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Abstract

Global earth monitoring aims to identify and characterize land cover change like construction as
it occurs. Remote sensing makes it possible to collect large amounts of data in near real-time over
vast geographic areas and is becoming available in increasingly fine temporal and spatial resolu-
tion. Many methods have been developed for data from a single pixel, but monitoring pixel-wise
spectral measurements over time neglects spatial relationships, which become more important
as change manifests in a greater number of pixels in higher resolution imagery compared to
moderate resolution. Building on our previous robust online Bayesian monitoring (roboBayes)
algorithm, we propose monitoring multiresolution signals based on a wavelet decomposition to
capture spatial change coherence on several scales to detect change sites. Monitoring only a sub-
set of relevant signals reduces the computational burden. The decomposition relies on gapless
data; we use 3 m Planet Fusion Monitoring data. Simulations demonstrate the superiority of
the spatial signals in multiresolution roboBayes (MR roboBayes) for detecting subtle changes
compared to pixel-wise roboBayes. We use MR roboBayes to detect construction changes in two
regions with distinct land cover and seasonal characteristics: Jacksonville, FL (USA) and Dubai
(UAE). It achieves site detection with less than two thirds of the monitoring processes required
for pixel-wise roboBayes at the same resolution.

Keywords Bayesian; change detection; monitoring; online; remote sensing; wavelet

1 Introduction
Satellite signals from a variety of sensors can observe any location in the world, making remote
sensing data suitable for global monitoring. As part of a multistage detection and characteriza-
tion procedure, a broad area search should provide prompt change detection and localization as
the basis for further investigation. We chose to analyze Planet Fusion Monitoring data, which
imputes missing observations to create gapless, daily, 3 m images. We aim to present a method-
ology that leverages multiresolution spatiotemporal information enabled by a gapless dataset
to monitor a set of spectral signals and propose change sites that can be queried for further
refinement and characterization.
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Pixel-wise algorithms monitor the signal set for a particular location over time, accounting
for seasonal and gradual temporal trends present in the data to differentiate sustained change
from transient deviations. Pixel-based analysis lends itself to straightforward parallelization,
which is important for large-scale analysis. Control charts based on Cumulative Sums (CUSUM;
Page, 1954) and Exponentially Weighted Moving Averages (EWMA; Roberts, 1959) flag change
based on sustained deviation from the expectation of the monitoring process. Continuous Change
Detection and Classification (CCDC; Zhu and Woodcock, 2014) flags land cover change based
on successive deviations from a harmonic model, but struggles to monitor short time series and
is insensitive to low magnitude changes. Continuous monitoring of Land Disturbance (COLD;
Zhu et al., 2020) extends CCDC on several fronts, including input signal analysis and variable
selection. The roboBayes algorithm presented in Wendelberger et al. (2021), based on Bayesian
Online Changepoint Detection (BOCPD; Adams and MacKay, 2007), is built on the same har-
monic model, but its hierarchical Bayesian approach lends strength to its estimation and it
can model multiple signals along with their covariance. It views change based on how far back
the current model fits, diminishing the need for a long historical stable period and facilitating
detection of subtle changes based on cumulative evidence.

As high-resolution imagery proliferates, pixel-based methods are susceptible to overde-
tection because real, small changes that are normally blurred out become possible to detect
(Niemeyer et al., 2008). Further, even when real change is detected, the shape can be irregular,
segmented, or full of holes, presenting a change region as multiple smaller ones or failing to
capture the entire expanse of the change region (Bontemps et al., 2008). This makes it diffi-
cult to translate the results to unified change regions, even with post-processing methods like
smoothing and clumping.

The spatial information is underutilized in the above pixel-based temporal approaches to
global remote sensing. Pixels tend to change in spatially coherent groups, relative to their sur-
roundings, i.e., a change area is portrayed by the spectral signal change of multiple adjacent
pixels in unison. Mei (2010) acknowledges space by combining and monitoring locally aggregated
CUSUM statistics. Methods based on linear models broaden to the spatial domain by regressing
on a spatial (or spatiotemporal) neighborhood. Both spatial Breaks for Additive Season and
Trend (BFAST; Lu et al., 2016) and spatiotemporal Bayesian Online Changepoint Detection
with Model Selection (BOCPDMS; Knoblauch and Damoulas, 2018) extend monitoring in this
way. The results are sensitive to the neighborhood size, which trades off with computational
cost. BOCPDMS introduces a model selection module to adjust the neighborhood size, but does
not have a natural mechanism to localize change within a region aside from local applications. A
Gaussian Process (GP) model incorporates multi-dimensional information through a correlation
function that depends on distance between observation locations. Saatçi et al. (2010) propose
the extension of BOCPD to a GP framework. Developments related to GPs for change moni-
toring include simultaneous inference and change detection (Imbiriba et al., 2019), sparse GPs
for faster computation (Gu et al., 2020), multi-scale GP regression (Susiluoto et al., 2020), and
covariance monitoring (Kuhn et al., 2014; Horvath et al., 2022).

