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Sampling-based Gaussian Mixture Regression for Big Data
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Abstract

This paper proposes a nonuniform subsampling method for finite mixtures of regression models
to reduce large data computational tasks. A general estimator based on a subsample is investi-
gated, and its asymptotic normality is established. We assign optimal subsampling probabilities
to data points that minimize the asymptotic mean squared errors of the general estimator and
linearly transformed estimators. Since the proposed probabilities depend on unknown parame-
ters, an implementable algorithm is developed. We first approximate the optimal subsampling
probabilities using a pilot sample. After that, we select a subsample using the approximated sub-
sampling probabilities and compute estimates using the subsample. We evaluate the proposed
method in a simulation study and present a real data example using appliance energy data.

Keywords EM algorithm; massive data; optimal probabilities; supsampling

1 Introduction
A finite mixture of regression (FMR) model is a statistical tool widely used in various fields
such as econometrics, psychology, genetics, marketing, and engineering (e.g., McLachlan and
Peel, 2004). FMR models can identify heterogeneous groups in the population and examine
the linear relationships between a response and a set of covariates for different groups. For
statistical estimation, the maximum likelihood estimator (MLE) is mainly used to estimate
unknown parameters. Since the MLE has no closed-form solution, iterative numerical algorithms
are often implemented. The expectation-maximization (EM) (Dempster et al., 1977) is a classic
approach for conducting maximum likelihood estimation in FMR models.

The EM algorithm, however, can cause an excessive computing burden for fitting FMR
models on massive data. Subsampling is a technique to reduce the computational task by using
a subsample extracted from the full data. In the linear regression framework, Drineas et al.
(2006) and Ma et al. (2014) developed sampling algorithms that use statistical leverage scores
of the covariate matrix to specify non-uniform subsampling probabilities. Wang et al. (2019)
proposed a deterministic sub-data selection method, which does not involve random sampling.
Wang et al. (2018) proposed optimal subsampling strategies in logistic regression. They defined
optimal subsampling probabilities by minimizing the asymptotic mean squared error (MSE) of
the subsample-based estimator, and extracted sub-data from the full data using approximated
optimal subsampling probabilities to obtain estimates. Recently, the optimal subsampling ap-
proach based on Wang et al. (2018) has been extended to different model settings, including
multinomial logistic regression (e.g., Yao and Wang, 2019), generalized linear models (GLMs)
(e.g., Ai et al., 2021b; Lee et al., 2021), quantile regression (e.g., Wang and Ma, 2021; Ai et al.,
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2021a), quasi-likelihood models (e.g., Yu et al., 2022), and additive hazards models (e.g., Zuo
et al., 2021).

In this paper, we develop optimal subsampling strategies for Gaussian FMR models. We
first suggest a general estimator based on a subsample and establish its asymptotic normality.
To select informative data points, we specify optimal subsampling probabilities by minimizing
the asymptotic MSE of the resultant estimators. However, since the specified probabilities de-
pend on unknown parameters, they cannot be calculated directly. To handle this challenge, we
propose a two-step algorithm. In the first step, we use a pilot sample to approximate the optimal
subsampling probabilities. In the second step, we select a subsample based on the approximated
subsampling probabilities and run the EM-Algorithm to obtain estimates using the subsample.

The rest of the paper is organized as follows. In Section 2, we first briefly review Gaus-
sian mixture regression, and then present subsample-based estimation under the Gaussian FMR
model. Asymptotic results of the resulting estimators are investigated, and the two-step algo-
rithm to conduct the optimal subsampling strategy is presented. Section 3 assesses the perfor-
mance of the proposed methods using simulated and real data sets. Section 4 summarizes the
paper. Proofs of the theoretical results are collected in Supplementary materials.

