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Abstract

Spatial probit generalized linear mixed models (spGLMM) with a linear fixed effect and a spatial
random effect, endowed with a Gaussian Process prior, are widely used for analysis of binary
spatial data. However, the canonical Bayesian implementation of this hierarchical mixed model
can involve protracted Markov Chain Monte Carlo sampling. Alternate approaches have been
proposed that circumvent this by directly representing the marginal likelihood from spGLMM in
terms of multivariate normal cummulative distribution functions (cdf). We present a direct and
fast rendition of this latter approach for predictions from a spatial probit linear mixed model.
We show that the covariance matrix of the cdf characterizing the marginal cdf of binary spatial
data from spGLMM is amenable to approximation using Nearest Neighbor Gaussian Processes
(NNGP). This facilitates a scalable prediction algorithm for spGLMM using NNGP that only
involves sparse or small matrix computations and can be deployed in an embarrassingly parallel
manner. We demonstrate the accuracy and scalability of the algorithm via numerous simulation
experiments and an analysis of species presence-absence data.
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1 Introduction
Spatial analysis of non-Gaussian outcomes is widely prevalent in diverse fields within the natural
and environmental sciences (De Oliveira et al., 1997; Diggle et al., 1998; Zhang et al., 2022).
In several instances we measure variables that are not naturally modeled as Gaussian and may
not even be continuous. For example, the outcome of interest might be a spatially referenced
binary variable measuring whether the rainfall at a given spatial location was above a specified
threshold or not. In ecological and forestry applications, data are collected at spatial locations
indicating whether a particular species is present or absent at that location. First proposed in
Heagerty and Lele (1998), De Oliveira (2000), there is, by now, a considerable literature on
the modeling and analysis of spatial non-Gaussian, and binary in particular, data for which a
comprehensive review is beyond the scope of this article. We will focus on settings where the
outcome can reasonably be treated as point-referenced and modeled using a stochastic process
embedded within a hierarchical model. Spatial referencing for non-Gaussian data may sometimes
be aggregated into rates or counts over larger regions, but high-resolution spatial data compiled
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over areas that are sufficiently small are often analyzed using process-based methods for point-
referenced data (see, e.g. Diggle et al., 1998).

Following Diggle et al. (1998), we can introduce spatially dependent stochastic processes
for non-Gaussian data as follows. Let Y (s) be the outcome of interest at location s, where the
probability law for Y (s) cannot be reasonably assumed to be Gaussian. Therefore, we endow
Y (s) with a probability law corresponding to a member of the exponential family of densities,

f (Y (s) |β, w(s), γ ) = h(y(s), γ ) × exp {γ [y(s)η(s) − ψ(η(s))]} , (1)

where γ is a dispersion parameter, g(η(s)) = x(s)′β +w(s) for specified real-valued link function
g(·), w(s) is a spatial random effect at an arbitrary location s assumed to be realized from a
Gaussian process, ψ(·) is a known real-valued function, and h(·, ·) is a non-negative real-valued
function of the random variable that may depend on the dispersion parameter (see, e.g., Lee
and Nelder, 1996). The link function g(·) is a key component of such models and connects the
support of Y (s) to the real line. Probit and logistic link functions are customary choices for
binary data.

Our intended contribution in this manuscript is to offer a scalable inferential framework
for point-referenced binary spatial data, where we account for a linear fixed effect and a spatial
random field. To accommodate spatial dependence while maintaining computational efficiency,
we deviate from the traditional Bayesian implementations of the spatial probit model (Albert
and Chib, 1993; Berrett and Calder, 2016) that uses the conditional latent variable representa-
tion (1) of the model to sample both w’s and the hyper-parameters in a Markov Chain Monte
Carlo (MCMC) algorithm. We eschew Markov chain Monte Carlo (MCMC) sampling by ex-
ploiting some analytic expressions for marginal likelihood from (1) using a probit link function
as proposed in Cao et al. (2022). Avoiding MCMC offers the significant added advantage of
obviating some of the challenges of poor mixing of posterior sampling high-dimensional chains
resulting from weak identifiability of model hyperparameters. Our approach closely aligns with
the recently proposed MCMC-free approach in Cao et al. (2022). A key innovation over this
work is the use of Nearest Neighbor Gaussian Process (NNGP) (Datta et al., 2016b) to approx-
imate the conditional prediction probabilities. This reduces the computational complexity over
the algorithm of Cao et al. (2022) both theoretically and empirically. We demonstrate that our
approach delivers fast and exact spatial predictive inference and scales to very large data sets
using a Nearest Neighbor Gaussian Process (NNGP) approximation for the covariance function
corresponding to the cumulative distribution function (cdf).