A spatial signal representation over time occupies the middle ground between a temporal
pixel model and a more abstract algorithm. A wavelet decomposition represents a signal as a
combination of spatially localized orthogonal basis functions (Daubechies, 1988, 1990). These
signals incorporate information from a neighborhood of pixels, amplifying spatially coherent
change. A multi-resolution analysis uses Discrete Wavelet Transform (DWT) to represent a sig-
nal in terms of a series of spatially resolved basis functions. Efficient decomposition algorithms
(Mallat, 1989; Shensa, 1992) make multiresolution analysis (MRA) computationally feasible.
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Wavelet decomposition over time (Killick et al., 2013), while useful for detecting second-order
structural change, does not support a sequential updating scheme. Instead, a two-dimensional
decomposition over space is considered. Rinoshika and Rinoshika (2020) illustrates MRA for
multiple dimensions. Wavelets transformations are used in image processing to denoise data
(Mallat, 1989; Donoho, 1995; Wang et al., 2010) and segment images (Xu et al., 2017; Huang
et al., 2018). Differences in successive segmented images, or similarly, when a difference image
itself is segmented (Celik and Ma, 2011; Li et al., 2017), is one way to detect change. These meth-
ods focus on pairs of images, but with a broad monitoring algorithm, it is necessary to update
results at many sequential time steps and to consider seasonal structure to avoid inadvertently
flagging regular seasonal variation as change. Image differencing is particularly susceptible to
ephemeral real change and corrupted data that may present as change.

Wavelet representations require a complete grid of data. With traditional imagery use, cloud
masks flag unusable data, leaving gaps in images and precluding the use of wavelet decomposi-
tion on a broad monitoring scale without consideration of imputation. Planet Fusion Monitor-
ing data supplements PlanetScope images with publicly available satellite data from Sentinel-2
and Landsat-8/9 using the Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM;
Houborg and McCabe, 2018a; Houborg and McCabe, 2018b). The end result is a radiometrically
and geometrically harmonized, cloud-masked, and gap-filled data cube with daily temporal and
3 m spatial resolution. In addition, Quality Assurance (QA) data characterizes each pixel at
each time, making it possible to differentiate pixels based on the amount of observed data that
goes into the response value. With this substantial increase in temporal and spatial resolution,
Planet Fusion contains information about disturbances at a very fine resolution. Attempting
to monitor large regions over long periods using existing, pixel-based methods would scale up
the computation time with the increase in resolution; i.e., monitoring a scene using 3 m data
would take 100 times longer than the 30 m equivalent. The Planet Fusion Monitoring product
necessitates a change in analysis methods to take advantage of the information that it contains
while remaining computationally feasible.

In this paper, we use Planet Fusion Monitoring data to scan regions for construction change
from 2018 through early 2022. Balafas et al. (2018) scans for earthquake damage change by
modeling wavelet coefficients at each time as a GP realization, then identifying model parameter
change. Similarly, but without the need to fit a GP, we propose using a wavelet representation
by decomposing incoming Planet Fusion images with DWT and then monitoring the coefficients
of the multiresolution wavelet basis functions to detect construction changes in a process called
Multi-Resolution roboBayes monitoring (MR roboBayes). We judiciously select which coefficients
to monitor, which reduces the number of monitoring processes. We evaluate MR roboBayes on
simulated datasets to demonstrate its ability to detect subtly changed cohesive sites in a timely
manner better than pixel-based roboBayes. We apply MR roboBayes to two different regions:
Jacksonville, FL (USA) and Dubai (UAE), which have very different landscapes and evaluate
performance to examine how MR roboBayes generalizes across land cover types. MR roboBayes
is able to achieve comparable detection with substantially fewer monitoring processes.

The remainder of the paper proceeds as follows. The motivating data are described in
Section 2. Section 3 reviews wavelet representation and introduces MR roboBayes. Computation
is discussed in Section 4. MR roboBayes is evaluated using a simulation study in Section 5 and
applied to the test regions in Section 6. Section 7 provides discussion and conclusions.
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Figure 1: A 6.144 × 6.144 km2 region in Jacksonville, FL at (left) the beginning and (right) end
of the study period. Construction sites beginning before 2018, but ending after are annotated in
green. Construction sites beginning after 2018 are annotated in yellow.

2 Construction in Jacksonville, FL (USA) and Dubai (UAE)
Automated monitoring facilitates surveillance of large geographical areas for new construction.
In this case, we are interested in identifying major construction projects, i.e., airports, industrial
areas, etc., rather than single homes. Planet Fusion Monitoring data has 3 m spatial resolution
and daily temporal resolution (Planet Fusion Team, 2022). The available bands are the three
visible bands (red, green, and blue) as well as a near infrared band (NIR). Visible bands are
highly correlated, so a single band is chosen to represent brightness. For Jacksonville, we monitor
brightness via the blue band along with a complementary signal, normalized difference vegetation
index (NDVI; Tucker, 1979). NDVI is a unitless red and near-infrared based index commonly used
to measure vegetation properties that discriminates well between vegetation and cleared land.
In Dubai, only the red band is monitored since it is less susceptible to atmospheric effects than
blue, and NDVI is omitted since vegetation is not prevalent. QA values quantify the “percent
synthetic” content for each pixel, i.e., the proportion of the pixel response created by the gap-
filling algorithm. Entirely missing pixels have QA of 100% while completely observed pixels have
QA of 0%.

We examine data for two distinct regions to explore generalizability of the method. The first
region is a 6.144×6.144 km2 area in Jacksonville, FL (USA). The second is a 12.288×12.288 km2

region south of Dubai (UAE). Annotations with spatial location as well as start/end dates
for areas undergoing heavy construction are provided by the Space-Based Machine Automated
Recognition Technique (SMART) program for both regions. Some of the annotated construction
sites begin before 2018-01-01, when Planet Fusion becomes available. They are included in the
annotations because substantial change that can be detected occurs after the initial site clearing
and may be present in the data during the study period.

Data in Jacksonville is typically seasonal because of its natural vegetation as shown in
Figure 1; both NDVI and brightness are sensitive to construction changes. In this region, some
small sites can be hard to differentiate from other false local flags.
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Figure 2: A 12.288 × 12.288 km2 region in Dubai, UAE at (left) the beginning and (right) end
of the study period. Construction sites beginning before 2018, but ending after are annotated in
green. Construction sites beginning after 2018 are annotated in yellow.

Figure 3: Workflow for MR roboBayes.

