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Abstract

Social network analysis has created a productive framework for the analysis of the histories
of patient-physician interactions and physician collaboration. Notable is the construction of
networks based on the data of “referral paths” – sequences of patient-specific temporally linked
physician visits – in this case, culled from a large set of Medicare claims data in the United
States. Network constructions depend on a range of choices regarding the underlying data. In
this paper we introduce the use of a five-factor experiment that produces 80 distinct projections
of the bipartite patient-physician mixing matrix to a unipartite physician network derived from
the referral path data, which is further analyzed at the level of the 2,219 hospitals in the final
analytic sample. We summarize the networks of physicians within a given hospital using a range
of directed and undirected network features (quantities that summarize structural properties
of the network such as its size, density, and reciprocity). The different projections and their
underlying factors are evaluated in terms of the heterogeneity of the network features across
the hospitals. We also evaluate the projections relative to their ability to improve the predictive
accuracy of a model estimating a hospital’s adoption of implantable cardiac defibrillators, a
novel cardiac intervention. Because it optimizes the knowledge learned about the overall and
interactive effects of the factors, we anticipate that the factorial design setting for network
analysis may be useful more generally as a methodological advance in network analysis.

Keywords bipartite network; directional information; factorial design; implantable cardiac
defibrillators; optimal bipartite-unipartite projection; shared-patient physician network

1 Introduction
Networks encoding the relationships between physicians and patients, and also between physi-
cians (through shared patients) increasingly are used for research in medicine and health care
(An et al., 2018b,a, 2019; Barnett et al., 2011). Patient-physician interactions naturally give
rise to a bipartite network connecting physicians (on one “side”) to the patients that they treat
(on the other “side”) (see Figure 1 (L)). Such a network is clearly a very lossy data construct.
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Figure 1: Example Bipartite network and its projection. (L) A toy physician-patient network
in which capital letters represent physicians and small letters represent patients with an edge
between them encoding a physician-patient relationship. (R) The “single-mode” projection that
produces the physician network, connecting physicians who share at least one patient.

Recently, it has been found that the sequences of (presumably linked) patient-physician vis-
its (herein called “referral paths”) may be a more useful encoding of both patient interactions
with the health care system as well as a data source for understanding inter-physician interac-
tions. Referral paths can even be used as the basic data of a useful health care-related network
construct (An et al., 2018a, 2019).

In this paper we present a way to integrate the more fine-grained information of refer-
ral paths with the more traditional bipartite physician-patient network through the network
technique of mode projection (executed on the physician-patient network). A bipartite network
on sets S and T has only edges between nodes in S and nodes in T and not within the sets.
“Mode projection” onto S is any form of constructing an individual network on S according to
some rule (similarly for T ). The simplest form of mode projection links nodes within S if they
are each linked to the same node in T . Standard mode projection onto the physicians creates a
physician network (a “shared-patient network”) by connecting physicians if they share a patient.
But there are other ways to connect physicians that both use and reflect additional information
– when available. For example, the threshold used to define binary edges (e.g., only connect
two physicians if the number of shared patients exceeds some threshold), has been considered
(Farine and Whitehead, 2015). In addition, the sensitivity and specificity of different rules for
building shared-patient networks has been estimated (Barnett et al., 2011). Prior work has also
considered whether restricting patient visits to physicians visited during the same episode of
care leads to networks with more desirable properties (Onnela et al., 2018).

The order in which patients visit physicians – the information that underlies referral paths
– appears to largely have been ignored in shared-patient networks. Motivated by the problem of
estimating the relationship of hospital networks to their adoption of medical technologies, which
we conjecture is informed by features of directed networks, we are interested in whether analyses
may be enhanced by exploiting more fully the information in referral paths. In particular, we
seek the mappings from the longitudinal bipartite patient-physician referral path space to a
unipartite physician network that allows directed network features (e.g., reciprocity, directional
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assortativity, transitivity) to be formed, optimally discriminates the networks, and improves the
predictive accuracy of whether a hospital adopts the technology to perform implantable cardiac
defibrillator (ICD) procedures, a cardiac surgery intervention. We will demonstrate the utility
of directional information and retaining other forms of information in referral paths using the 8
directed and 8 undirected network features in Table 1 to summarize and compare the topology
of each hospital network.

We also regress the outcome in our motivating application – whether a hospital has adopted
the technology to perform ICD procedures – on the network features evaluated under each mode
projection method. Therefore, we look at the interesting question of technology adoption and
diffusion, a subject where network effects have – in other domains – already been shown to
be useful (Ryan and Cross, 1943; Griliches, 1957; Coleman et al., 1959; Valente, 1995; Skinner
and Staiger, 2005; Rogers, 2010; Iyengar et al., 2011), from the perspective of whether the
information in the directionality of referral paths enhances predictive accuracy and the extent to
which predictive accuracy is sensitive to which projection method is used. To date the literature
only contains examples of sensitivity analyses that evaluate whether study conclusions change
over a range of thresholds for reducing a weighted network to a binary network (Schwarz and
McGonigle, 2011). Our assessment of sensitivity to the method of forming the network is multi-
dimensional and thus much more comprehensive.

Although the motivation for this paper stems from the particular case of patient-physician
referral path data, the problem of interest generalizes to any situation in which a directed
network is to be constructed from a data set of the sequence of encounters of an actor of one
type with actors of another type. Although there is literature on bipartite directed graphs,
such as that on Petri nets (Liang et al., 2020), in general surprisingly little has been published
about the retention of directional information through the projection to a one-mode network.
This is despite the common occurrence of bipartite network data across a wide array of fields
(Pavlopoulos et al., 2018), including situations where the bipartite network may naturally be
directed or could be represented as such (e.g., authorship order or importance in a collaboration
network, timing of queries in internet-based communication networks) but for convenience a
projection is often made to an undirected network. Networks with asymmetric weights have been
obtained as a consequence of a node’s degree or strength in the two-mode network normalizing
their edge-weights or use of a relative threshold (e.g., to retain the top 10% of each nodes edges
based on degree) to yield binary directed edges (Newman, 2001; Onnela et al., 2018) as opposed
to time-ordered paths in the two-mode network.

