
Journal of Data Science 20 (4), 461–474 DOI: 10.6339/22-JDS1071
October 2022 Statistical Data Science

High-Dimensional Nonlinear Spatio-Temporal Filtering by
Compressing Hierarchical Sparse Cholesky Factors

Anirban Chakraborty
1

and Matthias Katzfuss
1,∗

1Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX 77843, USA

Abstract

Spatio-temporal filtering is a common and challenging task in many environmental applications,
where the evolution is often nonlinear and the dimension of the spatial state may be very high.
We propose a scalable filtering approach based on a hierarchical sparse Cholesky representation
of the filtering covariance matrix. At each time point, we compress the sparse Cholesky factor
into a dense matrix with a small number of columns. After applying the evolution to each of these
columns, we decompress to obtain a hierarchical sparse Cholesky factor of the forecast covariance,
which can then be updated based on newly available data. We illustrate the Cholesky evolution
via an equivalent representation in terms of spatial basis functions. We also demonstrate the
advantage of our method in numerical comparisons, including using a high-dimensional and
nonlinear Lorenz model.
Keywords basis functions; data assimilation; hierarchical Vecchia approximation; Lorenz
model; unscented Kalman filter

1 Introduction
State-space models (SSM) represent observed systems that evolve over time. We can think of
SSMs as a combination of two mathematical equations: one equation describes the evolution of
the system state over time, while the other specifies the relationship between the state and the
observations (e.g., West and Harrison, 1997; Shumway and Stoffer, 2000). Here, we concern our-
selves with spatio-temporal SSMs describing the evolution of a discretized spatial field over time.
These SSMs have seen widespread implementation in various domains, including geosciences and
biomedical applications. Filtering or data assimilation (e.g., Nychka and Anderson, 2010) refers
to sequentially inferring the posterior distribution of the state distribution at a point in time
given all available data up to that time point. Filtering can be challenging for spatio-temporal
SSMs, as they are often nonlinear and high-dimensional.

There is an enormous literature on filtering for SSMs in low to moderate dimensions. For
linear Gaussian SSMs, the Kalman filter (Kalman, 1960) computes the Gaussian filtering dis-
tributions in closed form. For nonlinear SSMs, the extended Kalman filter (EKF; Grewal and
Andrews, 1993, Ch. 5) relies on a linearization of the evolution operator. In contrast, the un-
scented Kalman filter (UKF; Wan and Van Der Merwe, 2000) applies the potentially nonlinear
evolution to so-called sigma points computed based on singular value or Cholesky decomposi-
tion of the filtering covariance matrix. Several authors (e.g., Wan and Van Der Merwe, 2000;
St-Pierre and Gingras, 2004; Khazraj et al., 2016) have shown that in many situations UKF per-

∗Corresponding author. Email: katzfuss@gmail.com.

© 2022 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received August 1, 2022; Accepted September 28, 2022

mailto:katzfuss@gmail.com
https://creativecommons.org/licenses/by/4.0/

462 Chakraborty, A. and Katzfuss, M.

forms better than EKF. However, EKF, UKF, and many extensions (Arasaratnam and Haykin,
2009; Wang et al., 2013; Meng et al., 2018; Fang et al., 2020) rely on inversion or decomposition
of the covariance matrices involved in the filtering distributions. Since these operations scale
cubically in the dimension of the matrix, it becomes increasingly infeasible when the system
is high-dimensional. Particle filters (e.g., Gordon et al., 1993; Liu and Chen, 1998; Pitt and
Shephard, 1999) are a class of sequential Monte Carlo methods that rely on propagating sam-
ples or particles via the evolution, which are then re-weighted according to the observations at
each time point. While such methods can in principle obtain accurate filtering distributions in
almost any SSMs, the required number of particles to do so increases exponentially with the
state dimension.