In the Dubai region shown in Figure 2, it can be difficult to differentiate land which has
undergone construction from the bright surrounding sand. In addition to the subtle nature of the
changes, this region contains many relatively large sites because it is an industrial area. Shifting
dunes present a unique challenge in this region; they are a sustained change over a large region
(much like a building), but not one that we are interested in sending on for further scrutiny.

3 Statistical Methods
A summary of the steps involved in the analysis are visualized in Figure 3. As each multidimen-
sional image signal is observed, a wavelet transformation is applied to create independent spatial
signals. We then monitor the spatial signals for change using the roboBayes algorithm. Finally,
the spatial signals are recombined to quantify change in real space. The rest of the section details
the steps in the algorithm.

Denote the data at spatial location s = [s1, s2], where s1 and s2 are Cartesian coordinates, of
spectral signal z = 1, . . . , d at time t as Yzt (s). Here d = 2 for the two spectral signals: brightness
and NDVI. It is assumed that data are observed on a N × N grid of n = N2 unique locations
with s ∈ {1, . . . , N}2, where N = 2J . The entire image is denoted Yzt = {Yzt (s1) . . . , Yzt (sn)}T . We
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use a basis representation,

Yzt (s) =
n∑

i=1

yztiBi(s), (1)

where Bi(s) are the 2D wavelet basis images evaluated at s with weights yzti . We propose to use
wavelets to transform spatial images Yzt to independent signals yzt = {yzt1, . . . , yztn} and perform
change detection on the wavelet coefficients, monitoring multiple resolutions simultaneously.
Wavelet coefficients both encode spatial information and can easily be monitored in parallel.

3.1 Wavelet Basis Representation

Instead of analyzing individual pixels, it is desirable to interpret the image in a way that recog-
nizes spatial patterns. Wavelets are localized in space, so they can summarize the behavior of
groups of pixels. First, we introduce wavelet representation in one dimension, then extend to two
dimensions and define the representation of Yzt using a wavelet basis. Then we apply roboBayes
to monitor wavelet coefficients and finally define change sites in real space based on posterior
change probabilities.

1-D Multi-Resolution Wavelet Basis A wavelet basis is determined by the mother wavelet
ψ(s) and father wavelet φ(s) (also called a scaling function) that can be evaluated for a 1-D
location s. We choose the Haar wavelet basis, whose 1D mother function ψ(s) and scaling
function φ(s) are:

ψ(s) =

⎧⎪⎨
⎪⎩

1 if 1 � s < N
2 + 1,

−1 if N
2 + 1 � s < N + 1,

0 otherwise,
φ(s) =

{
1 if 0 � s < N + 1,

0 otherwise.
(2)

Haar wavelets can represent abrupt changes, like the edge of a building, and lend themselves to
convenient interpretation as each wavelet basis function is active on only a subset of the signal,
and is 0 elsewhere.

One can generate the entire family of basis functions by shifting and scaling these generating
functions. For any location s ∈ R, scale j ∈ {1, . . . , J }, and shift k ∈ {1, . . . , Kj }, where Kj =
N2−j :

ψjk(s) = 2−j/2ψ(2−j s − k),

φjk(s) = 2−j/2φ(2−j s − k).
(3)

A multiresolution discrete wavelet transform represents a signal as a combination of wavelet basis
functions of varying resolutions j . For a complete orthonormal basis {φJ1, ψjk : j ∈ {1, . . . , J },
k ∈ {1, . . . , Kj }}, an arbitrary signal Y (s) can be represented as

Y (s) = cφJ1(s) +
J∑

j=1

Kj∑
k=1

djkψjk(s). (4)

The coefficients c and djk can be computed for Y (s) using the discrete wavelet transform (DWT;
Mallat, 1989). Mallat’s pyramid algorithm makes the DWT fast, on the order N logN (Lange
and Lange, 2017), and the original signal can be recovered exactly from the unique collection of
wavelet basis coefficients.
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Figure 4: 2D separable Haar basis functions (a) and their coefficients (b).

2D Multiresolution Analysis To extend the wavelet representation to two dimensions, the
scaling and wavelet basis functions are applied across both dimensions to produce a 2D scaling
function � and three mother wavelets in the horizontal (�H ), vertical (�V ), and diagonal (�D)
directions:

�(s) = �(s1, s2) = φ(s1)φ(s2),

�H(s) = �H(s1, s2) = φ(s1)ψ(s2),

�V (s) = �V (s1, s2) = ψ(s1)φ(s2),

�D(s) = �D(s1, s2) = ψ(s1)ψ(s2).

(5)

The shifting and scaling of these functions follows from the 1D equations. For a scale of j and
shift of k = [k1, k2],

�jk(s) = 2−jφ(2−j s1 − k1)φ(2−j s2 − k2), (6)

and similarly for the mother wavelets. An arbitrary 2D spatial process Y (s) can be represented
as

Y (s) = c�(s) + ∑J
j=1

∑Kj

k1

∑Kj

k2

∑
m∈{H,V,D} d

m
jk�

m
jk(s), (7)

where � is the scaling function, �m
jk is the transformed mother wavelet, c is the scaling coefficient,

and dm
jk are the wavelet coefficients such that j indexes the decomposition level, k indexes the

shift in location, and m indexes the direction type (horizontal, vertical, and diagonal). The 2D
separable Haar mother and scaling functions are visualized in Figure 4 and their expressions are
available in the supplementary material.