Building networks from data (even data that is a priori network data) can be challenging
due to the many choices available to a network scientist. For example, directed networks are
often converted into undirected networks (and even in this conversion there are choices) in order
to evaluate network features developed for the latter that don’t adapt easily to the former. For
network visualization, dense directed networks are often sparsified and made undirected in order
to de-clutter presentation. Decisions can be more principled (see e.g., Foti et al. (2011)) and in
the setting in which the choices affect some kind of integrative objective function, optimization
techniques can be used. Herein we introduce a framework for parameter setting – as well as a
principled approach (a designed experiment) to articulating the projection-parameters – that
focuses on discriminatory power of projection-parameter settings, characterized by the extent
to which a vector of network features that summarize the network varies between the resulting
networks. Because discriminatory power does not depend on any outcomes (e.g., ICD status),
optimizing the network design with respect to it offers protection from cherry-picking a projec-
tion method in order to obtain the best result; e.g., maximizing the effect of a network-based
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predictor on a specific outcome. A contribution of this paper besides the retention of directional
information from referral paths is the development of both an objective function quantifying
discriminatory power and methodology (outlined in the next paragraph) for efficiently searching
for the optimal approach to forming networks via bipartite projections that maximize discrimi-
natory power (and thus avoid being guided by the outcomes the networks will be used to predict
and suffering a form of overfitting when selecting the optimal projection).

Given a measurable objective like optimizing discriminatory power across the shared-patient
physician networks of a sample of hospitals, we can frame the statistical investigation as an opti-
mization problem. The solutions are intractable in closed form given the enormous search space
over the numerous ways of parsing a referral pathway. However, by specifying a set of projection-
parameters (or “factors” in design-of-experiments terminology) with fixed (categorical) levels,
the computational challenge is reduced to emulating an experiment with a factorial design (a
description of factorial designs and experimental designs in general is contained in Montgomery
(2017)). Factorial designs systematically vary the levels of the factors across the observations so
that every combination is tested. This allows for estimation of the complete set of interactions
between the factors using the fewest observations and more generally allows the effect of each
factor or combination of factors (interaction) to be estimated with maximum precision.

The structure of the remainder of the paper is as follows. In Section 2 we describe the factors
over which we evaluate optimal projections and in Section 3 develop the criteria for evaluating
the performance of the projections and the effects of the factors underlying them in terms of
discriminatory power and predictive accuracy. In Section 4 we introduce ICDs and explain why
understanding mechanisms governing inter-hospital diffusion of ICD utilization is important.
The data used to measure hospital shared-patient physician networks and ICD status and the
network features of interest are also described. Results are presented in Section 5 and the paper
concludes with a discussion of the findings and potential directions for future work in Section 6.

2 Notation and Experimental Design
In this section we present a general methodology for the construction of a physician network
based on referral paths. A referral path is represented as a sequence of visits of a patient with
a set of physicians; e.g., α = ABBAC where we denote physicians by alphabetic letters and
read referral paths from left-to-right. Thus, a referral path with the continuous subsequence
AB indicates that a visit to physician A occurred and was followed by a visit to B within a
sufficiently short period of time, tmax – and that there were no intermediate physician visits
in between. In the motivating Medicare patient example we use tmax = 30 days (see Section 4
for justification). Each patient who visits at least two distinct physicians within the timeframe
contributes to the set of referral paths while the physicians they visit on these referral pathways
are nodes in the (projected) network.

Because a referral path contains information on the order in which a patient visits physi-
cians, the extent to which one physician refers to another may be quantified. Consider the
referral path α = ABCBBAAABC. The standard approach (i.e., traditional single mode pro-
jection of the bipartite physician-patient network) to forming a shared-patient network would
generate from α a simple undirected triad in the physician network of the physicians A, B, and
C. Among the information in the referral path that this neglects are the multiple return visits
(one from B to B, and several consecutive repeated visits to A). Should the projection have
loops? Should the projection have directionality? Specifically, should the projection distinguish
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Figure 2: At the top of the figure is an example referral path α for patient “a”. The (sub-)
patient-physician network is shown in (i). The (sub-) shared-patient network generated by α is
shown in (ii), the (undirected) referral relation is encoded in (iii), and directionality is encoded
in (iv).

the transitions AB and BA? Other kinds of information involving the order, inter-visit time,
total number of visits, and other aspects of the referral path are also elided in the standard
projection, potentially a substantial loss of information. Figure 2 gives four different possibilities
for projections including one that is directed.

In short, referral paths can form the basis of a variety of ways to measure and articulate
the depth of a working relationship or collaboration between physicians and those choices might
matter depending on the analytic goal. We seek networks with greater specificity by filtering out
uninformative visits while retaining information on directionality. The following considerations,
among the many that could be considered, form the basis of our study (keeping in mind that
“referral” means the temporal contiguity of physician visits encoded in the data):
• Continuity (binary): Is only a direct referral a signal of collaboration or is the simple presence

of visits in a given path enough to signal a relationship?
• Revisit (binary): Does a “closed loop” of referral indicate a stronger relationship of collabo-

ration and should that contribute to encoding of the relationship?
• Multiplicity (five levels): Is the number of referrals in a path important and should that be

memorialized in the encoding of an assumed physician-physician relationship?
• Directed (binary): Is the directionality of the referral important?
• Binary (binary): Is it useful to try to encode the strength of a relationship or is a record of

its presence enough? Is there some threshold of interaction that the encoding of collaboration
should respect?
The rationale for each of these design-parameters or factors is described by Subsections 2.1

to 2.5 along with their full mathematical specifications. While these considerations are hardly
exhaustive, they provide a useful basis to begin our exploration of the relationship between
patient referral information, physician collaboration networks, and ultimately, of their utility in
helping to understand the structure and efficacy of health care systems. As we use the referral
data to build physician collaboration networks in which the five factors identified above are
systematically varied across their ranges, we emulate a factorial experiment (see e.g., (Mont-
gomery, 2017, Chapter 5)). All but Multiplicity are binary giving a total of 80 = (5 ∗ 2 ∗ 2 ∗ 2 ∗ 2)

different methods of constructing the physician collaboration network from the patient referral
data. In the following subsections we discuss each of these factors by describing the way in which
a given factor setting directs the contribution of an individual referral path to the one-mode
projected physician network. While it is useful – and intuitive – to think of this visually as the
transformation of one network into another, it is perhaps better to re-frame the discussion and
presentation in terms of the adjacency matrix attached to the projection.
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Recall that the adjacency matrix of a given network N , is a square matrix X (N ) whose rows
and columns are indexed by its vertices. In the case of a physician network, the vertices would
be labeled by physicians. In the associated adjacency matrix the entry in row A and column B,
X (N )AB = XAB represents the weight of the edge from A to B (and equal to 0 when there is no
such edge). Unweighted networks have binary adjacency matrices with entries 0 or 1 indicating
the absence or presence of an edge. Undirected networks have symmetric adjacency matrices –
encoding the lack of direction as edges in both directions (and of equal weights). For a thorough
treatment of basic networks and network science see the texts Wasserman and Faust (1994) and
Newman (2010).