2 Mixture Regression Models and Optimal Subsampling Strat-
egy

2.1 Finite Mixture of Gaussian Linear Regressions
In this section, we review a finite mixture of Gaussian linear regressions. Suppose that y is
a response and x is a d dimensional covariate with the first entry being one. The conditional
density function of y given x is

f (y|x; θ) =
J∑

j=1

pjfj (y|x;βj , σj ), (1)

where J is a given number of components, pj ’s are the component weights satisfying pj > 0 for
each j and

∑J
j=1 pj = 1, fj (y|x;βj , σj ) is the density of a normal distribution with mean xTβj

and variance σ 2
j , βj is a d × 1 vector of unknown regression coefficients including an intercept,

and θ = (β1, . . . , βJ , σ1, . . . , σJ , p1, . . . , pJ−1). For identifiability of the finite mixture of Gaussian
linear regressions, we assume that the density function f (y|x; θ) has common support on (x, y)

and is identifiable in θ up to the permutation of the components of the mixture. The maximum
likelihood estimator (MLE), θ̂ , for the unknown parameter θ is the maximizer of the following
log-likelihood,

�(θ) =
n∑

i=1

log

⎛
⎝ J∑

j=1

pjfj (yi |xi;βj , σj )

⎞
⎠ . (2)

The EM algorithm is an iterative algorithm that can be used to optimize (2). Define that zij is
equal to one if yi belongs to the jth component and zero otherwise for i = 1, . . . , n, and write
zi = (zi1, . . . , ziJ ). Then, the EM algorithm can be used to find the MLE by maximizing the
complete-data log-likelihood of {(xi , zi , yi) : i = 1, . . . , n},

�c(θ) =
n∑

i=1

J∑
j=1

zij log
{
pjfj (yi |xi;βj , σj )

}
. (3)
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In the expectation step (E-step), we calculate the conditional expectation of the complete-data
log-likelihood given the current parameter estimates and the observed data,

Q(θ |θ (s)) =
n∑

i=1

J∑
j=1

τ
(s)
ij log{pjfj (yi |xi;βj , σj )},

where

τ
(s)
ij = p

(s)
j fj (yi |xi;β

(s)
j , σ

(s)
j )

J∑
k=1

p
(s)
k fk(yi |xi;β

(s)
k , σ

(s)
k )

.

In the maximization step (M-step), we update the estimates by maximizing Q(θ |θ (s)). For
j = 1, . . . , J , the updated estimates are

p̂
(s+1)
j =

n∑
i=1

τ
(s)
ij

n
,

β̂
(s+1)

j =
(

n∑
i=1

τ
(s)
ij xixT

i

)−1 n∑
i=1

τ
(s)
ij yixi ,

σ̂
2(s+1)
j =

n∑
i=1

τ
(s)
ij (yi − xT

i β̂
(s)

j )2/

n∑
i=1

τ
(s)
ij .

The computing time which is required until convergence is O(ξJnd2), where ξ is the number of
iterations.

2.2 Estimation and Optimal Subsampling Strategy
2.2.1 Subsample-based Estimation

Since iterative calculations for enormous data cause excessive computational burden, we consider
subsample-based estimation to obtain the parameter estimates in this section. We denote the
full data as Dn = {(xi , yi) : i = 1, . . . , n}. Let {πi}ni=1 be the subsampling probabilities assigned
to all observations satisfying

∑n
i=1 πi = 1.

We consider a random subsample of size r selected from the full data Dn based on the
subsampling probabilities. Then, the subsampling estimator θ̃ can be obtained by maximizing
the target function

�∗(θ) =
r∑

i=1

1

π∗
i

log

⎛
⎝ J∑

j=1

pjfj (y
∗
i |x∗

i ;βj , σj )

⎞
⎠ , (4)

where x∗
i ’s, y∗

i ’s and π∗
i ’s, are covariates, responses, and subsampling probabilities in the sub-

sample, respectively. The EM algorithm can be applied to optimize the target function in (4).
The details of the algorithm are presented in Algorithm 1.

Now, we derive the asymptotic distribution of θ̃ . The following assumptions are needed to
establish it.

Assumption 1. For θ in a neighborhood of true parameter θ t = (β t
1, . . . , β

t
J , σ t

1, . . . , σ
t
J , pt

1, . . .,
pt

J−1), M = n−1∂2�(θ)/(∂θ∂θT) goes to a positive-definite matrix in probability as n → ∞.
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Algorithm 1 EM Algorithm for target function (4).