To connect with (1) and streamline notation, let y = (y1, . . . , yn)
T be the vector of wavelet

coefficients c and dm
jk and let B1(s), . . . , Bn(s) be the collection of corresponding scaling (�) and

mother (�m
jk) functions. The n terms inherit support and resolution inferred as

As =
{
i;

⌈
s

Kj

⌉
= k

}
,

Qi =
{
s;

⌈
s

Kj

⌉
= k

}
,

(8)

where each i indexes a wavelet component that is uniquely defined by its scale, shift, and
direction {j, k, m}. As contains the indices of all basis functions that contribute to pixel s and
Qi identifies all real space pixels that contribute to the wavelet basis function with coefficient
yi . The equivalence

⌈
s

Kj

⌉
= k holds when the location s has a nonzero value in the wavelet basis

component.
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Image Representation The signal Yzt (s) can be decomposed based on (7) using the DWT for
each image to obtain the wavelet basis function coefficients yzti . Then y t i = [y1t i , . . . , ydti]T is the
vector time series for basis function i. We will monitor the multivariate time series {y1i , y2i , . . .},
which is assumed independent (over i) using the Bayesian change point detection algorithm
defined below. Change monitoring in wavelet space takes advantage of the spatial coherence of
changed areas, where pixel-by-pixel signal monitoring does not.

3.2 Online Changepoint Detection
Stable Period Model To assess different components for change, we monitor y t i . Suppose
that, given data up to time tmax , groups of data belong to consecutive states g̃ti = h ∈ {1, 2, . . .},
as in a Product Partition Model (Barry and Hartigan, 1993). The multi-dimensional data can
be modeled as

y t i |βhi, �hi, g̃ti = h ∼ Normal(xT
t βhi, �hi), (9)

where state-specific parameters βhi and �hi are k × d and d × d, respectively. To capture the
seasonal (third-order harmonic) and temporal (linear slope) trends, the covariates are taken to
be

xT
t =

[
1, sin

(
2πt

1 ∗ 365

)
, cos

(
2πt

1 ∗ 365

)
, . . . , sin

(
2πt

3 ∗ 365

)
, cos

(
2πt

3 ∗ 365

)
, t

]
.

The unknown state parameters θhi = [βhi, �hi] have prior distributions

βhi |�hi ∼ Matrix Normald,k(B0, �
−1
0 , �h),

�hi ∼ Inverse Wishart(V0, ν0),
(10)

with fixed hyperparameters η = [B0, �0,V0, ν0]. The dimensions of the hyperparameters are:
B0 is k × d, �0 is k × k, V0 is d × d, and ν0 is a scalar.

Bayesian Online Changepoint Detection (BOCPD) The number of models for every
possible segmentation of data into estimated states with an unknown number of changepoints
grows quickly as new data becomes available. Instead, Adams and MacKay (2007) propose
BOCPD to retain only data relevant for the most recent changepoint. Run length at time t is
defined as the number of time points that belong to the state g̃ti up to time t , i.e., the number
of time steps since the most recent change. We denote the run length for wavelet component i

as r̃t i :
r̃t i = r if g̃ti = g̃ti − r + 1 = g̃(t−r),i + 1. (11)

Then for each possible run length r̃t i = r, the state parameters for the final state are β
(r)
ti and

�
(r)
ti . We discuss converting run length from wavelet space to real space in Section 3.3.

The run length prior is

P(r̃ti |r̃(t−1),i) =
{

1 − λ if r̃t i = r̃(t−1),i + 1,

λ if r̃t i = 0.
(12)

Then the posterior run length distribution is

f (r̃ti |y(1:t)i) = f (r̃ti ,y(1:t)i)
f (y(1:t)i)

, (13)
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where the joint distribution undergoes recursive updates based on the predictive probability for
the current observation, the prior run length distribution, and the preceding joint distribution:

f (y(1:t),i , r̃ti) = ∑
r̃(t−1),i

f (yt i |y(t−r̃t i ):(t−1),i)f (r̃ti |r̃t−1)f (y1:(t−1),i , r(t−1),i). (14)

roboBayes Occasionally in monitoring data, a single anomalous observation occurs, but the
data before and after the anomaly are really in the same state. For example, a cloud, shadow,
or even vehicle may manifest as a signal different from the true land cover. To avoid flagging
an erroneous change triggered by these transient events, roboBayes introduces an outlier state
g̃ti = 0 where the prior outlier probability is f (g̃ti = 0) = pa and calculates the probability
distribution of the most recent outlier oti ∈ Ot = {∅, 1, . . . , r − 1} where f (oti = s) = pa with
oti = a if g̃(a−1),i = g̃(a+1),i and g̃ai = g0. Along with the run length and outlier prior distributions,
the full hierarchical model specification is

y t i |β(r)
ti , �

(r)
ti , oti �= ∅ ∼ Normal(xT

t β
(r)
ti , �

(r)
ti ), (15)

y t i |oti = ∅ ∼ Normal(μ0, �0), (16)
β

(r)
ti |r̃t i , oti ∼ Matrix Normal(B0, �0

−1, �
(r)
ti ), (17)

�
(r)
ti ∼ Inverse Wishart(V0, ν0). (18)

Then, with fixed parameters η, μ0, and �0, fixed probabilities λ and pa, data y1i , . . . , y t i and
x1, . . . , x t , it is possible to estimate the posterior distributions for r̃t i and oti . An approximation
removes outliers based on a threshold as the algorithm runs.

It is recommended to generate level (j) and type (m) specific prior hyperparameters η based
on linear models of the wavelet coefficients from past observations of the region of interest during
a stable period. Similarly, the values governing the outlier distribution can be chosen based on
expert opinion or known outlier behavior. The run length increment probability λ can be chosen
based on the expected number of changes in space and time and outlier probability pa can be
chosen based on expected number of outliers.