For filtering in high-dimensional nonlinear spatio-temporal SSMs, the extended Kalman
Vecchia Laplace (EKVL) filter (Jurek and Katzfuss, 2022) combines the EKF with the Vecchia
approximation (e.g., Vecchia, 1988; Stein et al., 2004; Datta et al., 2016; Guinness, 2018; Katz-
fuss and Guinness, 2021; Katzfuss et al., 2020; Schäfer et al., 2021) for scalability and with a
Laplace approximation for handling non-Gaussian observations. However, this approach relies
on a linearization of the evolution like the EKF, which can be inaccurate and computationally
expensive. Ensemble Kalman filter (EnKF) methods propagate an ensemble of particles similar
to particle filters, but they linearly shift the ensemble members to avoid weight collapse in the
update step. This requires estimating the forecast covariance matrix from the often small en-
semble, which usually relies on spatial localization or tapering. As a result, long-range forecast
correlation is often ignored, and the EnKF can be less accurate than the EKVL filter (Jurek and
Katzfuss, 2022). Chandrasekar et al. (2008) introduced a reduced-rank UKF (RRUKF) that
only propagates a small number of sigma points that are then used to estimate the forecast
covariance matrix. This can lead to a severe loss in accuracy, and the method is only applicable
under additive system noise to avoid singularity of the forecast covariance matrix.

Here we propose a novel approach by combining the ideas of the UKF and hierarchical Vec-
chia (HV) approximation used in Jurek and Katzfuss (2022). After computing an HV Cholesky
factor of the initial covariance matrix, at every time point we compress the sparse Cholesky fac-
tor to preserve its non-zero entries into a tall and skinny matrix with a small number of columns.
Next, we directly apply the equation of system dynamics on the columns of the aforementioned
rectangular matrix, similar to sigma points in the UKF, and store all the transformed columns
in a new rectangular matrix. Finally, we decompress the new rectangular matrix back into a
sparse square matrix, which we treat as the Cholesky factor of the forecast covariance matrix.
We illustrate that these operations can be interpreted as operating on spatial basis functions and
can also be justified from that perspective. We demonstrate the advantage of our methods using
numerical comparisons. Our method is highly scalable, as its matrix operations rely on sparse
matrices and because the (often very expensive) evolution operator only has to be evaluated a
small number of times at each time point; the evolution can be viewed as a black box and no
linearization is required.

The remainder of this article is organized as follows. In Section 2, we review the HV ap-
proximation and we propose a specific ordering and grouping of the spatial grid locations. In
Section 3, we introduce our filtering scheme. In Section 4, we demonstrate the accuracy of our
method in a comparison on Lorenz data. Section 5 concludes.

Spatio-Temporal Filtering by Compressing Sparse Cholesky Factors 463

Figure 1: Illustration of a HV assumption for a vector x split into seven subsets: (a) Dependence
structure between the subsets or nodes visualized using a directed acyclic graph (DAG) arranged
in an upside-down tree. Some arrows are shown using solid lines to emphasize the tree structure.
(b) The corresponding block-sparsity pattern of the approximate Cholesky factor, with nonzero
entries in each column in the same color as the corresponding node in the DAG.

2 Hierarchical Vecchia (HV) Approximation of a Spatial Field

2.1 Review of the HV Approximation

Consider a Gaussian vector x = (x1, x2, . . . , xn)
� with covariance matrix �, corresponding to

a spatial process x(·) discretized on a spatial grid S = {s1, s2, . . . , sn}, with si ∈ D ⊂ R
d . The

hierarchical Vecchia (HV) approximation (Jurek and Katzfuss, 2022) can be used to approximate
the Cholesky factor of � by a sparse matrix L. We briefly review this approach here.

As described in more detail in Section 2.2, the entries of x are grouped into subsets Xi1,...,im ,
whose conditional dependence structure is assumed to be described by a tree-like directed acyclic
graph as illustrated in Figure 1a. Assuming an ordering of the Xi1,...,im by increasing number of
subscripts, this corresponds to a triangular block-sparsity pattern S illustrated in Figure 1b,
with Sij = 1 if xi is a descendant of xj in the DAG (i.e., they are on the same branch of the
tree), and Sij = 0 otherwise. For example, this means that Si1 = 1 for all i, because all nodes are
descendants of the stem node. We can approximate the Cholesky factor of � by simply applying
an incomplete Cholesky factorization of � that skips all operations on matrix elements not in
S: L = IC0(�, S). This operation only requires O(nR2) time, where R is the maximum number
of nonzero entries per row in S. Further, as this is equivalent to a Vecchia approximation with
appropriately chosen conditioning sets, the resulting L is the optimal approximate Cholesky
factor for this sparsity pattern, in the sense that it achieves the minimum Kullback-Leibler
divergence between Nn(0, �) and Nn(0, L̂L̂�) among all L̂ with sparsity pattern S (e.g., Katzfuss
and Guinness, 2021; Jurek and Katzfuss, 2022; Schäfer et al., 2021).