On the one hand we can think of this process as contributing an edge that joins a pair of
physicians A and B (directed or not, thick or thin depending on the weight) or as contributing
to the weight recorded in the adjacency matrix. In what follows we’ll go back and forth –
without apology – between those two descriptions. The adjacency matrices encoding the example
networks in Figure 2 (ii) and (iii) (with indices arranged in alphabetical order) are

⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠

Again, it is useful to think of what follows as a set of algorithms that depend on five
parameter choices to produce entries for the adjacency matrix of a physician network. We now
give some detail on the various parameter spaces.

2.1 Continuity

After visiting physician A, the next physician that the patient visits on referral path α is most
likely to have resulted from a referral from physician A, with a decreasing likelihood – although
not impossibility – for those physicians visited further along the path. We let Continuity equal
1 or 0 depending on whether we do or do not want to enforce the next visit condition for
designating a referral. Setting Continuity = 1 enforces the condition that after a visit to A the
immediate next visit must be to B for that segment of α to contribute to the edge from A to B.
In contrast, if Continuity = 0 then any subsequent visit to B qualifies. If Continuity = 1 then
α is decomposed into one or multiple shorter referral paths involving only consecutive visits to
A and B. If Continuity = 0 then α is reduced to a single path by stripping out all physicians
not equal to A or B before further processing. For example, α = ABCA is reduced to AB when
Continuity = 1 and to ABA when Continuity = 0. As a second example, if Continuity = 1 then
CDABCBAA is reduced to AB and BAA (two separate paths) whereas if Continuity = 0 the
AB-reduced path is ABBAA. From the perspective of A and B, Continuity forms paths only
involving themselves, which we refer to as “AB-reduced” paths. By only counting consecutive
encounters, we hypothesize that Continuity = 1 may increase the specificity of the detection of
a true referral and hence meaningful relationship in exchange for lower sensitivity (more true
collaborations missed). Therefore, if hospitals with higher coordination of care involve more
immediate referrals and fewer distinct physicians, imposing Continuity conditions may increase
the difference in the network structure between highly- and lowly-coordinated hospitals. Because
it outputs AB-reduced path(s) only involving physicians A and B, simplifying evaluation of the
remaining factors, Continuity is a natural first step in processing referral paths.
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2.2 Revisit

The Revisit factor is motivated by the conjecture that “closed loops” of referral are a stronger
marker of a meaningful relationship, or at least of an influence-spreading opportunity, than α

with no loops. Revisit specifies the fundamental unit (or pattern) for quantifying the strength
and thus the existence of an edge. After first applying Continuity, the two fundamental units we
consider for quantifying the strength of the AB-edge in each α are AB and ABA. When Revisit
= 0, a visit to A followed by a visit to B in α leads to a contribution to the edge from A to B and
AB is the fundamental unit. When Revisit = 1, a return-visit to A following the visit to B must
occur for α to contribute and ABA is the fundamental unit. For example, if Continuity = 0 the
“AB-reduced” path of α = ACBCAA is ABAA and contributes to the AB-edge irrespective of
Revisit. However, because the ABA sequence occurs but the BAB sequence does not, if Revisit
= 1 then α only contributes to the AB-edge. Because Multiplicity depends on Revisit, the latter
cannot be processed as a standalone step. We discuss Revisit further in Sections 2.3.1 and 2.3.3.

2.3 Multiplicity

Multiplicity encodes the strength of a relationship between A and B in α. By virtue of its reliance
on the fundamental unit for accumulating edge information, Multiplicity interacts directly with
Revisit. As noted in Section 2.2, the fundamental unit when Revisit = 0 is the subsequence
AB and when Revisit = 1 the fundamental unit is the subsequence ABA. The strength of the
relationship is quantified according to five distinct measures (levels) and recorded as the value
XAB in the physician network adjacency matrix:
• Existence (f ) – indicator variable recording the existence of a fundamental relationship of A

and B in α.
• Total-Count (g) – record of the total number of unique fundamental relationship units from A

to B in α ignoring repeated visits to the same physician; g = 0 if the fundamental relationship
unit does not occur in α.

• Total-Ordering (h) – record of the total number of fundamental relationship units from A to
B in α summing all occurrences of the fundamental unit that abide to the direction of the
edge; h = 0 if the fundamental relationship unit does not occur in α.
Clearly, Total-count and Total-ordering increase in expectation with the length of α, mak-

ing them reflective of care volume. Therefore, to obtain counterpart measures that are not as
systematically related to the volume of care, it is also useful to have “normalized” versions of
the measures, the form of which we discuss in Section 2.3.2. We break those out separately:
• Normalized Total-Count (g∗) – normalized record of the total number of fundamental rela-

tionship units of A and B in α.
• Normalized Total-Ordering (h∗) – normalized record of the total number of fundamental

relationship units from A to B in α summing all occurrences of the fundamental unit that
abide to the direction of the edge.
We will make use of the following notation: for referral path α and physician A occurring

in α, let rA(α) denote the list of visit indices to physician A in α. The first visit receives a 1. For
example,

if α = ABBACB then

⎧⎨
⎩

rA(α) = (1, 4)

rB(α) = (2, 3, 6)

rC(α) = (5)

(1)

We let nA(α) denote the number of occurrences of physician A on referral path α. In the above
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example, nA(α) = 2.
Now for the computation of Multiplicity.

2.3.1 Case 1: Revisit = 0

1. Existence: If referral path α contains a visit to A before at least one visit to B set fAB(α) = 1,
otherwise fAB(α) = 0.

2. Total-count: This records the total number of times on referral path α that a visit to A is
followed by a visit to B, ignoring repeated visits with the same physician. Denote the number
of such occurrences by gAB(α). For example, the sequence α = ABBBAB yields gAB(α) = 2
(and gBA(α) = 1).

3. Total-ordering: For each visit to A in α, count the number of visits to B that follow and sum
over that count. More precisely, let

hAB(α) =
∑
i,j

I (rA
i < rB

j ) (2)

where the indices for i and j denote the visit number (allowing consecutive visits to the
same physician) and I denotes the standard indicator function; I (e) = 1 if the expression e

is true and 0 otherwise. For example, α = ABBBAB yields hAB(α) = 5 (and hBA(α) = 3).
The quantity in (2) is related to the Mann-Whitney u-statistic (Mann and Whitney, 1947).
Total-count ignores runs of visits to the same physician while total-ordering accounts for

runs of multiple visit to the same physician by comparing the chronological order of each visit
to physician A with that of each visit to physician B. Visits on the same day may be accounted
by assuming that the true order of visits is the order in which the claims are listed.