3.3 Change Detection Based on Multiresolution Run Length Distributions
Next, we monitor the response using the roboBayes algorithm, which requires the covariates
X1:t = [xT

1 , . . . , xT
t ] and the tmax × d dimensional response yi for each wavelet coefficient. Then,

using level/type specific prior information and a recursively updating monitoring algorithm, it
produces a posterior distribution for the run length.

Denote the real space run length at time t and pixel location s as rts . The run length
distribution of pixel s will be defined below as a function of the run length distributions of all
coefficients r̃t i in As from (8). Since Haar wavelets are sparse, only a small fraction of them
affect a particular pixel location. For continuous bases like Daubechies wavelets, thresholding
can be applied to approximate the spatial range of each basis function. Suppose we define the
probability of recent change for a pixel as the probability that the contribution of any of its
wavelet components have changed in the last L observations:

P(rts � L) = 1 − P(rts > L) = 1 −
∏
i∈As

{1 − P(r̃ti � L)} . (19)

Without data, P(r̃ti � L) = (1 − λ)L based on the prior run length distribution. Conditioning
(19) on the data, the posterior run length distribution (13) determines the right-hand-side of the
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equation. This definition is vulnerable to assigning high change probability to real space pixels
that have not changed, but share the same wavelet domain as pixels that have. Redundant
detection, or high probability that multiple components have changed, can confirm or even
localize real change. For example, change probability in a coarse resolution alone proposes too
large of an area and in fine resolutions is susceptible to creating many false positive sites.
Probable change in both is good evidence of real change in the local area and is robust to
scattered false positives.

If c is the number of components necessary to declare change in real space, change condi-
tioned on c can be defined as the probability that the contribution of at least c components have
changed in the last L observations. Then (19) is the case where c = 1. Extending the concept
in (19) to c = 2 components:

P(rts � L|c = 2) = 1 −
∏
i∈As

P(r̃ti � L) −
∑
i∈As

⎧⎨
⎩P(r̃ti � L)

∏
i′∈As\i

[
1 − P(r̃ti′ � L)

]⎫⎬⎭ , (20)

where A\i is the set As , excluding i. The number c should be chosen such that real change is
probable in at least c components and less than c probable components comprise superfluous site
area/FPs. To create change pixels, we threshold the pixel-wise probabilities of recent change:

Ct(s) = I {P(rst � L|c) > τ }. (21)

When combining wavelet space run lengths to form real space run lengths, the number of com-
ponents c and change threshold τ must be chosen a priori. The change threshold applies to the
real-space probabilities.

While defining and calculating change probability for each real space pixel is convenient
for interpretation, instead, we could threshold probabilities in wavelet space. From this, a count
of the total number of changed components affecting a pixel is recorded and then a second
threshold is applied on the count of changed components. Let C̃ti = I (P (r̃ti � L) � τp) be an
indicator of a change for coefficient i at time t . Then a pixel s is declared to have changed if at
least τc coefficients in its support have changed, i.e.,

Ct(s) = I

(∑
i∈As

C̃ti � τc

)
, (22)

where τp ∈ [0, 1] is the probability threshold and τc ∈ Z is the count threshold (both chosen a
priori). To transform changed pixels in real space to change sites, we group pixel-wise detections
in Ct based on connected pixels to produce a set of detected change polygons Pt = {Pt1, . . . , Ptn}
at each time point t .

3.4 Joint Run Length

Intuitively, given that change is spatially coherent, it is desirable that the prior change probability
for two pixels in close proximity is similar. We derive the induced joint run length distribution
of two pixels s and s ′ and show under what circumstances the recombination method in (19)
supports this intuition. Under the model, the prior probability of remaining in the same state is
P(rts > L) = p0, where p0 = (1−λ)L as the prior probability of no recent change. The definition
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of change in wavelet space induces a joint distribution among the pixels in real space. The prior
joint probability of no change for pixels s and s ′ is

P(rst > L, rs′t > L|c = 1) = p
|As |+|As′ |−|As∩As′ |
0 . (23)

The intersection term can be written

|As ∩ As′ | = 1 + 3
J∑

j=1

I
(⌈ s1

2j

⌉
=

⌈s1′

2j

⌉)
I

(⌈ s2

2j

⌉
=

⌈s2′

2j

⌉)
,

and
|As | = 3J + 1.

See the supplementary material for details. In the trivial case s = s ′, we recover the prior
probability p

|As |
0 . In the case where [s1, s2] and [s ′

1, s
′
2] share contributions from all wavelets, the

induced prior probability is the same. However, if two pixels share only the coarsest resolution
wavelet, the probability reduces to p

3(2J−1)
0 . The induced joint prior probability of two pixels

remaining in the same state is based on how many wavelet resolutions both pixels are present
in. In most cases, two spatially close pixels will contribute to multiple wavelet resolutions, so
they are more likely to change (or not change) as a pair. On the other hand, pixels that are
further apart belong to few of the same resolutions, so their change behavior is less related to
each other.

4 Computational Details
Initial prior hyperparameters are estimated for each decomposition level based on initial re-
gression fits of wavelet coefficient data for the region of interest. The roboBayes algorithm was
implemented using the R package roboBayes, which can be found on CRAN. Only wavelet ob-
servations whose average synthetic percentage q̃ti = 1

|Qi |
∑

Qi
qts is less than 20% are monitored

(based on contributing real space pixels with synthetic percentage qts). Similarly, in a pixel-wise
analysis, only observations with qts � 20% are monitored. The bulk of computation occurs at
the highest resolution wavelets, where quality is still very spatially localized. Still, there may
be more data removed during the wavelet analysis than in the pixel-wise analysis, which would
further increase the computational advantage at the cost of using all the information in the data.
The probability of recent change in the most recent L = 15 time points (after a 3 time point
delay to allow time for outlier recognition) is recorded. The choice of L is mainly to quantify
what qualifies as “recent”. Too short of an L may fail to flag real change; there may not be
enough evidence to clear the threshold. As L increases, it summarizes temporal information
more coarsely; flagging change in the past year, but with no more precise indication of when,
might not be very useful information in practice. The best L is one that is just long enough
to detect the change, but not longer. A pilot study of latency of change detection (time points
between the true change and when roboBayes might detect it) guided the choice of L. To main-
tain computational efficiency, only those run lengths less than the truncation limit of 35 or with
probability greater than 1e − 4 are retained.