Estimates can be obtained by maximizing the sampled complete-data target function,

�∗
c(θ) =

r∑
i=1

1

π∗
i

J∑
j=1

z∗
ij log

{
pjfj (y

∗
i |x∗

i )
}
,

where z∗
ij is equal to one if y∗

i belongs to the jth component and zero otherwise.
E-step: Given the current estimate θ (s),

Q(θ |θ (s)) =
r∑

i=1

1

π∗
i

J∑
j=1

τ
∗(s)
ij log pjfj (y

∗
i |x∗

i ;βj , σj ),

where

τ
∗(s)
ij = p

(s)
j fj (y

∗
i |x∗

i ;β
(s)
j , σ

(s)
j )

J∑
k=1

p
(s)
k fk(y

∗
i |x∗

i ;β
(s)
k , σ

(s)
k )

.

M-step: Updates the estimate θ (s+1) by maximizing Q(θ |θ (s)). For j = 1, . . . , J ,

p̂
(s+1)
j =

(
r∑

i=1

1

π∗
i

)−1 n∑
i=1

τ
∗(s)
ij

π∗
i

,

β̂
(s+1)

j =
(

r∑
i=1

τ
∗(s)
ij x∗

i x∗
i
T

π∗
i

)−1 n∑
i=1

τ
∗(s)
ij y∗

i x∗
i

π∗
i

,

σ̂
2(s+1)
j =

(
r∑

i=1

τ
∗(s)
ij

π∗
i

)−1 n∑
i=1

τ
∗(s)
ij (y∗

i − x∗
i
Tβ̂

(s)

j )2

π∗
i

.

Repeat until convergence.

Assumption 2. n−2
∑n

i=1 π−1
i ‖xi‖8 = OP (1) and n−2

∑n
i=1 π−1

i (yi −βT
j xi)

8 is uniformly bounded
for βj and j=1,. . . ,J.

Assumption 3. The parameter space � is compact. For any three elements θj , θk, and θl of
θ ∈ �, the third partial derivative

∣∣∂3�∗(θ; x, y)/(∂θj∂θk∂θl)
∣∣ is bounded by an integrable function

B(x, y).

Assumption 4. Denote �̇i(θ) = ∂ log f (yi |xi; θ)/∂θ . There exists some δ > 0 such that
n−2−δπ−1−δ

i

∑n
i=1 ‖�̇i(θ)‖(2+δ) = OP (1).

Assumption 1 is a condition to guarantee that the log-likelihood function is convex for large
n, and Assumptions 2 and 3 are conditions on the subsampling probabilities. Assumption 4 is
needed for the Lindeberg-Feller Central Limit Theorem.
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Theorem 1. Let θ̃ be the maximizer of (4). Under the Assumptions 1-4, as r, n → ∞, if
r/n = o(1), √

rV−1/2(θ̃ − θ t ) −→ N(0, I) in distribution, (5)

where
V = M−1

t VπM−1
t , Mt = 1

n

∂2�(θ t )

∂θ∂θT ,

and

Vπ =
n∑

i=1

�̇i(θ t )�̇i(θ t )
T

n2πi

.

2.2.2 Optimal Subsampling Probability and Two-step Algorithm

In this section, we specify the optimal subsampling probabilities based on the result in Theo-
rem 1. First, we consider minimizing the trace of V, tr(V), which can be viewed as minimizing
the asymptotic MSE of θ̃ .

Theorem 2. The optimal subsampling probabilities that minimize tr(V) are

πV
i =

∥∥M−1
t �̇i(θ t )

∥∥
n∑

k=1

∥∥M−1
t �̇i(θ t )

∥∥ , i = 1, . . . , n. (6)

The computing time takes O{[J (d + 2) − 1]2n} to calculate the optimal subsampling prob-
abilities presented in Theorem 2.

We further consider minimizing the asymptotic MSE of linearly transformed subsample
estimators to alleviate the computation time. We assign the optimal subsampling probabilities
by minimizing the trace of Vπ which is equivalent to minimizing the asymptotic MSE of Mθ̃ .
In addition to that, we also focus on the asymptotic MSE of the coefficient estimator β̃ =
(β̃1, . . . , β̃J ). Denote β = (β1, . . . , βJ ), θ−β = (σ1, . . . , σJ , p1, . . . , pJ−1),

Mt,11 = 1

n

∂2�(θ t )

∂β∂βT , Mt,12 = 1

n

∂2�(θ t )

∂β∂θT
−β

, and Mt,22 = 1

n

∂2�(θ t )

∂θ−β∂θT
−β

.