2.2 Hierarchical Partitioning of Spatial Locations
To arrange the elements of x in a hierarchical tree structure as in Figure 1a, we consider a
hierarchical partitioning of the associated spatial grid S, as illustrated in Figure 2. To do so,
we partition the spatial domain D into two halves and assign the r0 grid points closest to the
partition boundary to the first set X0. Next, we split each of the resulting two subregions in
half, selecting the r1 nearest not-yet-assigned points to each partition boundary as X1 and X2,
respectively. We continue the partitioning up until resolution M, where all remaining points (at

464 Chakraborty, A. and Katzfuss, M.

Figure 2: Hierarchical partitioning of n = 7 locations on a one-dimensional domain. At resolution
m = 0, we select the r0 = 1 middle point (in green) as X0 and put it first in the ordering. At
m = 1, we split the spatial region into two subregions, select r1 = 1 point in the center of each
of the two subregions and put them next in ordering. Continuing thusly for m = 1, 2, . . . , M, we
obtain an HV partitioning as illustrated in Figure 1, with M = 2 and rm = 1 for m = 0, 1, 2.

most rM per subregion) are assigned to sets Xi1,...,iM . Figure 3 illustrates that the HV approx-
imation based on this arrangement scheme can be highly accurate in some settings; often, it
is more accurate than an arrangement based on maximum-minimum-distance ordering of the
points suggested in Jurek and Katzfuss (2022).

Now consider the choice of tuning parameters M and r = (r0, r1, . . . , rM)�. First, we recom-
mend choosing rm such that rm points or knots are enough to capture (most of) the dependence
between the two subregions at resolution m; rm will typically increase with the dimension of the
considered spatial domain. Then, M has to be large enough such that all n grid points can be
assigned to a tree node without having to make rM too large; in other words, we choose M as the
smallest integer such that

∑M
m=0 2mrm ≈ n. Since this expression increases exponentially in M,

a small increase in M is often sufficient to accommodate a large increase in n. A more detailed
discussion of the choice of tuning parameters for a closely related spatial model can be found in
Katzfuss (2017, Sect. 2.5).

Castrillón-Candás et al. (2013, 2016) developed a hierarchical domain partitioning mecha-
nism to develop sparse basis representations of covariance matrices using interpolating points
within the unit hypercube, which is similar to our domain partitioning mechanism. However,
it is not clear if or how this framework can be extended to our nonlinear sequential filtering
setting.

3 Nonlinear Filtering based on Compressed Cholesky Factors

3.1 State-Space Models and Filtering

Consider a nonlinear non-Gaussian spatio-temporal state-space model (SSM) for discrete time
points t = 1, 2, . . .,

yti |xti ∼ gti(.|xti), i ∈ It (1)
xt = Et (xt−1), (2)

where yti is the ith observation at time point t , It ⊂ {1, . . . , n} is an index set that contains
all the spatial locations where we observe the process at time t , and xt is the n dimensional

Spatio-Temporal Filtering by Compressing Sparse Cholesky Factors 465

Figure 3: Basis-function representation of an HV approximation of an exponential covariance
� evaluated at n = 32 regularly spaced locations on a one-dimensional domain. From top
to bottom, the four panels correspond to resolutions m = 0, 1, 2, 3 of a hierarchical domain
partitioning with M = 4 resolutions, each with rm = 1 basis functions (in different colors) and
rm = 1 knots (grey vertical solid lines) per subregion (black vertical dashed lines). Each of the
basis functions is obtained by interpolating the entries of one of the columns of the HV Cholesky
factor L (see Figure 4a). In this setting, the HV approximation is exact (i.e., � = LL�).

unobserved state of interest consisting of a spatial field evaluated at n locations. We assume
that the initial state x0 of the above state-space model follows Nn(μ0|0, �0|0). The evolution
operator Et specifies how the process state evolves from one time point to the next. We assume
that the evolution is local, in that the process at location, say, s at time t depends mostly on
the process at locations close to s at time t − 1; in most applications, this assumption is at least
approximately satisfied as long as the time steps are short enough. The special case of linear
evolution can be described by an n × n matrix, Et (xt−1) = Etxt−1.