2.3.2 Normalized Levels under Revisit = 0

The normalized versions of total-count and total-ordering are obtained by dividing by w
g

AB(α) =
nA(α) + nB(α) and wh

AB(α) = nA(α)nB(α), respectively, to obtain:

g∗
AB(α) = w

g

AB(α)−1gAB(α)

h∗
AB(α) = wh

AB(α)−1hAB(α).

The normalized quantities reflect relative patient flow from physician A to B on referral path
α relative to the maximum possible given nA(α) and nB(α). Because w

g

AB(α) = w
g

BA(α) and
wh

AB(α) = wh
BA(α) it follows that max(g∗

AB(α) + g∗
BA(α)) = 1 and max(h∗

AB(α) + h∗
BA(α)) = 1.

That is, the maximum sum of the normalized total-count and total-ordering for α is a sum of
proportions that sum to 1.

Whereas gAB(α) and hAB(α) will generally increase with the length of a referral path and
allow longer referral paths to have more influence on the network, g∗

AB(α) and h∗
AB(α) lie within

the (0, 1] interval and consider each α to be of equal information content regardless of its length.

2.3.3 Case 2: Revisit = 1

Accounting for a “revisit” encodes the assumption that a physician is only meaningfully influ-
enced by another physician if a patient referred to another physician returns to the initial referrer
for a follow-up appointment. This construct is encoded in making the sequence ABA (rather
than AB) the fundamental unit of physician relationships. (Note that even if the fundamental



586 O’Malley, A.J. et al.

unit is ABA, the associated record is in the (A, B) entry of the adjacency matrix, reflecting a
directed referrer-referee relationship.) The levels of Multiplicity are modified accordingly:
1. Existence: Each referral path is given a binary indicator of whether or not ABA occurred.

That is, set fABA(α) = 1 if true, 0 otherwise.
2. Total-count: The number of times the subsequence ABA occurs on α, collapsing over re-

peated visits to the same physician. For example, if α = ABBBABA then gABA(α) = 2 (and
gBAB(α) = 1).

3. Total-ordering: A rank-based measure that accounts for Multiplicity in the visits to A and
B when quantifying the frequency of ABA subsequences. Unlike Total-Count, repeat visits
are enumerated. Specifically:

hABA(α) =
∑
�,i,j

I (rA
� < rB

i < rA
j ), (3)

the product of the number of repeated visits first to A, then B, and finally to A again.
Equivalently, for each AB subsequence in α, count of the number of visits to B that follow
and sum over that count. For example, the values of total-ordering for α = AAABBBA and
α = AAABBBAAA are:

hABA(AAABBBA) = 9 and hABA(AAABBBAAA) = 27

Normalized versions of gABA(α) and hABA(α) are obtained by dividing by their maximum
possible values given {gAB(α), gBA(α)} and {hAB(α), hBA(α)}, respectively. The respective divisors
are w

g

ABA(α) = gAB(α)+gBA(α) and wh
ABA(α) = hAB(α)hBA(α), although wh

ABA(α) is only applied
to referral paths with hAB(α)hBA(α) > 0 as it otherwise equals 0. We denote these additional
levels by g∗

ABA(α) = w
g

ABA(α)−1gABA(α) and h∗
ABA(α) = wh

ABA(α)−1hABA(α). Analogous to Sec-
tion 2.3.2, max(g∗

ABA(α)+g∗
BAB(α)) = 1 and max(h∗

ABA(α)+h∗
BAB(α)) = 1. Because w

f

ABA(α) = 1
the addition of the normalized measures only introduces two additional levels of Multiplicity,
bringing the total to 5.

2.4 Summing over Referral Paths

Finally, the entry XAB must account for the contributions from all referral paths including patient
visits to both A and B. If kAB ∈ {fAB, gAB, hAB, g∗

AB, h∗
AB} denotes a Multiplicity level, then the

entry XAB will be the sum of kAB over all α:

XAB =
∑

α

kAB(α) (4)

2.5 Post-processing: Directed and Binary
After forming a weighted-directed network by applying Continuity, Revisit and Multiplicity, we
may leave the network as is, convert it to an undirected form, convert it to binary, or convert
it to undirected and binary. These transformations augment the 20 weighted-directed network
settings of the projection to a physician network with 60 additional settings.

Although there are multiple ways of obtaining an undirected network from a directed net-
work, here we simply sum the weights in each direction. That is, we compute X un

AB = XAB +X T
AB .

The undirected networks serve as controls for the corresponding directed networks when evalu-
ating the value of retaining directional information.
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The network is converted to binary by applying a threshold rule to XAB or X un
AB (and

assigning a 1 or 0 to a given entry depending on whether or not it meets the threshold). In our
motivating example, the threshold was the 20’th percentile of the edge-strength distribution for
the corresponding weighted network. Edges with larger values become equal to 1 while all other
edges are 0 (i.e., are null edges). If the weight at the 20’th percentile is 0 (i.e., fewer than 20%
of edges are non-null), all positively-valued edges in the weighted network form the edges in the
corresponding binary network.

3 Evaluating the Performance of the Projection Methods
The potential to learn from hospital networks about factors associated with the adoption of
health procedures and protocols depends on (i) the extent to which the networks vary and (ii) the
association of the network features with the adoption outcome(s). We define the “discriminatory
power” of a (one-mode) projection with respect to a quantitative network feature in terms of
the heterogeneity of that feature across the networks. The focus on heterogeneity is supported
by the fact that in simple linear regression the greater the variance of a predictor the greater
the information available to detect its relationship with outcomes. The “predictive power” of a
projection with respect to an outcome is the extent to which it informs the prediction of that
outcome. Discriminatory power and predictive power measure (i) and (ii), respectively.

3.1 Discriminatory Power
In the following, we assume that the network features are comparable to each other in terms of
scale. For example, in the motivating application, we normalize the measures to have a marginal
variance of 1 across the hospitals and projections (Section 4). Let Zkij be a random variable
denoting the normalized network feature k evaluated on hospital i using projection j and Xj

a vector whose elements indicate levels of the factors for projection j . Observed values of Zkij

are denoted zkij and the sample mean and variance of {zkij }i=1:n by z̄kj and s2
kj , respectively. The

discriminatory power specific to feature k for projection j is s2
kj and the optimal projection for

feature k is optk = maxj=1:J {s2
kj }.