From the result of Theorem 1, we can derive
√

rV−1/2
β (β̃ − β t ) −→ N(0, I) in distribution,

where
Vβ = (Minv

β , Minv
θ−β

)Vπ(Minv
β , Minv

θ−β
)T, Minv

β = (Mt,11 − Mt,12M−1
t,22M

T
t,12)

−1,

Minv
θ−β

= −Minv
β Mt,12M−1

t,22,

and β t = (β t
1, . . . , β

t
J ). We minimize the trace of Vβ to determine the subsampling probabilities.

Theorem 3. The optimal subsampling probabilities that minimize tr(Vπ) are

π
Vπ

i =
∥∥�̇i(θ t )

∥∥
n∑

k=1

∥∥�̇k(θ t )
∥∥ , i = 1, . . . , n, (7)
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Algorithm 2 Two-step Algorithm.
1. Draw a pilot sample of size r0 with the uniform sampling probability to obtain an estimate

θ̃0. By replacing θ with θ̃0, approximate the optimal subsampling probabilities in (6), (7),
or (8).

2. Draw a subsample of size r with replacement based on the approximated optimal subsampling
probabilities in the previous step. Combine the pilot sample in the previous step with the
subsample in the second step and run Algorithm 1 with the data of size r0 + r to obtain the
estimate θ̆ .

and the optimal subsampling probabilities that minimize tr(Vβ) are

π
Vβ

i =
∥∥∥(Minv

β , Minv
θ−β

)�̇i(θ t )

∥∥∥
n∑

k=1

∥∥∥(Minv
β , Minv

θ−β
)�̇k(θ t )

∥∥∥
, i = 1, . . . , n. (8)

The calculations of the subsampling probabilities π
Vπ

i and π
Vβ

i take O{[J (d + 2)− 1]n} and
O{[(Jd)2 + (2J − 1)2]n} time, respectively. Compared to πV

i , they require less computing time.
Since the subsampling probabilities in (6), (7), and (8) depend on the unknown parameters,

we propose an implementable two-step algorithm. In the first step, we approximate the proposed
subsampling probabilities by replacing θ with an estimate θ̃0 obtained from a pilot sample. In
the next step, we draw a subsample with replacement based on the approximated subsampling
probabilities, and run Algorithm 1 with the subsample. We present the practical algorithm
in Algorithm 2.

Remark 1. Based on the standard error formula proposed by Wang et al. (2018), we suggest
to estimate the variance-covariance matrix of the resultant estimator using V̆ = M̆−1V̆πM̆−1 for
statistical inference, where

M̆ =
r0+r∑
i=1

�̈∗
i (θ̆)

n(r0 + r)π∗
i

, V̆π =
r0+r∑
i=1

�̇∗
i (θ̆)�̇∗

i (θ̆)T

n2(r0 + r)(π∗
i )2

, �̇∗
i (θ) = ∂ log f (y∗

i |x∗
i ; θ)

∂θ
,

and �̈∗
i (θ) = ∂�̇∗

i (θ)/∂θ .

3 Numerical Examples

3.1 Simulation

In this section, we conduct a simulation study to assess the performance of the proposed method.
We consider three different models.

Model 1. We examine a two-component Gaussian mixture regression model,

p1f1(yi |xi;β1, σ1) + p2f2(yi |xi;β2, σ2),

where fj (y|xi;βj , σj ) is the density of a normal distribution with mean xT
i βj and variance

σ 2
j , and βj = (β0j , β1j , β2j , β3j ) is a 4-dimensional vector with the intercept β0j for j = 1, 2.
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Figure 1: MSEs of Model 1 for varied (σ 2
1 , σ 2

2 ), (p1, p2), and r. OPT-V, OPT-Vπ , and OPT-Vβ

use πV
i , π

Vπ

i , and π
Vβ

i , respectively. UNI uses uniform subsampling probabilities.