5 Simulation
Here we apply the methods described in Section 3. The objectives of the simulation are to
compare detection metrics for classic roboBayes applied to single pixels versus MR roboBayes.
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Figure 5: Simulated data with five regions (cyan boxes) that change at time points indicated by
the number next to each region.

5.1 Data Generation

A 256×256×2 array response Yt = {Yt1, Yt2} (a 2-dimensional signal measured at s ∈ {1, . . . , N =
256}2 pixel locations) with a mean process μ = {μ1, μ2} was simulated at 80 time steps. Each
mean process is a realization of a GP with mean zero and with Matérn covariance with range
1 and differentiability parameter 0.1. Autocorrelation ρ = 0.4 is present among the time steps.
Five separate spatially coherent changes, indexed by k, were introduced at various time steps as
shown in Figure 5. The data generating model is

Ytz = μz + ∑5
k=1 βkI (t >= t∗k )�k + εt ,

εt ∼ Normal(0.4εt−1, σ
2IN),

(24)

where μz is an underlying mean process, βk = 1 ∀k ∈ {1, . . . , 5}, t∗ = [20, 30, 40, 50, 60]T , the
areas covered by �k are shown in Figure 5, σ = 0.5, and ε0 = 0.

5.2 Competing Methods and Metrics

We compare the spatial MR roboBayes algorithm to the pixel-wise implementation of roboBayes.
Pixel-wise roboBayes is applied to the 2-dimensional signal over time for each pixel in the region
and site grouping is done using thresholding, then associating connected regions to produce site
polygons. MR roboBayes is applied as described in Section 3. Change declaration strategies under
consideration vary based on subset (either levels 1–4 or 3–5 of a possible 8), type (recombining
run lengths versus count threshold), and the number of components that need to be flagged.
The first case considers components with levels 1–4 and combines them into real space run
lengths using the probability of recent change of one component. The second case considers the
probability of recent change of two components from levels 1–4. The third and fourth case are
the same, but are instead applied to levels 3–5. The remaining cases threshold each wavelet
component based on the probability of change exceeding τp to achieve a real space count of
changed components, then threshold that count on τc = 1, . . . , 6. The count strategy is applied
to the same sets as described above.

The prior values for both algorithms are determined based on MLE estimates of the param-
eters for fits of a random sample of the simulated data during a stable period, with the exception
of setting �0 = 0.1 ∗ �̂. A search window of L = 30 was used. The metrics to compare the two
methods are the precision, recall, F1 score, and latency applied with respect to sites. The first
step to evaluate the metrics is to associate detected change with annotated sites.
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Site Association Let At = {At1, . . . , Atn} be the set of true annotation polygons at time t .
Recall Pt = {Pt1, . . . , Ptn} is the set of detected polygons at time t . The first attempt to asso-
ciate detected to annotated polygons uses the intersection over union (IoU), or Jaccard index
(Arbelaez et al., 2010; van den Burg and Williams, 2020), for each pair of polygons At and Pt :

IoU(At, Pt) = At ∩ Pt

At ∪ Pt

. (25)

Two site polygons are associated if their IoU is greater than the association threshold τIoU = 0.2:
IoU(At, Pt ) � τIoU . Using this metric, a single detected polygon that covers two sites can be
inadvertently omitted because the intersection compared to the union of either site may fail to
meet the threshold, i.e., under-segmentation. However, in the context of a broad area search, it
is desirable to count such a detection as a success, leaving further refinement to more precise
characterization methods down the line.

Therefore, we also match sites based on the proportion of the annotated polygon covered
by the detected polygon using the Intersection over Truth (IoT):

IoT (At , Pt ) = At ∩ Pt

Area(At)
. (26)

A TP is recorded for each At such that IoT (At, Pt ) � τIoT = 0.5.

Metrics If a true change occurred in that recent time period, the detection is a true positive
(TP). If no real change occurred in the preceding period, the detection is a false positive (FP).
If the recent change probability does not exceed τ within L = 15 time points of a true change, a
false negative (FN) is recorded. Precision, recall, and F1 score (Rijsbergen, 1979) are calculated
from the TP, FN, and FP values over all the pixels.

Precision = T P

T P + FP
,

Recall = T P

T P + FN
,

F1 = 2
PR

P + R
.

Latency is calculated only for TP detections and is the difference between the first time the
probability of recent change exceeds τ and the time of true change.

5.3 Simulation Results
Table 1 records the metrics for roboBayes and MR roboBayes. Pixel-wise roboBayes has poor
precision, recall, and F1. The detections for an illustrative example in Figure 6 show that the
poor recall for pixel-wise roboBayes stems mainly from oversegmentation, or the breaking up
of the detection polygon into many smaller polygons. In the context of a broad area search,
this makes it challenging to identify and query coherent sites for further examination. Precision
suffers substantially from many of these small sites within true annotations being counted as
FPs. F1 score is better for MR roboBayes than pixel-wise roboBayes. Latency for MR roboBayes
is fairly short. High latency likely contributes to the difference in recall between pixelwise and
MR roboBayes; by the time pixel-wise roboBayes would have been able to detect the change,
the search period is over.
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Table 1: Metrics for 100 simulations given as mean (standard error) comparing roboBayes with
MR roboBayes. MR roboBayes, c = 1 and c = 2 refer to the methods that calculate run length
based on the probability of recent change in 1 and 2 components, respectively. MR roboBayes
subset applies methods to run lengths based on only levels 3, 4, and 5. MR roboBayes count
uses a threshold on the number of wavelet components to declare change sites.