Filtering refers to computing the posterior distribution p(xt |y1:t), sequentially for t =
1, 2, At each time point, this requires two steps. The forecast step computes the forecast
distribution p(xt |y1:t−1) from the previous filtering distribution p(xt−1|y1:t−1) by applying the
evolution in (2): p(xt |y1:t−1) = ∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1. The update step then computes
the new filtering distribution at time t by updating the forecast distribution based on new data
yt :

p(xt |y1:t) = p(yt |xt)p(xt |y1:t−1)∫
p(yt |xt)p(xt |y1:t−1)dxt

. (3)

For linear Gaussian SSMs, the forecast and filtering distributions are Gaussian and can be
computed in closed form using the Kalman filter. For nonlinear and high-dimensional SSMs as

466 Chakraborty, A. and Katzfuss, M.

we consider here, the filtering distributions can generally not be computed exactly and hence
require approximations.

We will now describe the forecast and update steps for our proposed scalable filtering ap-
proach. At the initial time point t = 0, we obtain an HV approximation of �0|0, such that its
Cholesky factor has the sparsity pattern described in Section 2. Our filtering operations pre-
serve this hierarchical block-sparsity structure, meaning that the Cholesky factor of the filtering
and forecast covariance at every time point exhibits this sparsity. This ensures that the low
computational cost is maintained over time.

3.2 Forecast Step
Assume that the filtering distribution at time t −1 is xt−1|y1:t−1 ∼ Nn(μt−1, �t−1), where �t−1 =
Lt−1L�

t−1. The goal is to compute the forecast distribution xt |y1:t−1.
To motivate our forecast step, temporarily disregard the mean μt−1, and so x̃t−1 = Lt−1z

follows the filtering distribution, where the columns of Lt−1 can be viewed as spatial basis
functions (see Figure 3) and z ∼ Nn(0, In) is the vector of corresponding weights. We know
that x̃t = Et (x̃t−1) follows the desired forecast distribution. If the evolution were linear, then
x̃t = Et x̃t−1 = (EtLt−1)z = L̃tz, where the jth column of the new basis-function matrix L̃t is
obtained by applying the evolution matrix Et to the jth column of Lt−1. The UKF can be
viewed as an extension to nonlinear evolution, which is applied to so-called sigma points that
are also essentially columns of Lt−1. However, a limitation of both of these approaches is that
Lt−1 is an n × n matrix, and so the evolution must be applied n times; as applying the evolution
operator is often very computationally expensive, this is not feasible for large n.

To get around this limitation, assume now that Lt−1 exhibits a hierarchical block-sparsity
structure as in Section 2, and the basis functions represented by its columns at each resolution
have complementary support, as illustrated in Figure 3. Our idea is to combine basis functions
with complementary support into a single basis function or, equivalently, compressing the large
and sparse n × n matrix Lt−1 into a tall, skinny, and dense n × R matrix, say LC

t−1, where
R = ∑M

m=0 rm. To be precise, the compression proceeds sequentially across the columns, moving
each nonzero entry of the column to the leftmost zero position in the same row. This is illustrated
in Figure 4b, where n = 32 and R = 5.

We then apply the evolution operator Et separately to each of the R columns of LC
t−1, and

then decompress the resulting matrix back to an n×n matrix L̃t with the same sparsity pattern
as Lt , reversing the compression operation above. This means that we only need to apply the
evolution Et (as opposed to needing to linearize it), and we only have to do so R � n times.
While the compression incurs an approximation error near the partition boundaries, this error
can be small when the evolution is sufficiently local, as illustrated in Figures 5 and 6. Roughly
speaking, for low resolution m the basis functions are large in magnitude and range but there
are few partition boundaries; for large m, there are many boundaries but the basis functions
are small in magnitude and highly local, hence incurring relatively small error. We have seen
similar results in numerical experiments with different covariance models (e.g., Whittle) and
larger range parameters (not shown).