Covariate xi follows a multivariate normal distribution with mean 0 and variance-covariance
matrix �, N(0, �), where �lm = 0.5I (l �=m) for l, m = 1, . . . , 3 and I () is the indicator function.
The true values of coefficients are (β1, β2) = {(1, 1, 1, 1), (4, 4, 4, 4)}. We set n = 105, (σ 2

1 , σ 2
2 ) ∈

{(1/2, 1/2), (1, 1), (2, 2)}, and (p1, p2) ∈ {(1/2, 1/2), (4/5, 1/5)}.
Model 2. Model setup is the same for Model 1, except for true values of coefficients, (β1, β2) =
{(1, 1, 1, 1), (−4, −4, −4, −4)}.
Model 3. We examine a three-component Gaussian mixture regression model,

p1f1(yi |xi;β1, σ1) + p2f2(yi |xi;β2, σ2) + p3f3(yi |xi;β3, σ3),

where f3(yi |xi;β3, σ3) is the density of a normal distribution with mean xT
i β3 and variance σ 2

3 and
β3 is a 4-dimensional vector with an intercept. We consider the same distribution of the covariates
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Figure 2: MSEs of Model 2 for varied (σ 2
1 , σ 2

2 ), (p1, p2), and r. OPT-V, OPT-Vπ , and OPT-Vβ

use πV
i , π

Vπ

i , and π
Vβ

i , respectively. UNI uses uniform subsampling probabilities.

as in Model 1. We set (β1, β2, β3) = {(1, 1, 1, 1), (−4, −4, −4, −4), (4, 4, 4, 4)}, (σ 2
1 , σ 2

2 , σ 2
3 ) ∈

{(1/2, 1/2, 1/2), (1, 1, 1), (2, 2, 2)}, and (p1, p2, p3) ∈ {(1/3, 1/3, 1/3), (1/2, 1/4, 1/4)}.
We calculate empirical MSEs based on

∑K
k=1 ‖θ̃ (k) − θ‖2/K where K is the number of repli-

cations, and θ̃ (k) is the estimate of θ provided from the k-th subsample. For comparison, we
consider the proposed subsampling probabilities, πV

i (OPT-V), π
Vπ

i (OPT-Vπ), π
Vβ

i (OPT-Vβ),
and uniform subsampling probabilities (UNI). For UNI, subsamples of size r0 + r are used. We
set K = 1000, r0 = 500, and r = 500, 1000, 1500, 2000. For the initial values, k-means clustering
is first conducted to form J groups. Then, we implement ordinary least square regressions for
each group to obtain the initial values, β

(0)
j and σ

(0)
j for j = 1, 2, . . . , J . We set J = 2 for Model 1

and 2, and J = 3 for Model 3.
Figures 1, 2, and 3 present the simulation results for MSE. We observe that the proposed

methods give better performance than UNI, with the smaller MSEs in all cases. OPT-V and
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Figure 3: MSEs of Model 3 for varied (σ 2
1 , σ 2

2 , σ 2
3 ), (p1, p2, p3), and r. OPT-V, OPT-Vπ , and

OPT-Vβ use πV
i , π

Vπ

i , and π
Vβ

i , respectively. UNI uses uniform subsampling probabilities.

OPT-Vβ show smaller MSEs than OPT-Vπ since they minimize the asymptotic MSEs of the
unknown parameter estimator θ̃ and the coefficient estimator β̃, respectively. The MSEs of
the proposed methods decrease when the subsample size r increases, which agrees with the
asymptotic result of the resultant estimator.

We investigate the proposed standard error using the diagonal elements of the variance-
covariance matrix in Remark 1. Using the formula, we estimate tr(V), i.e, the MSE of θ̃ . Also,
we calculate empirical variances for each of the estimators and then compute the sum of all
these variances (EmpVar), and compare it with the average estimated MSE (AveMSE). Table 1
presents the results for AveMSE and EmpVar for Model 1. AveMSE provides similar results to
EmpVar for all the cases.