We use three network-wide measures of discriminatory power. Two are the average sample
variance across the features, s̄2

j = K−1 ∑K
k=1 s2

kj , and the associated average rank of the sample
variance across the features, r̄j = K−1 ∑K

k=1 rkj , where rkj is the rank from largest to smallest
of s2

kj (rank J is assigned to the projection with the largest s2
kj ) in the set {s2

1j , . . . , s
2
Kj }. The

rationale for r̄j is that it is more outlier resistant than s̄2
j . For the third, we evaluated the

proportion of variation that occurs between the hospitals when features are treated as repeated
measurements and analyzed using the statistical model

Zkij = β0j + θkj + εkij (5)

where θkj ∼ Normal(0, τjUj ) and cov(ε1ij , . . . , εKij ) = σ 2
j Rj for each j , where Uj and Rj are

correlation matrices. The standardization of the network measures across the observed data
prior to model estimation makes the assumption underlying (5) of homogeneous hospital and
residual variances across the measures justified. One measure of the proportion of the total
variation in the network measures that occurs between the networks is ρj = τ 2

j /(τ 2
j + σ 2

j ),
which corresponds to a ratio of traces of the between-hospital to the sum of the between- and
within-hospital covariance matrices. Unfortunately, the elements of Uj cannot be identified. To
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overcome this challenge, we fit the special case of the model in which Uj = Rj = I , the identity
matrix, equating ρj with the intraclass correlation coefficient (ICC). Given the approximate
nature of this calculation, we view the resulting estimates of ρj , denoted ρ̂j , as a model-based
counterpart to s̄2

j and r̄j .
To quantify the importance of the projection factors to discriminating between networks

we regress s2
kj on Xj for each network feature k = 1, . . . , K:

s2
kj = XT

j βk + εkj . (6)

As long as the sample variances are evaluated over a large enough sample (e.g., up to 2,219 hospi-
tals in the motivating example), the central limit theorem ensures that the empirical distribution
of s2

kj and of εkj in (6) will be close to normal and thus that a linear model and normal-based
inference is appropriate. Furthermore, in the motivating example, we restrict to networks whose
largest connected component contains > 20 physicians, helping to make the network features
well-defined (Section 4). In general, an alternative to normal-based inference would be to use a
bootstrap to generate estimates of standard errors and evaluate statistical inferences.

To evaluate which factors explain the most overall variation between the projections, we
regress ρ̂j , s̄zj = s̄2

j /z̄j and r̄j on Xj using analogous linear models to (6). The reason for the use
of s̄zj as a dependent variable is that a linear variance-mean relationship was evident between s2

kj

and z̄kj , a consequence of the restricted scales of the features that are proportions or correlations.
Therefore, s̄zj is a more comparable measure.

3.2 Predictive Power

We define the predictive power of network features Zij with respect to a network-level outcome
Yi in terms of the area under the ROC curve of the estimated logistic regression of Yi on Zij . In
our motivating application, Yi = Adopti denotes the ith hospital’s adoption of the capability to
perform implantable cardiac defibrillator (ICD) procedures. Let πij = Pr(Yi = 1 | Zij ), where Zij

is the vector of network features for network i under projection j . Because the predictors vary
across the J = 80 projections, the conditional probability πij and its estimator π̂ij varies across
j despite the dependent variable Yi and the marginal probability Pr(Yi = 1) being invariant to
j . The general form of the systematic part of the statistical model is

log

(
πij

1 − πij

)
= βT

j Zij (7)

We fit (7) to obtain the vector of estimates β̂j of the coefficients of the network features un-
der projection j and summarize the predictive accuracy of the fitted model by the c-statistic
cj = Pr(π̂hj > π̂lj | h ∈ {h : Adopth = 1}, l ∈ {l : Adoptl = 0}), the probability that a ran-
domly selected hospital with ICD capability has a greater estimated probability of adoption
than a randomly selected hospital without ICD capability, a non-parametric estimator of the
area under the receiver operating characteristic curve (AUC). The inclusion of network size in
the vector of network features Zij in (7) accounts for the possibility that larger hospitals may
have more within-hospital referrals and greater likelihood of adopting technologies, allowing the
independent association of other features with ICD capability to be estimated.

We are particularly interested in the extent to which network features that extract direc-
tional information from referral paths improve the predictive accuracy of the model over that
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attained without using directional information. We define the weighted and binary baseline pro-
jections to be the projections to an undirected network using the existence level of Multiplicity
without imposing Continuity or Revisit. Let ZB

ij denote the vector of network features for the
baseline network counterpart of the projection that generated Zij . The added value of the in-
formation about directionality in Zij is quantified by comparing the fit of the logistic regression
model

log

(
πij

1 − πij

)
= βT

j ZB
ij + λT

j Zij (8)

to that of the model that only includes the elements of ZB
ij as predictors. The value of the

directional information in patient referral paths may be represented by the absolute and the
percentage difference of the c-statistic, denoted �(c) and %�(c) respectively, and the difference
in the deviance statistics between the two models.

4 Motivating Example, Network Measures, Data, and Data
Wrangling

Implantable Cardiac Defribrillators (ICD) can provide major clinical benefit by alleviating symp-
toms and preventing heart attacks (Moss et al., 2002; Kadish et al., 2004; Bardy et al., 2005;
Al-Khatib et al., 2011). However, they are expensive and may activate and shock a patient when
not needed. Hence, overuse should be avoided and the specification of who is an appropriate
patient to receive an ICD is debated. The association of network measures with the ICD adop-
tion status of hospitals may provide important insights into why some hospitals adopt and why
others do not adopt ICD capability (Moen et al., 2016, 2018, 2019).

The physician shared-patient networks for each hospital are developed using Medicare claims
data from 2010 involving 2,219 hospitals in the USA. In accordance with the most restrictive
threshold used in the publicly available Centers for Medicare and Medicaid Services (CMS) data
on the number of patients referred between pairs of physicians (CMS, 2021), we set tmax = 30
days as the maximum time to allow for consecutive visits to be included in a referral path α.