The rest of this paper is organized as follows. In Section 2, we describe the method, and
discuss its advantages in terms of computational overhead. In Section 3, we demonstrate the
utility of the proposed approach through simulation studies and application in invasive species
data. We conclude with a discussion in Section 4.

2 Method
Let Y (si) denote the binary outcome and X(si) denote the set of covariates at location i, for
i = 1, . . . , n. A probit model for the data is given by

Y (si) = I (Zi � X(si)
′β + w(si)) where Zi

iid∼ N(0, 1) ⊥⊥ (X(si), w(si)). (2)

Here w(si) are the spatial random effects, customarily modeled as a Gaussian Process (GP),
to account for spatial correlation in the response. Modeling w(·) ∼ GP(0, C(·, ·|θ)) we have
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w = (w(s1), . . . , w(sn))
′ ∼ N(0, C(θ)) where C(θ) = (C(si, sj |θ)), and θ denotes the spatial

parameters.
Letting �(·) denote the cdf of a standard normal distribution, the joint likelihood of the

data is given by
n∏

i=1

�(X(si)
′β + w(si))

Y (si )(1 − �(X(si)
′β + w(si)))

(1−Y(si )) × N(w|0, C(θ)), (3)

where N(w|0, C(θ)) denotes the density of w, given by the pdf of N(0, C(θ)). Denote Y =
(Y (s1), . . . , Y (sn))

′, X = (X(s1), . . . , X(sn))
′ and �n(m, �) to be the cdf of a multivariate (n-

dimenional) N(0, �) distribution evaluated at m. As derived in Cao et al. (2022), the marginal
likelihood of Y is given by

p(Y ) =
∫ n∏

i=1

�(X(si)
′β + w(si))

Y (si )(1 − �(X(si)
′β + w(si)))

(1−Y(si )) × N(w|0, C(θ))dw

=
∫ n∏

i=1

�((2Y (si) − 1)(X(si)
′β + w(si))) × N(w|0, C(θ))dw

=
∫

�n(DXβ + Dw, In) × N(w|0, C(θ))dw,

where D = diag(2Y (s1) − 1, . . . , 2Y (sn) − 1)

= �n(DXβ, In + DC(θ)D) by Lemma 7.1 of Azzalini and Capitanio (2014).

Hence the marginal likelihood of Y is given by a multivariate normal cdf

p(Y ) = �n(m, �) where m = DXβ, � = In + DC(θ)D. (4)

Following the separation of variables trick proposed in Genz (1992), such multivariate cdf
can be evaluated as

�n(m, �) = Eu

n∏
i=1

uiI (0 � ui � ei) = Eu

n∏
i=1

ei where u = (u1, . . . , un)
′ with ui

iid∼ U [0, 1] (5)

and the upper-limit vector e = (e1, . . . , en)
′ is given by

e1 = �(m1/l11) , ei = �

⎛
⎝

⎡
⎣mi −

i−1∑
j=1

lij�
−1(ujej )

⎤
⎦ /lii

⎞
⎠ , ∀i � 2. (6)

Here L = (lij ) is the lower-triangular Cholesky factor of �, i.e., � = LL′.

2.1 Nearest Neighbor GP Cholesky Factors
Evaluating the marginal probabilities in (4) requires computing the Cholesky factor L of � =
In + DC(θ)D for generating the quantities in (6). Cholesky factorization typically needs O(n3)

floating point operations or flops. Cao et al. (2022) reduced the complexity to O(n5/2) by using a
tile-low-rank approximation of �. In this manuscript, we propose an improved O(n2)-complexity
algorithm using Cholesky factors from Nearest neighbor Gaussian Process (NNGP, Datta et al.,
2016a) covariance matrices. NNGP constructs a valid joint distribution for w on a set of locations
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{s1, . . . , sn} by sequentially specifying w(si) |w(s1), . . . , w(si−1) only using GP spatial correlations
between w(si) and w(s) for m-nearest neighbors s of si among s1, . . . , si−1. This specification was
proposed as a scheme for GP likelihood approximation originally by Vecchia (1988) and was
shown to correspond to a multivariate Gaussian distribution with a valid covariance matrix in
Datta et al. (2016b).