We also examine components with different variances using data from Model 1. The vari-
ances (σ 2

1 , σ 2
2 ) ∈ {(1/2, 1), (1, 2)} are considered. Other settings are the same as those of Model 1.
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Table 1: Average estimated MSE (AveMSE) and empirical variance (EmpVar) of Model 1 for
varied (σ 2

1 , σ 2
2 ), (p1, p2), and r.

(p1, p2) = (1/2, 1/2) (4/5, 1/5)

r = 500 1000 1500 2000 500 1000 1500 2000

(σ 2
1 , σ 2

2 ) = (1/2, 1/2)

OPT-V AveMSE 0.011 0.007 0.005 0.004 0.015 0.009 0.006 0.005
EmpVar 0.011 0.007 0.005 0.004 0.015 0.009 0.006 0.005

OPT-Vπ AveMSE 0.012 0.007 0.005 0.004 0.017 0.010 0.007 0.006
EmpVar 0.012 0.007 0.005 0.004 0.017 0.010 0.007 0.006

OPT-Vβ AveMSE 0.012 0.007 0.005 0.004 0.016 0.009 0.006 0.005
EmpVar 0.011 0.007 0.005 0.004 0.015 0.009 0.006 0.005

(σ 2
1 , σ 2

2 ) = (1, 1)

OPT-V AveMSE 0.023 0.014 0.010 0.008 0.033 0.019 0.013 0.010
EmpVar 0.023 0.014 0.010 0.008 0.032 0.019 0.013 0.010

OPT-Vπ AveMSE 0.025 0.016 0.011 0.009 0.037 0.022 0.015 0.012
EmpVar 0.024 0.016 0.011 0.009 0.036 0.022 0.015 0.012

OPT-Vβ AveMSE 0.024 0.015 0.011 0.008 0.033 0.019 0.013 0.010
EmpVar 0.023 0.015 0.011 0.008 0.032 0.018 0.013 0.010

(σ 2
1 , σ 2

2 ) = (2, 2)

OPT-V AveMSE 0.050 0.030 0.022 0.017 0.072 0.041 0.028 0.021
EmpVar 0.049 0.030 0.022 0.017 0.068 0.040 0.028 0.021

OPT-Vπ AveMSE 0.054 0.035 0.025 0.020 0.080 0.048 0.033 0.026
EmpVar 0.053 0.034 0.025 0.020 0.079 0.046 0.033 0.026

OPT-Vβ AveMSE 0.051 0.031 0.023 0.018 0.073 0.042 0.029 0.022
EmpVar 0.051 0.031 0.022 0.018 0.069 0.040 0.028 0.022

We can see that the MSEs for the proposed methods are smaller than UNI in Figure 4, and the
average estimated MSEs are quite close to the empirical MSEs in Table 2.

To evaluate computational efficiency, we record the average CPU time for Model 1 under
a MacBook Pro with 2.5 GHz Intel Core i7 processor and 16 GB memory. The simulation is
conducted using the R programming language. We also provide the computing time for the full
data. As shown in Table 3, the sampling strategies based on the optimal subsampling probabil-
ities can save the computing time compared to the full data approach (Full). As expected, the
computing times for OPT-Vπ and OPT-Vβ were less than for OPT-V. Since UNI does not need
additional computation for calculating the subsampling probabilities, it is the fastest algorithm.

We conduct additional simulations using data from Model 1 to check the computational
advantage on larger datasets. We increase the full data size n = 5 × 105, 106, 5 × 106, 107 and
consider a 10-dimensional vector of the regression coefficients for each component. Table 4 shows
the results when r0 = 500, r = 2000, and K = 100. We observe that the proposed subsampling
algorithms save more computation time as the full data size increases. OPT-V, OPT-Vβ , and
OPT-Vπ are about 7.7, 8.7, 21.8 times faster than Full at n = 5 × 105, and about 11.2, 12.1,
32.2 times faster than Full at n = 107.
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Figure 4: MSEs of Model 1 for varied (p1, p2), and r when (σ 2
1 , σ 2

2 ) ∈ {(1/2, 1), (1, 2)}. OPT-V,
OPT-Vπ , and OPT-Vβ use πV

i , π
Vπ

i , and π
Vβ

i , respectively. UNI uses uniform subsampling
probabilities.