The hospital-specific networks are defined by assigning each physician to the hospital where
their office was located, if they worked in a hospital, or otherwise the hospital where the plu-
rality of their patients went for overnight hospital stays (Bynum et al., 2007). Therefore, each
physician appears in a single network. Because network features may be ill-defined or highly
variable on small networks, we excluded hospitals with 20 or fewer nodes in the largest con-
nected component of the network under any setting of the factors to obtain the sample of 2,219
hospitals (approximately one-third the total number of hospitals in the USA).

To enable the diffusion of ICDs to be investigated, we used the patient ICD registry of
procedures performed in 2011 to determine the number of ICD procedures performed by hospital
with a hospital defined as an adopter if they performed at least one ICD procedure (the use of
registry data from the subsequent years ensures that no data is used to both define the network
and measure ICD status). Although the availability of the ICD registry and their importance in
medicine makes the diffusion of ICDs a compelling example, there are many other procedures
and technologies whose diffusion might also be studied using this approach (e.g., coronary-artery
stents and other surgical interventions for abdominal aortic aneurysm or carotid-artery disease).

We use a broad range of features to evaluate the 80 sets of hospital networks formed by
the 80 one-mode projections. The features are grouped in Table 1 by whether they are base
features – those defined for undirected networks and thus for all networks – or are specific to
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Table 1: Network-level summary features.

Measure Definition

Degree The total edge-weight of a node to or from other nodes

Base features (defined on undirected networks)
Density The average edge-weight across the network
Centralization The variance of the degree distribution of the network
Triangles (undir)∗ Proportion of (undirected) triangles that are closed
Clustering Coef∗ Proportion of triangles involving a node that are closed

averaged across nodes
Size∗ Number of nodes or physicians in the largest connected component (LCC)

of the network
Isolates∗ Proportion of nodes with 0 non-null edges
Components∗ Number of distinct components in network
Diameter∗ Shortest path length (number of edges) across largest

connected component

Directed Features (defined only on directed networks)
ExpansePop Correlation of in- and out-degree
Assortativity Within-dyad correlation of degree: Four variants in directed networks
Reciprocity Within-dyad correlation of edge weights
Transitive triads Proportion of triads that are transitive (A → B, B → C, A → C)

among non-null triads
Cyclical triads Proportion of triads that are 3-cycles (A → B → C → A)

among non-null triads

∗Invariant to weighted edges by virtue of treating them as binary

directed networks. The remaining base features are invariant to whether the network is weighted
or binary. (See Wasserman and Faust (1994) and Newman (2010) for a thorough description of
network statistics.) The directed features are undefined for undirected networks and, therefore,
endow directed networks with additional information compared to undirected networks.

For greater variance to imply greater discriminatory power, network features must have
the same scale across the projection methods. We applied self-standardizing transformations to
density and centralization and then normalized all features to have a marginal variance of 1
across the hospitals and projections in the study sample (Section 1 of Supplemental Appendix).

We explored whether weighting the observations by the number of nodes in the network
further justified the assumption of homogeneous variances in (6) but found that it didn’t appre-
ciably and so used unweighted regression models to estimate the contributions of the projection
factors to discriminatory power. The models in (7) and (8) for evaluating predictive power were
also unweighted.
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5 Results
We report results on the relationship of the projection methods and their underlying factors to
the discriminatory power of the network with respect to each network feature and the network
as a whole in Section 5.1. This is followed by results that compare the predictive accuracy of a
hospital’s network structure with their ICD status across the projection methods in Section 5.2.

5.1 Results: Discriminatory Power of Projections for Hospital Networks
The values of optk, Xoptk , and s2

koptk for the k = 1, . . . , 16 features evaluated on the physician
shared-patient networks within 2,219 US hospitals are first presented in Table 2. The z-statistics
for the estimates of βk of the feature-specific and of the pooled features ρj (the ICC), s̄zj , and
r̄j on the projection factors for the model in (6) are discussed in the text with details presented
in Section 2 of the Supplemental Appendix. The top 10 directed projections in terms of ρj are
then presented in Table 3.

5.1.1 Optimal Feature-specific Projections

The greatest discriminatory power for density, centralization, the correlation between in- and
out-degree, the four assortativity features, and reciprocity occurred when both Continuity and
Revisit were binding and weighted edges were retained (see first two base feature and first 6
directed feature rows of Table 2). The optimal projections for these features show a clear advan-
tage over their second best projection; the optimal projection for density is the most definitively
identified (37.6% superiority over second-best projection) with reciprocity and centralization
the second- and third-most. The optimal settings of Multiplicity for these features were always
other than existence; e.g., inter-hospital variation in density and centralization was greatest with
total-ordering while variation in reciprocity was greatest with normalized total-ordering. These
findings imply that the frequencies of the sequences A and B, AB and BA, and ABA and BAB

across all α contain valuable information beyond simply knowing that physicians A and B were
visited at least once by the same patient.

Because the remaining base features are undirected and binary in nature (transitivity and
clustering coefficient are functions of undirected open and closed triangles, size and proportion
of isolates are based on counts of actors, number of components and diameter are enumerated
assuming edges exist or not), the Multiplicity and Binary factors are not relevant to them.
However, Continuity and Revisit have a substantial impact with their presence associated with
more heterogeneity in most features between the networks. The most notable exception is the
size of the largest connected component, for which relaxing Continuity and Revisit was optimal.

The results for size can be explained by the fact that the more lenient the requirement for
an edge to exist, the larger the expected size of the largest connected component and, by virtue
of size being a count variable, the greater its variability. In contrast, the proportion of isolates is
greatest under the most restrictive conditions for forming the network (Continuity and Revisit
imposed); raising the bar for an edge to exist thereby increased the chance that a given physician
has no edges. Because the expected number of components and diameter increase as the density
of the network decreases, it makes sense that applying constraints that reduce density increases
their expectation and variability.

Unlike other directed network measures, the proportions of transitive and cyclical triads
attain their greatest heterogeneity with both Continuity and Revisit non-binding (Table 2, bot-
tom of second segment). An explanation of the former is that not allowing C �= A, B to occur
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Table 2: Feature-specific Optimal Projection and Discriminatory Power.