To summarize, we approximate the forecast distribution as

xt |y1:t−1 ∼ Nn(μ̃t , L̃t L̃�
t), (4)

where μ̃t = Et (μt−1), and L̃t = decompress(Et (LC
t−1)) is computed as described above. The cost

of our forecast step is essentially that of R evaluations of the evolution operator, which is highly

Spatio-Temporal Filtering by Compressing Sparse Cholesky Factors 467

Figure 4: Left: Sparse n×n Cholesky factor L of the exponential covariance matrix � mentioned
in Figure 3. Right: Compressed Cholesky factor LC of size n × R. Here, n = 32, M = 4, rm ≡ 1,
and hence R = ∑M

m=0 rm = 5.

Figure 5: For the 32 × 32 exponential covariance � = �t−1 on the unit interval also considered
in Figures 3–4: (a): A linear advection-diffusion evolution operator Et with advection parameter
0.01 and diffusion parameter 0.0001. (b)–(d): The forecast covariance �̃t obtained using three
different approaches based on �t−1 and Et . (b): Using exact evolution: �̃t = Et�t−1E�

t . (c):
Using our compression forecast: �̃t = L̃t L̃�

t with L̃t = decompress(Et (LC
t−1)), where the 32 × 5

LC
t−1 is shown in Figure 4b. (d): Using a reduced-rank unscented Kalman filter (RRUKF) with

rank 5. RRUKF is considerably less accurate than our approach.

application-specific but always much smaller than the n evolution evaluations in the standard
UKF.

3.3 Update Step

The forecast distribution in (4) can be viewed as the prior distribution at time t , and the goal of
the update step is to obtain the posterior or filtering distribution p(xt |y1:t) ∝ p(xt |y1:t−1)p(yt |xt)

based on new data yt . To do so, we use the Vecchia-Laplace approximation (Zilber and Katzfuss,

468 Chakraborty, A. and Katzfuss, M.

Figure 6: Basis-function representation of the Cholesky of the forecast covariance in the
setting of Figures 3–5: Exact Cholesky EtLt−1 in solid green and our compressed forecast
L̃t = decompress(Et (LC

t−1)) in dashed red.

2021) as in the update step of the EKVL filter (Jurek and Katzfuss, 2022), which is scalable
and preserves the Cholesky sparsity. We review this update step here.

The Laplace approximation is a second-order (i.e., Gaussian) approximation of the log-
posterior at its mode, which can be obtained using the Newton-Raphson algorithm. Starting
with an initial guess x(0)

t (e.g., x(0)
t = μ̃t), we update the state estimate as x(l+1)

t = h(x(l)
t) with

h(xt) = xt − [∂2

∂xtx′
t
log(p̂(yt |x1:t))]−1 ∂

∂xt
log(p̂(yt |x1:t))

= xt + W−1
xt

D−1
xt

(vxt
− xt), (5)

where Wxt
= [L̃t L̃�

t]−1 + D−1
xt

, vxt
= xt + Dxt

uxt
,

ui(xti) = 1{i∈It }
∂

∂xti
log(gti(yti |xti)), and uxt

= (u1(xt1), . . . , un(xtn))
�,

di(xti) = −1{i∈It }[∂2

∂x2
t i

log(gti(yti |xti))]−1, and D−1
xt

= diag(d1(xt1), . . . , dn(xtn)).

For Gaussian observation distributions, vxt
= yt and Dxt

do not depend on the current estimate
xt , and the Newton-Raphson procedure converges in a single iteration. For other observation
distributions, typically only a small number of iterations are required for this second-order
optimization method to converge such that x(l+1)

t ≈ x(l)
t . We then set the filtering distribution as

xt |y1:t ∼ Nn(μt , �t), (6)

Spatio-Temporal Filtering by Compressing Sparse Cholesky Factors 469

where μt = x(l+1)
t and �t = W−1

μt
= LtL�

t .
A crucial and unique property of the hierarchical Cholesky sparsity structure is that it is

preserved under inversion, and so L̃−1
t and Wxt

can be computed quickly. Further, the Cholesky
factor Lt of Wxt

also has the same sparsity structure as L̃t , and so this sparsity is preserved
throughout the update step. Our update step requires only O(nR2k) time, where k is the number
of Newton-Raphson iterations; we have k = 1 for Gaussian observation distributions and often
k � 10 otherwise.