Precision Recall F1 Latency

roboBayes 0.00 (0.00e+00) 0.00 (0.00e+00) 0.00 (0.00e+00) –
MR roboBayes, c=1 0.03 (1.80e-03) 0.89 (1.00e-02) 0.06 (3.22e-03) 3.79 (4.50e-02)
MR roboBayes, c=2 0.02 (6.39e-04) 0.77 (9.59e-03) 0.04 (1.21e-03) 4.35 (1.34e-01)
MR roboBayes subset,
c=1

0.88 (1.97e-02) 1.00 (0.00e+00) 0.92 (1.40e-02) 4.06 (4.22e-02)

MR roboBayes subset,
c=2

0.89 (2.12e-02) 1.00 (2.00e-03) 0.92 (1.68e-02) 4.77 (1.21e-01)

MR roboBayes count1 0.03 (1.78e-03) 0.89 (1.00e-02) 0.05 (3.19e-03) 3.81 (5.01e-02)
MR roboBayes count2 0.02 (6.52e-04) 0.77 (9.73e-03) 0.04 (1.24e-03) 4.40 (1.43e-01)
MR roboBayes count3 0.01 (5.42e-04) 0.46 (1.37e-02) 0.03 (1.04e-03) 6.25 (3.36e-01)
MR roboBayes count4 0.00 (3.23e-04) 0.02 (5.45e-03) 0.00 (6.06e-04) 21.60 (7.16e-01)
MR roboBayes count5 0.00 (0.00e+00) 0.00 (0.00e+00) 0.00 (0.00e+00) –
MR roboBayes count6 0.00 (0.00e+00) 0.00 (0.00e+00) 0.00 (0.00e+00) –
MR roboBayes count1
subset

0.88 (1.97e-02) 1.00 (0.00e+00) 0.92 (1.40e-02) 4.08 (4.86e-02)

MR roboBayes count2
subset

0.89 (2.12e-02) 1.00 (2.00e-03) 0.92 (1.70e-02) 4.81 (1.26e-01)

MR roboBayes count3
subset

0.06 (4.01e-03) 0.67 (1.74e-02) 0.10 (6.16e-03) 6.02 (2.21e-01)

MR roboBayes count4
subset

0.04 (2.06e-03) 0.40 (1.24e-02) 0.07 (3.36e-03) 5.34 (3.03e-01)

MR roboBayes count5
subset

0.79 (3.22e-02) 0.26 (9.38e-03) 0.36 (1.22e-02) 4.17 (3.16e-01)

MR roboBayes count6
subset

0.00 (0.00e+00) 0.00 (0.00e+00) 0.00 (0.00e+00) –

Within the MR roboBayes variants, metrics are sensitive to the subset of components that
are examined. The subset that excludes levels 1 and 2 shows superior performance to the more
inclusive set of components. Applying the run length conversion requiring recent change in at
least two components to only the coarse subset (levels 3–5) of components produces the best
precision, recall, and F1 score. The latency is higher than some of the alternatives, but is still
competitive.

6 Construction Broad Area Search
In this section, we analyze the Jacksonville and Dubai construction data described in Section 2
using pixel-wise roboBayes and MR roboBayes. The response Yt containing the signals is ob-
served at each time t . We model Yt using the state distribution in (9) about a third-order
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Figure 6: Site polygons for roboBayes and MR roboBayes on one signal from the simulated data.

seasonal model and calculate posterior run lengths using each algorithm. In a true monitoring
scenario, historical data would be used to estimate prior hyperparameters. In this case, there
are only 4 years of data and few change sites occurring near the end of the period, making
temporal splitting of the data problematic. Instead, priors are calculated for each region based
on regression fits to data in that region over the entire time period. The hyperparameters B0, V0,
ν0, and �0 are estimated based on the distribution of the regression parameter estimates. The
component of �0 = diag(�̂) governing the inverse variance of the linear trend is set to 100 to
limit its possible magnitude. When the estimated parameters deliver poor performance, further
adjusted settings are considered (any adjustments are specified in the following subsections).
The prior state change probability is set to λ = 1e − 8, the search window is set to L = 30, and
the other parameters are set to the defaults in roboBayes.

The sites under investigation are expected to be at least 9000 m2, so the data is aggregated
to 24 m for pixel-wise analysis of both regions. Similarly, the lowest resolution wavelets are not
monitored in the multiresolution approach; levels 3 to 7 (24 × 24 m2 to 384 × 384 m2) are moni-
tored. Small sites less than 9000 m2 in area are filtered out for both methods. For MR roboBayes,
only the horizontal and vertical direction wavelets are monitored because they (or their com-
bination, depending on the image orientation) are interpretable as the edges of buildings. The
diagonal components do not add much new information, so they are not monitored, reducing
monitoring computation by one third. Based on the simulation result performance and the rela-
tive ease of tuning with counts (after the monitoring computation) compared to pre-monitoring
tuning parameters, the count threshold approach is chosen for MR roboBayes.

Since this method is intended as an initial step that scans an area for change, identifying
sites for further inspection, measured detections may include change unrelated to construction.
The available annotations in Figures 1 and 2 are construction-specific; real land cover change
exists in other parts of the image. Recall that only the yellow annotations indicate that the
entire construction activity occurred during the period of data availability. Failing to detect a
green annotation is not necessarily a false negative.
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Figure 7: Detected change sites in Jacksonville for (a) pixel-wise roboBayes and (b) MR
roboBayes with count threshold 9.