3.2 Real Data Example

In this section, we apply the proposed methods to appliance energy data.1 This dataset includes
appliances energy consumption and humidity collected with an internet-connected energy mon-
itoring system and a ZigBee wireless sensor network, respectively (Candanedo et al., 2017). For
the response, appliances energy consumption is used, and three humidities in different areas
are considered as covariates: kitchen area (H-Kit), living room area (H-Liv), and laundry area
(H-Lau). We use the log-transformed response and covariates. The full data size is n = 19, 735.
Figure 5 presents the distribution of the log-transformed energy consumption showing two peaks
(around 4.2 and 5.8), and the relationships between energy consumption and humidities moni-
tored in different areas.

Table 5 provides the parameter estimates from the full data and the average of parameter
estimates for subsampling methods based on 1000 subsamples with r0 = 500 and r = 1500. We
observe that the estimates from the optimal subsampling probabilities are close to those from
the full data. For the average CPU time, OPT-V, OPT-Vπ , and OPT-Vβ methods took 0.065,
0.060, and 0.064 seconds to calculate the estimates, respectively. It took 0.343 seconds to obtain
estimates from the full data.

To compare OPT-V, OPT-Vπ , and OPT-Vβ with UNI, we set r0 = 500, and r = 500, 1000,

1The data is available at the UCI Machine Learning repository https://archive.ics.uci.edu/ml/datasets/
Appliances+energy+prediction

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
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Table 2: Average estimated MSE (AveMSE) and empirical variance (EmpVar) of Model 1 for
varied (p1, p2), and r when (σ 2

1 , σ 2
2 ) ∈ {(1/2, 1), (1, 2)}.

(p1, p2) = (1/2, 1/2) (4/5, 1/5)

r = 500 1000 1500 2000 500 1000 1500 2000

(σ 2
1 , σ 2

2 ) = (1/2, 1)

OPT-V AveMSE 0.0175 0.0107 0.0077 0.0060 0.0253 0.0141 0.0096 0.0071
EmpVar 0.0166 0.0102 0.0075 0.0057 0.0258 0.0144 0.0096 0.0072

OPT-Vπ AveMSE 0.0186 0.0117 0.0085 0.0067 0.0298 0.0177 0.0124 0.0096
EmpVar 0.0182 0.0114 0.0083 0.0065 0.0315 0.0187 0.0129 0.0099

OPT-Vβ AveMSE 0.0180 0.0112 0.0081 0.0063 0.0257 0.0145 0.0098 0.0074
EmpVar 0.0171 0.0106 0.0076 0.0061 0.0261 0.0144 0.0100 0.0074

(σ 2
1 , σ 2

2 ) = (1, 2)

OPT-V AveMSE 0.0375 0.0229 0.0165 0.0128 0.0533 0.0298 0.0201 0.0151
EmpVar 0.0348 0.0220 0.0157 0.0119 0.0544 0.0309 0.0208 0.0156

OPT-Vπ AveMSE 0.0403 0.0254 0.0185 0.0147 0.0610 0.0359 0.0250 0.0193
EmpVar 0.0382 0.0247 0.0179 0.0140 0.0641 0.0377 0.0265 0.0204

OPT-Vβ AveMSE 0.0381 0.0237 0.0171 0.0133 0.0541 0.0304 0.0206 0.0155
EmpVar 0.0356 0.0225 0.0159 0.0122 0.0552 0.0312 0.0212 0.0159

Table 3: Average of computing time (in seconds) using data from Model 1 for different r at
fixed r0 = 500, (σ 2

1 , σ 2
2 ) = (2, 2), and (p1, p2) = (1/2, 1/2). The computing time (in seconds)

calculated from the full data is provided.

r

500 1000 1500 2000

OPT-V 0.0778 0.0859 0.0881 0.0943
OPT-Vπ 0.0560 0.0610 0.0630 0.0655
OPT-Vβ 0.0704 0.0764 0.0780 0.0846
UNI 0.0156 0.0209 0.0241 0.0284

Full data CPU seconds: 0.6903

1500, 2000. We calculate the MSEs based on
∑K

k=1 ‖θ̃ (k) − θ̂‖2/K where K is the number of
replications, θ̃

(k)
is the estimate of θ provided from the k-th subsample, and θ̂ is the estimate

calculated from the full data. Figure 6 shows the results for MSE based on 1000 subsamples of
the size r0 + r from the full data. OPT-V, OPT-Vπ , and OPT-Vβ provide smaller MSE than
UNI.