Design factors Improve

Measure Mult Cont Rev Bin Het 2nd (%)
Base Features

Density TOrder 1 1 0 7.032 37.6
Centralization TOrder 1 1 0 11.469 13.6
Triangle (undir)∗ . 1 0 0 0.405 0
Clustering Coef∗ . 1 1 0 0.403 0
Size∗ . 0 0 0 1.673 0
Isolates∗ . 1 1 0 0.161 0
Ncomponents ∗ . 1 1 0 2.736 0
Diameter∗ . 1 1 0 1.387 0

Directed Features (only defined on directed networks)
Cor(In,Out −Deg) TOrder 1 1 0 1.690 7.30
Assort(In,In) TCount 1 1 0 1.760 7.84
Assort(In,Out) TCount 1 1 0 1.831 3.72
Assort(Out,In) TOrder 1 1 0 1.831 11.8
Assort(Out,Out) TCount 1 1 0 1.698 8.06
Reciprocity NCount 1 1 0 0.937 18.8
Transitive Triads NCount 0 0 1 1.224 0.06
Cyclical Triads NCount 0 0 1 1.283 0.05

Network-wide (Pooled feature) optimization over directed networks
ICC (ρj ) TCount 1 1 0 0.093 22.9
Ave Stand Var (s̄zj ) TOrder 1 1 0 2.80 46.9
Ave Rank (r̄j ) TOrder 1 1 0 29.7 3.93

∗Feature invariant to weighted edges. Heterogeneity (Het) corresponds to s2
koptk for the 16 features and to the

value of the quantity in the left-hand column for the three network-wide measures. Improve 2nd (%) denotes
superiority of the optimal projection over the second-best projection in terms of a percentage. The five levels
of Multiplicity (Mult) are abbreviated by: Existence = Exist, Total-count = TCount, Total-ordering = TOrder,
Normalized total-count = NCount, and Normalized total-ordering = NOrder. The remaining three factors are
abbreviated as Continuity = Cont, Revisit = Rev, and Binary = Bin.

between visits with A and B removes an important source of transitive triads. In another depar-
ture from the prevailing results for directed features, triadic features had more heterogeneity if
the network was transformed to binary as opposed to remaining as weighted.

The network-wide measures are in agreement on all factors other than Multiplicity with
total-count yielding higher ρ̂j while total-ordering yielded higher average values of s̄zj and r̄j .

5.1.2 Projection Factor Effects and Top Ten Projections

The results for the projection factor regression coefficients in model in (6) reveal that Continuity
and Revisit are generally highly significant (z-statistics almost always > 5 and often > 10) and
that the direction of their estimated coefficients (positive when enforced, negative when not
enforced), while the estimated effects of Multiplicity and Binary are generally less pronounced
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Table 3: Optimal Overall (Across Feature) Directed Projections in terms of ICC.

Projection factors Hospital variances Inter-hospital ICC

Mult Cont Rev Bin Between Within All Directed Only
TCount 1 1 0 0.102 0.989 0.093 0.233
Exist 1 1 0 0.074 0.897 0.076 0.199
TCount 1 1 1 0.061 0.784 0.073 0.167
TOrder 1 1 1 0.061 0.784 0.073 0.167
NCount 1 1 1 0.061 0.784 0.073 0.167
NOrder 1 1 1 0.061 0.784 0.073 0.167
Exist 1 1 1 0.061 0.784 0.072 0.167
TOrder 1 1 0 0.143 1.925 0.069 0.187
Exist 0 1 1 0.030 0.456 0.061 0.169
NCount 0 1 1 0.030 0.456 0.061 0.169

Results are for the model given by the variant of Equation (5) in which ρj (the ICC for the model in Equation 5)
is the common residual correlation between all pairs of features. Note the simplifying abbreviations for the five
levels of Multiplicity = Mult (Exist, TCount, TOrder, NCount, and NOrder) and Continuity = Cont, Revisit =
Rev, and Binary = Bin.

(Section 2 of Supplemental Appendix). These findings are consistent with the optimal projections
in Table 2.

We estimated interaction effects by augmenting (6) with second and higher-order terms
involving the projection factors. The predominant interaction effect was between Continuity and
Revisit, with significant positive effects on ρj and s̄zj (z-statistics of 4.02 and 4.59, respectively
– results not reported) and on the standardized scaled-variance of several network features
(density, specialization, and most assortativity measures). While there were sporadic significant
interactions between other factors, including one third-order interaction, these were insufficiently
prevalent to warrant reporting. The fact that the presence of both Continuity and Revisit often
had a greater effect than either factor alone is an important finding and motivates examining
the factor settings of the best performing projection methods (Table 3).

The top ten directed projections in terms of ICC are dominated by the enforcement of
Continuity and Revisit (Table 3). All 10 impose Revisit and the top 8 impose Continuity = 1.
Consistent with the ICC results in the bottom segment of Table 2, the optimal projection to
a one-mode directed physician network used the total-count level of Multiplicity (Table 3, first
row). This projection yielded ρ̂j = 0.093 when evaluated over all features and ρ̂j = 0.233 when
evaluated over only the directed features. Both of these optimal values are well above the estimate
of ρj for the second-best projection. The fact that all five binary-network projections were tied
as the third-equal optimal projection with ρ̂j = 0.073 reflects that, in general, Multiplicity has
minimal impact on the discriminatory power of binary networks.

5.2 Results for Predictive Power
Table 4 presents the value of directional information and related quantities for the top five
weighted and top five binary projections with respect to �(c). Among weighted network projec-
tions, imposing Revisit with the normalized total-ordering level of Multiplicity but without re-
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Table 4: Optimal projections for maximizing the value of directional network information.

Projection factors AUC (c-statistic) Deviance

Mult Cont Rev Base All �(c) %�(c) difference

Weighted
NOrder 0 1 0.581 0.602 0.021 25.6 29.5
NOrder 1 1 0.581 0.599 0.018 22.4 33.3
NOrder 1 0 0.581 0.599 0.017 21.3 26.4
NCount 1 0 0.581 0.598 0.017 20.7 22.2
NCount 0 1 0.581 0.598 0.017 20.3 26.1

Binary
TCount 1 0 0.590 0.607 0.016 18.3 34.1
TOrder 1 0 0.590 0.606 0.016 17.5 33.4
NCount 1 0 0.590 0.605 0.015 16.7 32.2
NOrder 1 0 0.590 0.605 0.015 16.2 31.6
Exist 1 0 0.590 0.605 0.014 16.0 32.4

AUC = area under the ROC curve (AUC), also known as the c-statistic. The Base and All c-statistics are from
the models in Equations (7) and (8), respectively. %�(c) and the Deviance difference are computed using the fits
of these two models; bigger values indicate greater improvement in model fit. Note the simplifying abbreviations
for the five levels of Multiplicity = Mult (Exist, TCount, TOrder, NCount, and NOrder) and Continuity = Cont,
Revisit = Rev, and Binary = Bin.

quiring Continuity obtained the greatest �(c) of 0.021 – a percentage increase of %�(c) = 25.6%
– over the base (undirected) projection. The improvement is well above that for the second-best
projection (�(c) = 0.018, %�(c) = 22.4%), which had the greatest reduction of deviance (33.3),
and differed from the top projection in that Continuity was imposed. A feature of the top-five
ranked projections is that Multiplicity is always one of its normalized levels, suggesting that
standardizing the contribution from each referral path to the edge weight enhanced predictive
accuracy. The sixth best weighted projection (not shown) is the directed version of the base
projection for weighted networks (existence level of Multiplicity, no Continuity or Revisit con-
straints). It’s %�(c) of 19.4% may be thought of as the value of capturing the simplest form
of directionality and the difference of 6.2% between this value and the value of 25.6% for the
optimal projection as a measure of the added-benefit of more nuanced processing of directional
information.