6.1 Jacksonville
Pixel-wise roboBayes was run for several sets of prior hyperparameters and the one with the
best performance (captured all the known TP sites) inflates the estimated V̂ 0 by a factor of 2
and sets ν0 = 30 (the estimated parameters resulted in over detection). MR roboBayes was run
using the estimated hyperparameters from the region. For a single update, MR roboBayes takes
less than three quarters of the time that pixel-wise roboBayes does (a reduction from 27 to 19
seconds) due to the smaller number of monitoring processes.

A summary of all change sites detected over the entire Jacksonville region from 2018-01-
01 to 2022-03-15 for both pixel-wise roboBayes and MR roboBayes are shown in Figure 7.
Change sites for MR roboBayes were determined based on a count threshold of 9, which was the
highest count threshold that captured all of the available annotated construction events. Many
additional, non-annotated events are detected by both algorithms. These sites are either too
small or contain changes of a different type than those in the “truth” set. Pixel-wise roboBayes
is particularly susceptible to FPs over water. MR roboBayes captures compact change sites
better than long, skinny ones like the road near the bottom of the image.

The evolution of change detection metrics for a construction site over time is shown in
Figure 8. The site is undisturbed at 2019-07-04. In 2019-08-13, after site clearing, the pixel-
wise change proposal appears oversegmented while the site proposed by MR roboBayes is more
cohesive. On 2019-10-12, as construction progresses, both methods produce a strong change
signal for the entire site. As activity in the rest of the site has settled down in 2020-01-30, both
methods easily identify the completion of the building and distinguish it from its surroundings.

6.2 Dubai
In Dubai, only the red band was monitored. Pixel-wise roboBayes was run with settings ν0 = 60,
an inflated variance V0 = 10 ∗ V̂ , and a search period of 15 time points. MR roboBayes was run
with estimated prior parameters except for setting ν0 = 50. Settings were chosen to achieve
similar overall TP detection performance.
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Figure 8: Change detection evolution for construction in (left) Jacksonville and (right) Dubai
for pixel-wise (p-w) and MR roboBayes.

Figure 9: Detected change sites in Dubai for (a) pixel-wise roboBayes and (b) MR roboBayes
with count threshold 7.

All change sites detected in Dubai from 2018-01-01 to 2022-04-15 for both pixel-wise
roboBayes and MR roboBayes are shown in Figure 7. At these settings, MR roboBayes is more
robust to dune shifting changes than the pixel-wise algorithm, but struggles to detect all of the
annotated construction sites. MR roboBayes achieves similar detection performance using only
two thirds of the monitoring runs by omitting diagonal terms.

Change detection probabilities and counts for a subset of the region are shown in Figure 8.
The sites are undisturbed at 2019-08-23. In 2019-09-27, noticeable change is reflected in spotty
pixel-wise change proposals and relatively low magnitude, but cohesive, MR roboBayes change
proposals. On 2019-10-02, both methods produce a strong change signal for the changed areas.
On 2019-11-01, both methods capture recent change in several sites, but pixel-wise roboBayes
marks several detections in the desert as well. With an appropriate threshold, MR roboBayes
may not detect these.
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7 Discussion
Monitoring large geographical regions for change must quickly identify cohesive candidate sites
while remaining computationally feasible. The pixel-wise roboBayes algorithm, like other pixel-
based methods, fails to take into account the spatial patterns that exist in change sites. This
leads to estimated change regions with fragmented sites that underestimate the spatial range
of real change and introduce many false positive detections. We propose MR roboBayes to
introduce a multiresolution spatial component to the application of roboBayes while preserving
the opportunity for distributed computing. Compared to a pixel-wise analysis based on the same
change detection algorithm, MR roboBayes generates more cohesive sites that translate into
better detection metrics. In a simulation study, we show that the sites detected by MR roboBayes
better capture real change sites in the context of broad area search. Further, the simulations
show that considering detections in multiple resolutions, whether that is through run length
recombination or a count of flagged wavelets components, can greatly improve precision without
hurting recall and leaving latency similar. We apply MR roboBayes to regions in Jacksonville
and Dubai to detect heavy construction sites.

The results from MR roboBayes are sensitive to the set of wavelet basis functions that are
monitored. Including coarse resolutions can lead to very large proposal areas, so care must be
taken in choosing the coarsest component. Further, in this application, the wavelet coefficient
signals can be somewhat noisier than in pixel-wise signals, hiding some types of change. However,
MR roboBayes behaves fairly well with empirical hyperparameters and the count threshold allows
for post-hoc tuning, making it more wieldy than pixel-wise roboBayes. It has a niche application
as a search mechanism that prioritizes presenting cohesive sites where pixel-based methods give
delineation as a by-product. Where pixel-based methods might require post-processing to form
larger connected sites, MR roboBayes could benefit from site shape refinement. Refinement based
on changed fine resolutions or nonzero fine resolutions (edges) are opportunities for presenting
more precise change sites.

In this application, Haar wavelets are a natural choice to represent edges of artificial struc-
tures. Construction is a special case where we expect rectilinear change, as are various anthro-
pogenic land cover changes like cultivation. Land cover changes like deforestation would not
necessarily be rectilinear, so other wavelet basis functions, or even other decompositions en-
tirely, may prove to be appropriate inputs for the roboBayes algorithm. Further investigation
into translating wavelet basis change into real space change is warranted, using rules like the
distribution of change in multiple components to define change.

Supplementary Material
The construction of 2D Haar wavelets, a calculation for induced prior change probability, and
sensitivity results are available in the Supplementary Material. The Jacksonville and Dubai
dataset is proprietary, but code to generate and analyze a simulated dataset is included to
demonstrate the algorithm.
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