The key rationale for motivation and success of NNGP as an excellent surrogate for full
GP is that if the full GP covariance function monotonically decreases with distance, the m-
nearest neighbors constitute the set of m locations of among s1, . . . , si−1 which has the highest
correlation with si . Thus NNGP approximations are used either on the latent spatial random
effects w with covariance matrix C, or, for Gaussian responses, directly on the response vector
after marginalizing out w which has the covariance matrix of the form C + τ 2I , τ 2 denoting the
unstructured (non-spatial) variance. If the covariance function C(·, · | θ) monotonically decreases
with distance then so do the entries of both the matrices C and C + τ 2In (Finley et al., 2019),
and replacing either of these covariances with their respective NNGP analogs is justified and
works well.

For spatial probit linear mixed model, we propose approximating the covariance matrix
� = In + DCD with a NNGP. The justification is that the off-diagonal entries of � = (σij )

satisfy
|σij | = |(2Y (si) − 1)C(si, sj |θ)(2Y (sj ) − 1)| = |C(si, sj |θ)|

as Y (si)’s are binary. Hence, the absolute values of the covariances of � still decrease with
distances and the principles of using NNGP hold.

Let �̃ denotes the NNGP covariance matrix corresponding to �. It is well-known (Datta
et al., 2016b) that �̃ has the following properties:

�̃−1 = (I − A)′F−1(I − A)

where A is a sparse strictly lower-triangular matrix and F = diag(f1, . . . , fn) is diagonal, both of
which can be evaluated in O(n) flops. The lower-triangular Cholesky factor L̃ of �̃ is then given
by L̃ = (l̃ij ) = (I − A)−1F 1/2. Letting l̃·j denote the jth column of L̃, and ηj the n-dimensional
vector with 1 at the jth position and 0’s elsewhere, one can solve for l̃·j as

l̃·j = (I − A)−1f
1
2

j ηj ⇐⇒ (I − A)l̃·j = f
1
2

j ηj ⇐⇒ l̃·j = trsolve(I − A, f
1
2

j ηj ), (7)

where trsolve denotes solution of a triangular linear system. As A is strictly lower triangular
with at-most O(1) entries per row, the linear system in (7) can be solved in O(n) flops (see
Saha and Datta, 2018a; Datta, 2021, for the algorithm). Repeating this for j = 1, . . . , n, the
entire Cholesky factor L̃ can be obtained in O(n2) flops or in O(n2/K) flops if parallelized over
K computing cores as the solves for l̃·j for different j ’s can proceed in an embarrassingly parallel
manner.

2.2 Predictions in Probit Model
For prediction at a new location sn+1, let Y ∗ = (Y (s1), . . . , Y (sn), Y (sn+1))

′. Define the quantities
X∗, D∗ and C∗ analogous to X, D and C respectively but for the n + 1 data-points. Let m∗ =
D∗X∗β and �̃∗ denote the NNGP matrix corresponding to �∗ = In+1 +D∗C∗D∗′ . Then we have

̂Y (sn+1) = p(Y (sn+1) = 1|Y ) = �n+1(m
∗, �̃∗)

�n(m, �̃)
. (8)
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Evaluating the denominator using (6) requires the Cholesky factor L̃ of �̃ which can be
computed using O(n2) flops via (7). For the numerator, one needs to repeat the procedure using
the Cholesky factor L̃∗ of �̃∗. However, another advantage of NNGP for this task is that, having
computed L̃, one can compute L̃∗ in only O(n) additional flops. To see this, let A∗ and F ∗
respectively denote the n + 1 dimensional analogs of A and F . Then we have

F ∗ = diag(F, fn+1), A∗ =
(

A 0
a′

n+1 0

)
and L̃∗ =

(
L̃ 0

a′
n+1L̃ f

1/2
n+1

)
. (9)