The top five %�(c) projections to a binary one-mode physician network enforce Continuity
and relax Revisit (lower segment of Table 4). These projections include the five levels of Mul-
tiplicity with total-count the best level. The same projection is optimal in terms of maximum
reduction of deviance. The consistency of these results with respect to Continuity and Revisit
consolidates the finding that their enforcement and relaxation, respectively, characterize the
best projection to a one-mode binary network. Multiplicity appears less relevant to an analysis
involving binary as opposed to weighted networks.

For a comparison of the estimated regression coefficients between the Optimal and Baseline
Estimated Models of ICD-status, see Section 3 of the Supplemental Appendix.
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6 Discussion
In this paper we developed and explored novel unipartite projections of the standard bipartite
network that connects physicians and their patients. This work was motivated by the historical
disregard shown to the time-order of patient visits with their physicians in the construction of
shared-patient networks and makes use of the underlying referral path information (An et al.,
2018b,a, 2019) that is lost (or neglected) in the formation of the traditional patient-physician
bipartite network. We found that referral paths contain substantial information that can be
used to better distinguish the one-mode networks from one another thereby enhancing the
potential to discover relationships of network features to important health variables compared
to what is possible with networks based on currently-used undirected projections. Imposing the
Continuity and Revisit constraints led to greater heterogeneity in all network features related
to directionality. The total-count and total-ordering levels of Multiplicity led to networks that
were more heterogeneous than under the commonly-used existence rule. Although not always
the case, the retention of weighted edges often led to greater heterogeneity in important network
features between the resulting networks.

In our study of the hospital-level adoption of implantable cardiac defribrillators (ICDs)
we showed that extracting directional information and placing more weight on referral paths
with certain features (e.g., feedback loops and direct referrals) increased the predictive accu-
racy of shared-patient networks. Imposing Revisit (i.e., making ABA the core subsequence or
building-block for the AB edge in the network) and the normalized total-ordering level of Multi-
plicity increased the c-statistic by 25.6% over the predictive accuracy of the standard undirected
weighted network. The fact that the predictive accuracy of hospital-level ICD-adoption status
was improved by the addition of directed network information confirms that time-ordered re-
ferral paths contain valuable information above and beyond undirected bipartite networks even
without knowing the true relationship statuses. While motivated by the development of directed
physician networks from health insurance claims data, the methodology in this paper may be
applied to any situation in which a directed network is to be constructed from the sequence of
encounters of one type of actor with actors of another type.

There are several ways in which the current work can be extended. Consideration of the
sequence ABA as a stronger marker of a meaningful relationship is a starting point for a more
general study that addresses questions such as: Do longer sequences such as ABABA hold
even greater significance than quantified by total-count and total-ordering (or their normalized
variants)? Should the physicians be further labeled by specialty or subspecialty? Rather than
summing referral paths over the entire study period to define edges and thus a single network
for each study unit (e.g., hospital), an alternative would be to allow edges to change status with
time. The involvement of dynamic networks would make research on temporal paths relevant
(Armbruster et al., 2017). Another extension is to use physician speciality labels in conjunc-
tion with information on directionality to obtain networks characterized by particular types of
referrals between types of specialists or to enlarge the projection space over which to further im-
prove the discriminatory and predictive power of the resulting networks. One may also question
the utility of projecting the network to a unipartite space at all. Network methods exist that
analyze data in the bipartite space, avoiding the loss of information that occurs in projection,
such as hypergraph representations (Gerow et al., 2015). However, for many uses of networks,
such methods will be further afield than using well-known methods on a network constructed a
different way.

By applying similar methods to those described in this paper, projections for optimizing
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actor (e.g., physician) positional network features could also be estimated. Each actor (e.g.,
physician in a hospital network) may be characterized by a vector of actor positional network
features that could be used for tasks such as predicting a physician’s future practice of medicine
(e.g., whether they’ll adopt certain medical therapies). Each physician could also be characterized
by the commonality of their role in referral paths. Physicians or hospitals who generally initiate
the same sequence of visits might practice medicine in a very rigid or organized way, which could
be good for minimizing variations in health care but bad for innovation. Hamming distances or
other measures of diversity could be used to quantify the similarity of the sequences initiated at
each physician. In addition, the referral paths involving groups of physicians may be quantified
by the extent to which they reflect cohesion in their coordination of care delivered to patients.

An important factor underlying referral paths is how long an interval to use to determine
when one referral path ends and another begins. While we based our choice of tmax = 30 on
the value used by CMS in their physician shared-patient datasets CMS (2021), tmax could be
optimized over. Such optimization could be accomplished by using cross-validation to find the
most predictive tmax simultaneously with the optimal combination of projection factors using
one part of the data with the rest of the data used to evaluate performance (discriminatory or
predictive power); this is another avenue for future work.

We hope this paper increases interest in using claims data to extract directional information
about physician relationships. Such information may enhance comparative analyses involving
physician shared-patient networks by generating more informative networks and summary net-
work features for use in subsequent analyses. More broadly, we hope that the recognition of the
diversity of explanatory power encoded in the choices of factor (projection-parameter) settings
as well as the utility of bringing to bear the framework of factorial experiment or other designed
experiments proves useful across many different disciplines and their associated network studies.

Supplementary Material
In the supplemental appendix, which accompanies this manuscript and will be published on the
journal website in the “Supplementary Material” section, we present expanded descriptions of
the data wrangling and additional results that were not able to be included in the main paper
due to length restrictions. The results in the supplemental appendix are supported by the text
that would have accompanied them in the main text had space permitted. In addition, we also
refer readers to the following GitHub site to obtain R and Python code used in the analyses:
https://github.com/kiwijomalley/OptimalBipartiteProjection.
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