4 Filtering for Lorenz Model

4.1 Comparison to EKVL

Lorenz models (e.g., Lorenz, 2005) are probably the most common testbed for data-assimilation
techniques (e.g., Ott et al., 2004) and represent realistic features of atmospheric evolution. We
consider a complex and high-dimensional model (Lorenz, 2005, Sect. 3) whose dynamics are
described by

∂
∂t

x̃i = 1
K2

∑K/2
l=−K/2

∑K/2
j=−K/2 −x̃i−2K−l x̃i−K−j + x̃i−K+j−l x̃i+K+j − x̃i + F, (7)

where x̃−i = x̃n−i to reflect that the model is defined on a circle. We set K = 35 and F = 10. The
evolution operator Et in our state-space model is obtained by solving (7) on a regular grid of
size n = 768 on a circle using a 4-th order Runge-Kutta scheme with thirty internal steps of size
dt = 0.0005, and setting xi = bx̃i with b = 0.2, following Jurek and Katzfuss (2022). Our method
scales quasi-linearly in n, and so it can in principle be applied to much higher dimensions. We
chose n = 768 here for ease of comparison to an existing method that can be expensive for
large n, but brief experiments with our method in higher dimensions (e.g., n = 1,280) were also
successful (not shown).

At every time point t , we randomly select |It | = 77 (i.e., roughly 10%) of the n grid locations
to be observed. We take the initial parameters μ0|0 and �0|0 as the sample mean and covariance
matrix from a very long run of the Lorenz model (7). For t = 1, . . . , T = 40, we simulate five
datasets from (2) with the nonlinear evolution operator Et as (7). We consider two simulation
settings for the data model (1), one with Gaussian observations with variance τ 2 = 0.1 and one
with Gamma observations, yti |xti ∼ G(2, 2 exp(−xti)).

We compare our proposed compressed HV (CHV) filter to the EKVL filter (Jurek and
Katzfuss, 2022), whose forecast step relies on approximating the evolution function Et by its
first-order Taylor approximation, Et ≈ ∂Et (xt−1)

∂xt−1

∣
∣
xt−1=μt−1

, where μt−1 is the filtering mean at time
t − 1. The EKVL filter is a natural competitor in our setting, as it strongly outperformed the
EnKF on the Lorenz (2005, Sect. 3) model (see Jurek and Katzfuss, 2022), and it has the same
update step as our CHV, allowing us to study the impact of our proposed compressed-Cholesky
forecast step. For both competitors, we use the same hierarchical domain partitioning shown in
Figure 7 with M = 7, r0 = 6, and rm = 3 for m = 1, . . . , M, and hence R = 27.

An example of a Lorenz trajectory and the corresponding CHV filtering result is shown in
Figure 8. The CHV filter tracks the true state well.

Figure 9 shows the comparison results in terms of the log-score (e.g., Gneiting and Katzfuss,
2014) given by the average log filtering density evaluated at the true state vector, logNn(xt |μt ,

�t). The log-score for our CHV method is stable over time, whereas the EKVL becomes in-
creasingly inaccurate as time progresses. In addition, our method does not require linearization

470 Chakraborty, A. and Katzfuss, M.

Figure 7: Hierarchical multi-resolution decomposition of n = 768 locations on a circle with
M = 7, r0 = 6, and rm = 3 for 1 � m � M. Lines denote domain partition boundaries, with
decreasing line width for increasing resolution. For example, the first two splits are denoted by
the horizontal green and vertical red lines, respectively. Because of the density of the locations,
the points representing them (in black) seemingly blend together into a solid circle line.

Figure 8: For time points t = 1, 3, 30, example of true Lorenz states xt (green) and the corre-
sponding CHV filtering means μt .

of the evolution model and hence is significantly faster; CHV completed in less than 8 minutes
for T = 40 time points, which is only approximately 20% of the time required by the EKVL
filter.

Spatio-Temporal Filtering by Compressing Sparse Cholesky Factors 471

Figure 9: For the Lorenz setting, accuracy comparison in terms of log-scores (lower is better)
of the filtering distributions of our CHV filter and the existing EKVL filter, for Gaussian (left)
and Gamma (right) observation distributions in (1).

4.2 Comparison to RRUKF
We also considered a comparison to the UKF (Wan and Van Der Merwe, 2000), but this approach
is not feasible for large n, because it requires roughly 2n evaluations of the evolution operator
at each time point and requires O(n3) time for the update step. The RRUKF (Chandrasekar
et al., 2008) is more comparable in cost to our CHV approach if the RRUKF rank is equal to
the R used in our CHV. As this RRUKF is only applicable to SSMs with additive innovation
error, we carry out a separate comparison to the RRUKF in this setting here.