Hence, the only added computations for L̃∗ are computing the nearest-neighbor kriging weight-
vector an+1 and the nearest-neighbor kriging variance fn+1, and then computing v′ = a′

n+1L̃.
Obtaining both an+1 and fn+1 are done in O(1) flops as they only involve m-dimensional vectors
and matrices, m being the number of nearest neighbors. To get v, we solve the sparse lower-
triangular system L̃−1v = an+1 for v. This is akin to the linear system in (7) and can be done in
O(n) additional flops due to sparsity of L̃−1 = (I − A)F−1/2.

Having computed L̃ and L̃∗ = (l̃∗ij ), we will evaluate the ratio in (8) via (5) and (6). Let
un+1 ∼ U [0, 1] ⊥⊥ ]u and u∗′ = (u′, un+1). Then, for the denominator, we first calculate the ei ’s
defined in (6) by replacing lij with l̃ij . Subsequently, noting from (9) that L̃ and L̃∗ agree on the
top n × n block, these ei ’ can also be reused for evaluating the numerator. One only needs to
compute an additional

en+1 = �

⎛
⎝

⎡
⎣mn+1 −

n∑
j=1

l̃∗n+1,j�
−1(ujej ))

⎤
⎦ /l̃∗n+1,n+1

⎞
⎠ . (10)

Now we can compute the prediction Ŷ (sn+1) from (8) as

̂Y (sn+1) = �n+1(m
∗, �̃∗)

�n(m, �̃)
= Eu∗

∏n+1
i=1 ei

Eu

∏n
i=1 ei

≈
1
R

∑R
r=1

∏n+1
i=1 e

(r)
i

1
R

∑R
r=1

∏n
i=1 e

(r)
i

. (11)

Here the last approximation reflects the practice where the expectation is replaced by Monte-
Carlo expectation using samples u

(r)
i from U [0, 1] and generating the e

(r)
i for r = 1, . . . , R. The

entire evaluation requires O(n2) flops – an improvement over the total O(n5/2) flops (O(n3/2) flops
for each Monte Carlo sampling and O(n5/2) flops for the Cholesky factor) algorithm proposed
in Cao et al. (2022).

In practice, the parameters β and θ are unknown. They can be evaluated by cross-validation
as outlined in Cao et al. (2022) using the mean square error (MSE) loss. Other loss functions like
the mis-classification loss or the Kullback-Leibler divergence (KLD)-loss can also be considered
that accounts for the binary nature of the response.

3 Illustrations
In this section, we illustrate the predictive performance and the computational scalability of
the probit-NNGP model proposed in Section 2.1 in large simulation experiments and real world
geospatial data. The implementation makes use of code snippets from the existing R package
BRISC (Saha and Datta, 2018b), and heavily leverages Intel Math Kernel Library’s threaded BLAS
and LAPACK routines. In this section, we will be using 15 nearest neighbors (m in Section 2.1)
and a location ordering scheme based on sum of coordinates for the NNGP based conditional
probabilities derived in Section 2.
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3.1 Simulation Experiment
For evaluating the performance of the proposed approach, we closely follow the simulation setup
in Cao et al. (2022). We restrict ourselves to the scenario where β = 0 and simulate data on an
equispaced g ×g grid on a unit square. We simulate binary response Y at these n = g2 locations
as follows:

Y (si) ∼ Bernoulli (� (w (si))) ; (w(s1), w(s2), . . . , w(sn)) ∼ N(0, C),

where C is the covariance matrix corresponding to exponential covariance kernel with spatial
variance σ 2 and spatial decay φ, i.e.

Ci,j = σ 2 exp
(−φ

∥∥si − sj

∥∥)
.

To demonstrate the performance of probit-NNGP in a wide spectrum of sample sizes, we
use the following choices of g ∈ {15, 25, 50, 100}. We first simulate the probabilities and the
corresponding binary response for g = 100. For all of the other choices of g, we obtain the
corresponding data by subsetting the full data over the suitable equally spaced subgrid. We set
the spatial parameters as follows: σ 2 = 1, φ = √

30. To assess the predictive performance of
probit-NNGP, we consider two sets of 100 out-of-sample locations in Cao et al. (2022):
1. 100 random locations from the unit square
2. a grid of 100 locations, non overlapping with the training dataset.

