̂, r̂, 	̂) � Pn�(β, r, 	),

where 	̂, 	 are monotonically nondecreasing functions satisfying 	̂(0) = 	(0) = 0 and 	̂(τ ) =
	(τ) = 1, r̂, r are monotonically nondecreasing and bounded functions, and ‖β̂‖ = ‖β‖ = 1.
Define N(t) = �I (Y � t) and R(t) = I (Y � t). Let

	̂1(t) =
∫ t

0

∑n
i=1 dNi(u)∑n

i=1 Ri(u)/̂r(x�
i β̂)
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be the Breslow type estimator. The constrained MLE for 	 is the normalized version

	̂(t) = 	̂1(t)/	̂1(τ ).

Since r̂(·) is a bounded monotonic function and has bounded variation, by Helly’s selection
theorem, it has a convergence subsequence to a function r∗(·). Moreover, since β̂ falls in a compact
subset of Rp, it also has a convergence subsequence to a limiting value β∗. Then there exists a
further subsequence {nk} along which r̂(z) → r∗(z) and ‖β̂ − β∗‖ → 0, and thus along {nk}, 	̂(t)

converges almost surely to 	∗(t), where 	∗(t) = 	∗
1(t)/	

∗
1(τ ) and 	∗

1(t) = ∫ t

0
P {dN(u)}

P {R(u)/r∗(x�β∗)} .
Define

	̃1(t) =
∫ t

0

∑n
i=1 dNi(u)∑n

i=1 Ri(u)/r0(x
�
i β0)

, 	̃(t) = 	̃1(t)/	̃1(τ ).

By Lemma 9.10 and Corollary 9.27 in Kosorok (Kosorok, 2008), it can be seen that {N(t) : t � 0}
and {R(t)/r0(x

�β0) : t � 0} are Glivenko-Cantelli classes. Then 	̃(t) converges almost surely to
	0(t), where 	0

1(t) = ∫ t

0
P {dN(u)}

P {R(u)/r0(x
�β0)} and 	0(t) = 	0

1(t)/	
0
1(τ ).

Note that {δ log r(x�β) − 	(y)/r(x�β) : (β, r, 	) ∈ (B,R,A)} is a Glivenko-Cantelli class
since it is indexed by monotonic functions 	, r and parameters β and it has an integrable envelop
function (Theorem 3, van der Vaart and Wellner (van der Vaart and Wellner, 2000)). Then we
have

Pnk
{�(β̂, r̂, 	̂) − �(β0, r0, 	̃)}

= −Pnk
δ log

r̂(x�β̂)

r0(x�β0)
+ Pnk

δ log
d	̂(y)

d	̃(y)
− Pnk

{	̂(y)/̂r(x�β̂) − 	̃(y)/r0(x
�β0)}

= −Pnk
δ log

r̂(x�β̂)

r0(x�β0)
+Pnk

δ log
	̃1(τ )Pnk

{R(y)/r0(x
�β0)}

	̂1(τ )Pnk
{R(y)/̂r(x�β̂)} −Pnk

{	̂(y)/̂r(x�β̂)−	̃(y)/r0(x
�β0)}

a.s.→ −Pδ log
r∗(x�β∗)
r0(x�β0)

+Pδ log
	0

1(τ )P {R(y)/r0(x
�β0)}

	∗
1(τ )P {R(y)/r∗(x�β∗)}−P {	∗(y)/r∗(x�β∗)−	0(y)/r0(x

�β0)}

= −Pδ log
r∗(x�β∗)
r0(x�β0)

+ Pδ log
d	∗(y)

d	0(y)
− P {	∗(y)/r∗(x�β∗) − 	0(y)/r0(x

�β0)}.

Therefore, we obtain 0 � Pnk
{�(β̂, r̂, 	̂) − �(β0, r0, 	̃)} → P log

dPβ∗,r∗,	∗
dPβ0,r0,	0

, where Pβ,r,	 is the
probability measure of a single observation on the specified model at parameter value (β, r, 	).
By identifiability of the model, we have

	∗ = 	0, r
∗ = r0, β

∗ = β0.

Therefore, we have shown that any convergence subsequence has a limiting to the true underlying
parameters. Since every subsequence of n contains a further subsequence for which (β̂, r̂, 	̂)

converges uniformly to (β0, r0, 	0), we have convergence for the entire sequence.

Proof of Proposition 1

We need to show that there exists a constant c∗ < 0 such that β = c∗β0 is the solution to the
limiting value of the partial score equation,

U(β) = E{XN(τ)} −
∫ τ

0

E{X exp(X�β)I (Y � t)}
E{exp(X�β)I (Y � t)} E{dN(t)} = 0, (2)
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where N(t) = �I (Y � t). Without loss of generality, we assume E(X) = 0. Define W = X�β0.
Using the property of elliptically symmetric random variables, we have E{X | W } = Wb, where
b is a p × 1 deterministic vector such that b = �β0(β

�
0 �β0)

−1 and � = var(X). Under random
censoring, it can be shown that for any c ∈ R,

E{X exp(cX�β0)I (Y � t)} = E{exp(cW)I (Y � t)W }b,

E{exp(cX�β0)I (Y � t)} = E{exp(cW)I (Y � t)},
E{XdN(u)} = E{WdN(u)}b.

By plugging the above quantities into (2), we have

U(cβ0) = b

[
E{WN(τ)} −

∫ τ

0

E{W exp(cW)I (Y � t)}
E{exp(cW)I (Y � t)} E{dN(t)}

]
.

Le c∗ be the limiting value of estimated c as n → ∞ from fitting the Cox model λ(t | W) =
λ(t) exp{cW } under the true model λ(t | W) = λ(t) exp{−φ(W)}. Then we have U(c∗β0) = 0.
Moreover, the monotonicity of φ will result in a negative value of c∗.
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