4 Conclusion
In the big data era, statistical modeling with a large amount of data causes computational
burden. In this article, we proposed an optimal subsampling method under mixtures of lin-
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Table 4: Average of computing time (in seconds) using data from Model 1 with varied full data
size n at fixed r = 2000, r0 = 500, (σ 2

1 , σ 2
2 ) = (2, 2), and (p1, p2) = (1/2, 1/2). The number of

coefficients for each component is 10, and repetition is 100. The computing time (in seconds)
for the full data is provided.

n

5 × 105 106 5 × 106 107

OPT-V 0.6785 1.2601 6.1786 12.1675
OPT-Vπ 0.2410 0.4383 2.0605 4.2224
OPT-Vβ 0.6051 1.1485 5.5159 11.2271
UNI 0.0401 0.0409 0.0403 0.0413
Full 5.2446 10.8181 66.0913 135.9436

Figure 5: Histogram of log-transformed appliances energy consumption (top-left) and scatter
plots between appliances energy consumption and humidity at different areas (top-right, bottom-
left, bottom-right).

ear regression models for computational efficiency. We derived the asymptotic results of the
subsample-based estimator and proposed the optimal subsampling probabilities. Since the sub-
sampling probabilities cannot be directly calculated, a practical algorithm was also proposed. We
first approximated the subsampling probabilities using a pilot sample and then drew a subsample
with the approximated probabilities to obtain parameter estimates.

There are important questions for future research. In this paper, we assume that the number
of components J is given. We often need to select the number of components in real applications.
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Table 5: Average estimates of the proposed methods and UNI for the appliances energy data.
1000 subsamples of r0 = 500, and r = 1500 are used. The estimates from the full data is also
provided (Full).

Full OPT-V OPT-Vπ OPT-Vβ UNI

Com.1 Com.2 Com.1 Com.2 Com.1 Com.2 Com.1 Com.2 Com.1 Com.2

Intercept 7.381 6.788 7.391 6.737 7.381 6.718 7.382 6.705 7.374 6.755
H-Kit 3.657 1.623 3.654 1.637 3.662 1.622 3.658 1.636 3.649 1.660
H-Liv −1.703 −0.908 −1.700 −0.916 −1.707 −0.896 −1.704 −0.910 −1.699 −0.932
H-Lau −2.851 −1.005 −2.854 −0.997 −2.853 −0.997 −2.851 −0.994 −2.846 −1.011

Variance 0.150 0.161 0.149 0.160 0.149 0.159 0.150 0.159 0.149 0.158
Mix proportion 0.892 0.108 0.892 0.108 0.892 0.108 0.892 0.108 0.892 0.108

Figure 6: MSEs obtained from 1000 subsamples of the appliances energy data for varied r.
OPT-V, OPT-Vπ , and OPT-Vβ use πV

i , π
Vπ

i , and π
Vβ

i , respectively. UNI uses uniform subsam-
pling probabilities.

One possible approach is to consider model-selection criteria using the Akaike information cri-
terion (AIC) and the Bayesian information criterion (BIC). Lumley and Scott (2015) proposed
the design-based AIC and BIC for survey data under a sampling design. Based on the criteria,
a modified AIC and BIC can be developed for choosing the number of components in terms of
the subsampling framework. Also, we consider the weighted objective function assigning higher
weights to less informative data points. For more efficient estimation, it would be interesting to
develop unweighted subsample-based estimators by avoiding the inverse probability weighting
in a target function (e.g Wang, 2019; Wang and Kim, 2020). These are areas of future research.

Supplementary Material
• Software: R codes used for the proposed methods and algorithms are available on GitHub

https://github.com/pedigree07/OPTMixture.
• Supplementary document: The supplementary document provides the proofs of the theorems.

https://github.com/pedigree07/OPTMixture
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