For each choice of g, we replicate the process 100 times. Instead of using the true parameter
values for prediction purposes, we first estimate the parameters and next use the estimates for
prediction. We estimate the parameters by optimizing the likelihood in Section 2. Performing a
global optimization with respect to the spatial parameters can lead to significant computational
overhead. In Cao et al. (2022), it was demonstrated that prediction performances are robust
with respect to minor variation in parameter choices. We use a grid search based optimization
over {σ 2, φ}, by evaluating the likelihood (5) on a grid of values in the joint parameter space.

We use a 10 × 10 grid on
[√

1
2 ,

√
3
2

]
×

[√
15,

√
45

]
. We use mean squared error between the

estimated predictive probabilities at the out-of-sample locations and the true ones.
In order to compare the accuracy of the proposed approach with a state-of-the-art solution

for this problem, we also consider the minimax tilting method based evaluation of truncated
normal (TN) distribution (Botev, 2017), implemented in R package TruncatedNormal (Botev
and Belzile, 2021). The authors proposed a novel minimax tilting method to simulate i.i.d. ob-
servations from a multivariate Gaussian distribution. This provides with an efficient estimator
for otherwise intractable cumulative distribution function of multivariate Gaussian distribution.
Cao et al. (2022) developed a scalable probit model prediction based on Genz (1992) sepa-
ration of variable algorithm. They achieve scalability through tile-low-rank (TLR) representa-
tion of the covariance matrix, to approximate the required cholesky decomposition in (6). This
method is implemented with R package tlrmvnmvt (Cao et al., 2020, 2022) and the repository
https://github.com/danieledurante/PredProbitGP. As far as the proposed approach (TLR) in
Cao et al. (2022) is concerned, TN was used as the gold standard for accuracy whereas TLR
vastly outperformed TN in computational overhead. Hence we compare the accuracy and run-
time of probit-NNGP with that of both TN and TLR throughout the article. For implementing
TN and TLR, we follow the model parameter choices in the Tutorial in the aforementioned
repository. The packages to implement probit-NNGP, TN and TLR are implemented in R, with
the base code written in C/C++/RCPP.

https://github.com/danieledurante/PredProbitGP
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Table 1: MSE of predicted out-of-sample probabilities for probit-NNGP, TLR and TN, for dif-
ferent choices of n. Empty cells indicate the corresponding configurations to have a runtime
exceeding our 24 hours computational budget.

Methods n = 152 n = 252 n = 502 n = 1002

(a) Out-of-sample random locations
probit-NNGP 0.037 0.028 0.019 0.013
TLR 0.036 0.028 0.020 0.014
TN 0.037 0.028 – –
(b) Out-of-sample grid locations
probit-NNGP 0.031 0.026 0.018 0.013
TLR 0.030 0.025 0.020 0.014
TN 0.031 0.024 – –

We set a constraint of 24 hours on the computational budget (for estimation and prediction
together) and report the results for TN and TLR for values of g, where the whole prediction
task for one replicate does not exceed the 24 hours. We note that both TN and TLR rely on
parameter estimation by optimization of the probit likelihood. To be consistent in our empirical
comparison, we use the same grid-search strategy and grid points as probit-NNGP for this
estimation part.

Tables 1a and 1b demonstrate that the accuracy of the proposed approach is comparable
to that of the TN for both sets of out-of-sample locations. Note that for some of the larger
sample sizes, the TN method could not be completed within the total allotted time. In all the
settings for which all the methods were able to be completed, the predictive performances of all
the methods are nearly identical.

