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Abstract

In this supplemental appendix, we present expanded descriptions of the data wrangling and
additional results that were not able to be included in the main paper due to length restrictions.
The results are supported by the text that would have accompanied them in the main text had
space permitted.

1 Transformations to make Network Features Have Equivalent
Scales

For greater variance to imply greater discriminatory power, network features must have the same
scale across the projection methods. Otherwise, the scale of the edge-weights under a projection
may drive heterogeneity in a network feature as opposed to true sources of variation underlying
the network. For example, under binary-valued networks, density is restricted to be between 0 and
1 but for weighted networks, especially those built using the total-ordering level of Multiplicity,
density may attain large values and thus have a large variance across the hospitals. To alleviate
this concern, we scaled density for each hospital under a given projection by the ratio of the mean
density across all hospitals under the base projection (the binary-valued undirected network with
Multiplicity = 1 and neither Continuation nor Revisit binding) divided by the mean under the
given projection. We also made centralization scale-free by dividing by the square of the average
degree of the physicians in the network. Because the size of the largest connected component, the
number of components, and diameter are based on the presence or absence of edges, these were
not transformed. The features that are proportions or correlations are already scale-free and so
do not require transformation. Finally, to make the magnitude of the regression coefficients of
the network features directly comparable to one another, the features were normalized to have a
marginal variance of 1 across the hospitals and projections in the remaining study sample.
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2 Explanatory Power: Projection Factor Results

The projection factor regression coefficients in Table 1 reveal that Continuity and Revisit are gen-
erally highly significant (z-statistics almost always > 5 and often > 10) and that the direction of
their estimated coefficients (positive when enforced, negative when not enforced) is in alignment
with the optimal projections in Table 2 of the main text. The effects of Multiplicity and Binary
are generally less pronounced. In contrast, results for density, centralization and reciprocity are
notable in that Continuity and Revisit have z-statistics of smaller magnitude compared to those
for other features. The dominant predictors are the third-level of Multiplicity (total-ordering ver-
sus existence), for density and centralization only, and Binary (retaining weighted edges increases
heterogeneity) for reciprocity as well.

Table 1: Z-statistics of regression coefficients of projection-method factor model

Multiplicity Other projection factors
Measure TCount TOrder NCount NOrder Cont Rev Bin

Base Features
Density 0.13 2.89 −0.04 −0.06 0.55 1.57 −3.85
Centralization 0.31 2.98 −0.02 −0.06 0.16 1.57 −2.60
Triangles (undir)∗ . . . . −0.24 −0.98 .
Ave Clustering∗ . . . . 7.73 8.48 .
Size∗ . . . . −7.01 −30.41 .
Isolates∗ . . . . 6.53 18.73 .
Ncomponents∗ . . . . 6.53 18.73 .
Diameter∗ . . . . 10.04 11.36 .

Directed Features (only defined on directed networks)
Cor(In, Out Deg) −0.08 1.47 0.48 1.18 4.29 11.08 −1.80
Assort(In,In) 0.37 0.06 −0.22 −0.53 8.84 18.54 1.91
Assort(In,Out) 0.15 −0.16 −0.04 0.00 7.50 10.74 0.30
Assort(Out,In) −0.08 1.47 0.48 1.18 4.29 11.08 −1.80
Assort(Out,Out) 0.37 0.06 −0.22 −0.53 8.84 18.54 1.91
Reciprocity −0.26 0.61 1.27 0.89 1.45 2.94 −7.84
Transitive Triads 0.00 0.00 0.00 −0.01 −12.35 −14.48 0.00
Cyclical Triads 0.00 0.00 0.00 −0.01 −10.54 −13.34 0.00

Network-wide (Pooled feature) regressions
ICC (ρj) 0.99 −0.19 −0.58 −1.20 2.88 4.67 5.32
Ave Stand Var (s̄zj) 0.23 2.82 0.22 0.22 3.60 7.20 −3.74
Ave Rank (r̄j) 0.40 0.47 0.14 −0.46 4.52 8.80 −3.59

∗Feature indicates that the feature is invariant to weighted edges and so yields the same value as for the
binary network. In addition, the same binary network was realized across all levels of Multiplicity. Note
the simplifying abbreviations for the five levels of Multiplicity (Exist, TCount, TOrder, NCount, and

NOrder) and Continuity = Cont, Revisit = Rev, and Binary = Bin.

The results in the Network-wide segment of Table 1 (bottom three rows) are consistent
across the three network-wide discriminatory power measures. The standout factor is Revisit,
whose presence is associated with greater heterogeneity in the resulting hospital networks (z-
statistics 4.67, 7.20 and 8.80 for ρ̂j , s̄zj and r̄j). Imposing Continuity is also associated with
increased overall heterogeneity (t-statistics 2.88, 3.60 and 4.52). However, converting the network
to binary was associated with increased ρ̂j but decreased s̄zj and r̄j reinforcing the less decisive
results for Binary seen in Table 2 of the main text.
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3 Optimal and Baseline Estimated Models of ICD-status

Table 2: Z-statistics of regression coefficients of ∆(c)-optimal and baseline binary-valued model
of ICD status

Term Directed Base (Undir)
Multiplicity TotCount Existence
Continuity 1 0
Revisit 0 0
Directed 1 0
Binary 1 1

Undirected Measures
Density −3.272 −3.259
Centralization −1.498 −1.851
Triangles (undir) −2.316 −1.127
Ave Clustering 0.265 2.876
Size −1.131 1.365
Isolates −1.600 0.422
Components −0.186 0.162
Diameter −0.859 −0.211

Directed Measures
Cor(In, Out Degree) 2.290
Assort(In,In) −0.398
Assort(In,Out) 0.132
Assort(Out,In) 0.108
Assort(Out,Out) 0.332
Reciprocity 0.436
Transitive triads 2.733
Cyclical triads −2.250

The z-statistics are from the model in Equation (7) in the main text with the predictors evaluated
according to the projections specified in the segment of the table.

The z-statistics of the network features for the model in Equation (7) in the main text are
shown for the optimal and base projections to a binary network (Table 2); for parsimony, we
chose to only present results for the projection method that maximized AUC when directional
and base features were included as predictors (the AUC-All value in Table 4 of the main text).
A z-statistic whose magnitude is greater than 2 represents a statistically significant finding. We
find that triadic features played an important role in distinguishing ICD-capable and non-ICD-
capable hospitals. Although a lower number of closed triads overall is associated with a hospital
not being ICD-capable, having a higher proportion of closed triads that are transitive (knowing
physician A refers patients to B and C makes it likely that directional patient-sharing occurs
between B and C even when A is not involved) and a lower proportion that are cyclical is
associated with being ICD-capable. Therefore, an organizational structure that reveals itself in
the form of high transitivity (e.g., reinforced messaging or second-opinion gathering) may be a
marker of a hospital that is ICD-capable. Another potential marker is a correlation between the
in-degree and out-degree distribution of a hospital, which was also positively associated with
ICD-capability. Therefore, balanced flows of patients to and from high degree physicians appears
associated with a hospital investing in technologies for advanced cardiovascular care like ICDs.
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While further work is required to evaluate the generality of these findings, the crucial point is that
they were only able to be discovered by using information on directionality when constructing
shared-patient physician networks. This is the first surfacing of this linkage.
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