We consider the same setting as in Section 4.1, except that the evolution equation is now
given by,

xt = Et (xt−1) = L(xt−1) + wt , (8)

where L denotes the Lorenz model (7), and we assume wt ∼ Nn(0, τ 2In) with τ 2 = 10−8.
We apply our CHV approach using the same partitioning scheme as in Section 4.1, and

compare it to RRUKF with rank 76, which is much larger than the R used for CHV. As shown
in Figure 10, our CHV method is much more accurate than RRUKF, as may have been expected
from the poor accuracy of RRUKF in Figure 5d. In addition, CHV is 8 times faster than the
RRUKF, which makes our method a great filtering tool.

5 Conclusion
We proposed a scalable filtering algorithm for nonlinear and non-Gaussian state-space models
using a novel forecast technique relying on compression and decompression of Cholesky factors
with a hierarchical sparsity structure. Our algorithm preserves the sparsity structure of the
Cholesky factor over time, resulting in fast computation and low memory requirements. No
linearization of the evolution operator is required, as the operator is simply applied to a small
number of vectors that can be viewed as basis functions representing spatial structure at various
resolutions. We showed that the filter can be considerably more accurate than state-of-the-art
competitors on the popular Lorenz model.

472 Chakraborty, A. and Katzfuss, M.

Figure 10: For the Lorenz setting with additive model error, accuracy comparison in terms of
log-scores (lower is better) of the filtering distributions of our CHV filter and the RRUKF filter,
for Gaussian (left) and Gamma (right) observation distributions in (1).

While we focused on spatio-temporal state-space models, our method can also be applied in
more general settings where the assumption of locality of the underlying dynamics discussed in
Section 3.2 is reasonable and where a hierarchical partitioning of the input space as discussed in
Section 2.1 is feasible, for example based on a correlation distance (Kang and Katzfuss, 2021).

Supplementary Material
R code to reproduce our results and figures is available at https://github.com/katzfuss-group/
CHVfilter.

Funding

MK was partially supported by National Science Foundation (NSF) Grants DMS–1654083 and
DMS–1953005, and by the National Aeronautics and Space Administration (80NM0018F0527).

References
Arasaratnam I, Haykin S (2009). Cubature Kalman filters. IEEE Transactions on Automatic

Control, 54(6): 1254–1269.
Castrillón-Candás JE, Genton MG, Yokota R (2016). Multi-level restricted maximum likelihood

covariance estimation and kriging for large non-gridded spatial datasets. Spatial Statistics, 18:
105–124. Spatial Statistics Avignon: Emerging Patterns.

Castrillón-Candás JE, Li J, Eijkhout V (2013). A discrete adapted hierarchical basis solver for
radial basis function interpolation. BIT, 53(1): 57–86.

Chandrasekar J, Kim IS, Bernstein DS, Ridley AJ (2008). Reduced-rank unscented Kalman
filtering using Cholesky-based decomposition. In: 2008 American Control Conference,
1274–1279.

https://github.com/katzfuss-group/CHVfilter
https://github.com/katzfuss-group/CHVfilter

Spatio-Temporal Filtering by Compressing Sparse Cholesky Factors 473

Datta A, Banerjee S, Finley AO, Gelfand AE (2016). Hierarchical nearest-neighbor Gaussian
process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, 111(514): 800–812.

Fang C, Liu J, Ye S, Zhang J (2020). The geometric unscented Kalman filter. arXiv preprint:
https://arxiv.org/abs/2009.13079.

Gneiting T, Katzfuss M (2014). Probabilistic forecasting. Annual Review of Statistics and Its
Application, 1(1): 125–151.

Gordon N, Salmond D, Smith A (1993). Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings. Part F. Radar and Signal Processing, 140(2): 107–113.