Next, we consider the computational overhead of the methods under consideration. The
total runtimes of the concerned methods can be decomposed into two components, the first
component being performing a grid search to optimize the (log)likelihood with respect to the
spatial parameters. The second component consists of performing prediction on K out-of-sample
locations with the parameter estimates obtained in the first step. Any NNGP based method
incurs a one-time cost of determining the set of ordered nearest-neighbors for each location, which
can be significantly time consuming for large datasets. Here we note that once we obtain the
nearest-neighbor set, it can be used in the grid search and the subsequent prediction process. As
far as prediction in out-of-sample data is concerned, unlike TN or TLR, probit-NNGP performs
predictions on all locations together. Recall that, since the estimation process in probit-NNGP
returns the L̃ in (7), the L̃∗ in (9) can be obtained in O(n) computation. The reported runtime
for TN for prediction at an out-of-sample location in Cao et al. (2022) includes the runtime
needed to evaluate the denominator in (8) (i.e. our reported runtime in Table 2a). This shows
that our reported total runtime for TN is consistent with that of Cao et al. (2022) for comparable
sample sizes. The TLR runtimes in Table 2b also are consistent with the reported timings in Cao
et al. (2022). Here we note that unlike TN, TLR predicts both the numerator and denominator
of (8) simultaneously, hence given values of spatial parameters, the total runtime for prediction
at one location only involves the timing reported in Table 2b.

The runtimes reveal the superior capability of the probit-NNGP model for scaling to settings
involving massive geospatial data. For each runtime, we see that the probit-NNGP is orders of
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Table 2: Runtime in seconds for probit-NNGP, TLR and TN for different choices of n. Empty
cells indicate the corresponding configurations to have a runtime exceeding our 24 hours com-
putational budget.
Methods n = 152 n = 252 n = 502 n = 1002

(a) Grid search for one parameter combination
probit-NNGP 0.065 0.5 9 166
TL 0.57 2.9 28 187
TN 3.5 22 – –
(b) Prediction at one out-of-sample location following estimation
probit-NNGP < 0.01 < 0.01 < 0.01 0.025
TLR 1.2 5.8 40 271
TN 3.5 22 – –

Table 3: Runtime in seconds to predict at K locations with known parameters.

Methods n = 152 n = 252 n = 502 n = 1002

probit-NNGP 0.065 + 0.01K 0.5 + 0.01K 9 + 0.01K 166 + 0.025K

TL 1.2K 5.8K 40K 271K

TN 3.5(K + 1) 22(K + 1) – –

magnitude faster than TN and TLR. For the largest sample size of 1002 = 10000, NNGP
completes estimation and prediction in less than a total of 3 minutes. As we have seen from
Tables 1a and 1b, this expedition in computational speed comes at no discernible compromise
in terms of predictive accuracy.

In case the parameters are known, i.e. we do not need to estimate the parameters. The time
to predict at K locations in this scenario are given in Table 3.

3.2 Invasive Species Data Analysis

We demonstrate the utility of the probit-NNGP model in analysis of binary spatial data. The
dataset under consideration informs about presence or absence of an invasive plant species
Celastrus orbiculatus in the state of Connecticut, USA. The data set consists of 603 locations;
the response is a presence–absence binary indicator (0 for absence) for Celastrus orbiculatus. We
refer the readers to Banerjee and Gelfand (2006) for details on the data. The data set contains
covariates, but consistent with the theme of the present article, we focus on assessing prediction
performance only using the location information and hence do not use the covariates. In order to
compare the predictive performances of the concerned methods, we first scale the 603 location
coordinates to [0, 1] × [0, 1] unit square and divide the data into 500 training and 103 out-of-
sample data. For all the models, we model the dependence structure in the response variable with
an exponential covariance. We first obtain a crude estimate of the spatial parameters {σ 2, φ},
by evaluating the likelihood (5) on a 25 × 10 equispaced grid on [0,

√
200] × [0, 10]. For TLR,

the Cholesky decomposition failed on the grid search, so we only compare the performances of
probit-NNGP and TN in this data. Subsequent to estimating the spatial parameters, we obtain
the predictive probabilities at the 103 held-out locations corresponding to probit-NNGP and TN.
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Figure 1: Invasive species data analysis with probit-NNGP. (a) shows the 500 training data
with red denoting the presence and blue denoting the absence of Celastrus orbiculatus. (b)
Shows the predicted probabilities of presence of Celastrus orbiculatus, along with the training
data. (c) Shows that scatter plot of the predictions from the TN and the probit-NNGP models,
demonstrating the similarity of the two.

