
Journal of Data Science xx (xx), 1–2
August 2022

DOI: xx.xxxx/xxxxxxxxx

Supplementary Materials for “Scalable Predictions for Spatial
Probit Linear Mixed Models Using Nearest Neighbor Gaussian

Processes"

Arkajyoti Saha1, Abhirup Datta2, and Sudipto Banerjee∗3

1Department of Statistics, University of Washington, Seattle, WA, USA
2Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA

3UCLA Department of Biostatistics, 650 Charles E. Young Drive South, University of California Los
Angeles, CA 90095-1772, USA.

Abstract

This supplementary material contains discussion on why is it infeasible to directly use a Monte
Carlo sampling to estimate p(Y ) in (4), evaluation of the algorithms under consideration with
respect to misclassification error, and details of the code and data used in the article.

1 Why is it infeasible to use a Monte Carlo sampling to directly
estimate p(Y ) in (4)

A reviewer suggested to use a Monte Carlo sampling to estimate p(Y ) in (4), by first computing
the sparse Cholesky approximation (O(n) complexity) and then performing Monte Carlo simu-
lations from the sparse Cholesky (O(n) complexity). This is a very interesting suggestion, which
has the potential to improve the theoretical time complexity of the procedure. The only caveat
is the number of Monte Carlo simulations required to obtain a stable estimate of the truncated
normal. We illustrate this with a theoretical explanation with a toy example:

Consider the case where the outcomes are independent. In our scenario, a = − inf and
b = 0. Here, w(si)’s are generated independently. Here, using the aforementioned approach,
with K MC iterations, the probability can be approximated as follows:
1. Simulate t1, t2, . . . , tK , with ti

i.i.d.∼ N
(
0, Σ̃

)
.

2.

pMC =

∑K
i 1

{
a⩽̃ti⩽̃b

}
K

,

where ⩽̃ denotes elementwise inequality between two vectors of comparable length.
Here, we note that in order to obtain a stable estimate, we will need O(E(Φ(z))−n) MC
simulations, where z is a standard normal distribution. This follows from the fact that
P(a⩽̃t⩽̃b) =

∏n
j Φ(tj). Since tj are i.i.d., the result follows. As the number of required sim-

ulations grows exponentially, the effective computational cost surpasses that of the proposed
approach handily.
A simulation framework: We also conduct a simulation study to see how does this pan
out in case of correlated data. For any m, we set n = m ∗ m and σ2 = 1 and ϕ =

√
30,

we simulate correlated w and use them to simulate Y . Next we use K MC iterations to
estimate p(Y ). Here, we want to judge the stability of the estimate. Hence we do this for 100
times to obtain the standard deviation of the estimate. For each y, we obtain the ratio of

∗Corresponding author. Email: sudipto@ucla.edu

Received August, 20222; Accepted XXXX 1



2 Arkajyoti Saha, Abhirup Datta, and Sudipto Banerjee

the standard deviation and mean of the 100 MC estimates. We do this for 100 Y and report
the mean below for varied choice of K and m. As we can see, the standard deviation though
well calibrated for very small n, becomes pretty significant compared to the mean, even with
100, 000 MC iterations, for n = 42. For moderately large values of n, this becomes practically
infeasible due to exponential growth in required number of MC simulations to achieve similar
precision.

Table 1: Ratio of Standard deviation and mean of Monte Carlo estimates while simulating
directly from multivariate Normal.

Number of MC replicates n = 22 n = 32 n = 42

1000 0.12 0.04 0.02
10000 0.75 0.24 0.14
100000 − 3.48 2.58

Here, for n = 42 and K = 1000, the numerator in pMC becomes zero, as that event is
satisfied with very low probability, hence estimate of p(Y ) becomes 0.

2 Comparison of misclassification rate of the proposed approaches

Table 2: Misclassification rate for n = 152 for out-of-sample random locations and grid locations

Methods Random location Grid location
probit-NNGP 0.32 0.32
TL 0.32 0.32
TN 0.31 0.31

3 Code availability

The code to implement probit-NNGP is available in https://github.com/ArkajyotiSaha/probit-
NNGP-code. The code consists of source code and a tutorial to implement the three methods
discussed in the paper alongside the data used for data analysis. The code calls functions in
https://github.com/danieledurante/PredProbitGP and a “README” file is available at the link
for better navigation of the files.

https://github.com/ArkajyotiSaha/probit-NNGP-code
https://github.com/ArkajyotiSaha/probit-NNGP-code
https://github.com/danieledurante/PredProbitGP/blob/main/README.md

	Why is it infeasible to use a Monte Carlo sampling to directly estimate p(Y) in (4)
	Comparison of misclassification rate of the proposed approaches
	Code availability