Grewal MS, Andrews AP (1993). Kalman Filtering: Theory and Applications. Prentice Hall.
Guinness J (2018). Permutation and grouping methods for sharpening Gaussian process approx-

imations. Technometrics, 60(4): 415–429.
Jurek M, Katzfuss M (2022). Hierarchical sparse Cholesky decomposition with applications to

high-dimensional spatio-temporal filtering. Statistics and Computing, 32: 15.
Kalman R (1960). A new approach to linear filtering and prediction problems. Journal of Basic

Engineering, 82(1): 35–45.
Kang M, Katzfuss M (2021). Correlation-based sparse inverse Cholesky factorization for fast

Gaussian-process inference. arXiv preprint: https://arxiv.org/abs/2112.14591.
Katzfuss M (2017). A multi-resolution approximation for massive spatial datasets. Journal of

the American Statistical Association, 112(517): 201–214.
Katzfuss M, Guinness J (2021). A general framework for Vecchia approximations of Gaussian

processes. Statistical Science, 36(1): 124–141.
Katzfuss M, Guinness J, Gong W, Zilber D (2020). Vecchia approximations of Gaussian-process

predictions. Journal of Agricultural, Biological, and Environmental Statistics, 25(3): 383–414.
Khazraj H, Faria da Silva F, Bak CL (2016). A performance comparison between extended

Kalman Filter and unscented Kalman Filter in power system dynamic state estimation.
In: 2016 51st International Universities Power Engineering Conference (UPEC), 1–6.

Liu JS, Chen R (1998). Sequential Monte Carlo methods for dynamic systems. Journal of the
American Statistical Association, 93(443): 1032–1044.

Lorenz EN (2005). Designing chaotic models. Journal of the Atmospheric Sciences, 62(5):
1574–1587.

Meng D, Miao L, Shao H, Shen J (2018). A seventh-degree cubature Kalman filter. Asian Journal
of Control, 20(1): 250–262.

Nychka DW, Anderson JL (2010). Data assimilation. In: Handbook of Spatial Statistics (AE
Gelfand, PJ Diggle, M Fuentes, P Guttorp, eds.), 477–494. CRC Press. Chapter 27.

Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, et al. (2004). A local ensemble
Kalman filter for atmospheric data assimilation. Tellus A, 56: 415–428.

Pitt MK, Shephard N (1999). Filtering via simulation: Auxiliary particle filters. Journal of the
American Statistical Association, 94(446): 590–599.

Schäfer F, Katzfuss M, Owhadi H (2021). Sparse Cholesky factorization by Kullback-Leibler
minimization. SIAM Journal on Scientific Computing, 43(3): A2019–A2046.

Shumway RH, Stoffer DS (2000). Time Series Analysis and Its Applications. Springer.
St-Pierre M, Gingras D (2004). Comparison between the unscented Kalman filter and the ex-

tended Kalman filter for the position estimation module of an integrated navigation informa-
tion system. In: IEEE Intelligent Vehicles Symposium, 2004, 831–835. IEEE.

Stein ML, Chi Z, Welty L (2004). Approximating likelihoods for large spatial data sets. Journal

https://arxiv.org/abs/2009.13079
https://arxiv.org/abs/2112.14591

474 Chakraborty, A. and Katzfuss, M.

of the Royal Statistical Society, Series B, 66(2): 275–296.
Vecchia A (1988). Estimation and model identification for continuous spatial processes. Journal

of the Royal Statistical Society, Series B, 50(2): 297–312.
Wan E, Van Der Merwe R (2000). The unscented Kalman filter for nonlinear estimation.

In: Adaptive Systems for Signal Processing, Communications, and Control. Lake Louise,
Canada, 153–158.

Wang S, Feng J, Chi KT (2013). Spherical simplex-radial cubature Kalman filter. IEEE Signal
Processing Letters, 21(1): 43–46.

West M, Harrison J (1997). Bayesian Forecasting and Dynamic Models. Springer Series in Statis-
tics. Springer-Verlag.

Zilber D, Katzfuss M (2021). Vecchia-Laplace approximations of generalized Gaussian processes
for big non-Gaussian spatial data. Computational Statistics & Data Analysis, 153: 107081.

	Introduction
	Hierarchical Vecchia (HV) Approximation of a Spatial Field
	Review of the HV Approximation
	Hierarchical Partitioning of Spatial Locations

	Nonlinear Filtering based on Compressed Cholesky Factors
	State-Space Models and Filtering
	Forecast Step
	Update Step

	Filtering for Lorenz Model
	Comparison to EKVL
	Comparison to RRUKF

	Conclusion