Fig. 1 plots the training data and the predicted probabilities from probit-NNGP for the test
data. The predictions are quite similar in nature with the mean square difference between the
two being 0.002. This is also corroborated from the scatterplot in Panel (c) of Fig. 1 revealing
the close alignment of the two sets of predictions. Unlike in the case of simulated data, we do
not have access to the true probabilities at the held-out locations. Hence we measure the out-
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Table 4: AUC and total (estimation + prediction) runtime in seconds for probit-NNGP and TN
in Celastrus orbiculatus data.
Methods AUC Time

probit-NNGP 0.700 75
TN 0.662 4977

of-sample predictive performance via the area under the ROC curve (AUC) following Cao et al.
(2022). Table 4 shows that the AUC for both the methods are similar. As the covariates effects for
this data turned out to be statistically significant in Banerjee and Gelfand (2006), accounting for
covariate effects may have lead to a better overall AUC for both the methods but would require
optimization or grid-search over a higher dimensional space to obtain estimates of the regression
coefficients. We also show the total runtime of probit-NNGP and TN in Table 4, which shows
that probit-NNGP significantly outperforms TN in terms of computational overhead, even with
the smaller sample size. Here, we note that the timing in Table 4 may seem higher than Table 2,
but indeed are consistent with the ones reported in Table 2 due to the use of a denser grid in this
scenario and Table 4 reporting the total runtime for all predictions as opposed to the run-time
for one prediction location reported in Table 2a. For example, for TN, estimating the likelihood
in (5) takes 14.1 seconds. We need to perform this operation 250 times for the grid search and
103 times for prediction at new locations. This gives us the reported time in Table 4.

4 Discussion
We proposed a modification of the spatial probit model prediction algorithm of Cao et al. (2022)
using Nearest Neighbor Gaussian Process (NNGP) approximation. NNGP is a natural candidate
for this problem as the covariance matrices involved in the probit marginal cdf’s still respect
monotonicity with respect to distance – the central rational for dimension-reduction using a
few nearest neighbors, and that the approach relies on Cholesky factors which are conveniently
obtained for NNGP. The NNGP-based algorithm proposed here theoretically reduces the com-
putational complexity, which is reflected in considerably improved run times in the data analysis
over competing methods. We also learn that this expedition in terms of computational efficiency
does not sacrifice prediction accuracy.

As suggested by one of the reviewers of the paper, we also considered using Monte Carlo
(MC) simulation to estimate p(Y ) directly using (4). The approach has a theoretical computa-
tional complexity of O(n), as both the approximate inverse Cholesky computation and one MC
sample cost O(n). This method requires a high number of MC simulations to produce a stable
estimate, as shown in the supplementary material. This makes this approach infeasible even for
moderately high values of n.

One limitation of probit-NNGP is that, the cross-validation strategy only works if the
number of covariates is small which limits the dimensionality of β. All the approaches (probit-
NNGP, TN, TLR) perform prediction for a given set of parameters. In Cao et al. (2022) and in
the present article, we use this for parameter estimation by maximising the likelihood through
grid search. The overall computational time depends on the number of points in the parameters
space. With zero mean, the dimension of the parameter space is equal to the number of spatial
parameters, i.e. 2 for exponential covariance model. This requires a grid search over O(K2)
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points to search the parameter space, assuming K evaluation points for each parameter. If we
want to account for unknown linear effect of d covariates, the dimension of the parameter space
would be d + 2 (d parameters denoting the effect of d covariates, i.e. β in (2) of the article).
In order to get a good coverage of the parameters space, we have to perform grid search over
O(Kd+2) points, which will exponentially increase the overall cost of parameter estimation.
We note that if we know the effect of the covariates, i.e. β is known or estimated apriori,
the computational cost will not increase, as the unknown parameter space remains unchanged
compared to the β = 0 scenario. Future research will explore alternative estimation strategies for
moderate or large number of covariates. Future developments may also comprise generalizing
the proposed methodology for spatial multinomial probit models that can replace spatially-
varying multinomial logistic regression models to predict forest type groups across large forested
landscapes (Finley et al., 2009).

Supplementary Material
This supplementary material contains discussion on why is it infeasible to directly use a Monte
Carlo sampling to estimate p(Y ) in (4), evaluation of the algorithms under consideration with
respect to misclassification error, and details of the code and data used in the article.
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