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Abstract

We introduce the stepp packages for R and Stata that implement the subpopulation treatment
effect pattern plot (STEPP) method. STEPP is a nonparametric graphical tool aimed at examin-
ing possible heterogeneous treatment effects in subpopulations defined on a continuous covariate
or composite score. More pecifically, STEPP considers overlapping subpopulations defined with
respect to a continuous covariate (or risk index) and it estimates a treatment effect for each
subpopulation. It also produces confidence regions and tests for treatment effect heterogeneity
among the subpopulations. The original method has been extended in different directions such
as different survival contexts, outcome types, or more efficient procedures for identifying the
overlapping subpopulations. In this paper, we also introduce a novel method to determine the
number of subjects within the subpopulations by minimizing the variability of the sizes of the
subpopulations generated by a specific parameter combination. We illustrate the packages using
both synthetic data and publicly available data sets. The most intensive computations in R are
implemented in Fortran, while the Stata version exploits the powerful Mata language.
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1 Introduction
Results from randomized clinical trials (RCTs) provide the basis for evidence-based medicine by
comparing the benefits of alternative therapies. Usually, the assessment of effectiveness for the
different therapeutic strategies is based on the entire cohort of patients enrolled in the study.
However, the extent of the treatment effect can be heterogeneous among subsets of patients
defined by prognostic factors. Instead of the traditional “one-size-fits-all” treatment recommen-
dation, understanding the interplay between treatment effect and covariates of interest may
provide the necessary information to customize treatment for individuals to maximize the ben-
efit. A similar situation also occurs in other fields, such as epidemiology or the social sciences.
Depending on the field, the terms that are commonly used to refer to these assessments are in-
teraction or moderation analysis (see for example VanderWeele, 2015, Hayes, 2017, Imai, 2017).

A simple but effective approach to perform this kind of evaluation consists of the estimation
of the treatment effect within (disjoint) subsets of the patient population, a practice that is often
referred to as subgroup analysis. Performing subgroup analysis is in general a challenging task
(Lagakos, 2006; Wang et al., 2007; Pocock, 2008). The two major statistical concerns are the
inflation of false positive rates due to repeated testing and the lack of power to detect different
treatment effects across subgroups. Traditionally, patients are divided into subgroups according
to the median, quartiles or other convenient cut-points of one or more covariates of interest,
and treatment comparisons are then performed within each subgroup. Unfortunately, the conve-
nient cut-points do not necessarily create clinically relevant subgroups. Furthermore, there may
be few patients in some subgroups, thus reducing the precision of the groupwise estimates of
the treatment effect. For survival data, treatment-covariate interactions can be analyzed using
regression methods such as the Cox proportional hazards model (Cox, 1972) or cumulative inci-
dence models (Gray, 1988; Fine and Gray, 1999). In these cases the focus of the analysis lies on
the significance test of the interaction’s coefficient. In this work we focus on another method for
examining possible treatment effect heterogeneity, the subpopulation treatment effect pattern
plot (STEPP) method first introduced by Bonetti and Gelber (2000). STEPP is an exploratory
graphical tool designed to help researchers investigate the potential heterogeneity of treatment
effects and facilitate the interpretation of estimates of treatment effect derived from different
but potentially overlapping subsets of patients. The method is aimed at determining whether
the magnitude of the treatment effect changes as a function of the values of the covariate used
to define the subpopulations. STEPP addresses some of the concerns associated with tradi-
tional subgroup analysis. Indeed, the main advantages of STEPP are the fact that it requires
few assumptions and that it provides a graphical display to show potentially complex interac-
tions, thus assisting researchers in the interpretation of the results. While traditional statistical
methods for subgroup analysis divide the population into disjoint subgroups, STEPP takes a
different approach by constructing overlapping subpopulations along the continuum of a contin-
uous covariate of interest (e.g., a biomarker), thereby improving the precision of the estimated
treatment effect within the subgroups. For each subpopulation, an estimate of treatment effect
is computed. Such treatment effect estimates are clearly correlated, as neighboring subpopula-
tions share patients. The estimates are represented graphically in different diagrams to help the
researcher interpret the results, together with relevant inference.

In this article, we introduce the stepp packages that implement all the methods currently
available for conducting a STEPP analysis. We developed the same package for the R and Stata
software. The R version includes some Fortran code to perform the most intensive computa-
tions, while the Stata version of the package exploits the power of the Mata language. The R
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current version of the stepp package is available from the Comprehensive R Archive Network
(CRAN) at https://cran.r-project.org/web/packages/stepp and it can be installed directly us-
ing, for example, install.packages(“stepp”), while the development version of the package
can be retrieved from https://github.com/steppdev/stepp and installed from within R with
the command devtools::install_github(“steppdev/stepp”). The Stata version is available
at https://github.com/sergioventurini/stepp, where the reader will also find some installation
guidelines. The work by Royston and Sauerbrei (2009) also describes an implementation of the
STEPP approach through the stepp_window and stepp_tail commands, but these are lim-
ited to the original STEPP method (Bonetti and Gelber, 2000). Moreover, these commands are
only available for Stata. The stepp packages we present here provide a more comprehensive and
current implementation of STEPP.

Other frequentist and Bayesian approaches have been developed over the years to address
the same problem (see for example Simon et al., 1995; Simon, 2002; Royston and Sauerbrei,
2007; Foster et al., 2011; Zhao et al., 2013; Li et al., 2015). A common approach is based on
the mutivariable fractional polynomials (MFPs) methodology (Royston and Sauerbrei, 2004,
2008, 2009). Fractional polynomials have been introduced by Royston and Altman (1994) as
an extension of polynomial models for determining the functional form of a continuous predic-
tor. These models are well suited for nonlinear data and present advantages over the standard
polynomials both in terms of range of curve shapes and avoidance of undesirable artifacts such
as edge effects and waves. MFPs represent the generalization of fractional polynomials to more
than one variable. Substantially, MFPs are used to test for a treatment-covariate interaction by
fitting separate models within the treatment groups and then assess the differences by means of
likelihood ratio tests. Most of these methods have been implemented in specific software tools.
For example, the approach based on MFPs is implemented in the mfpi Stata command and
it is described in Royston and Sauerbrei (2009). To install it run the command net sj 9-2
st0164 followed by net install st0164.pkg within a Stata session. The mfpi command takes
advantage of the mfp command included in Stata (Royston and Ambler, 1998).

This article first reviews the STEPP methods and then moves to present the package
features, focusing on the R version. More specifically, the work is organized as follows: Section 2
reviews the key methodological aspects of the different STEPP approaches. Section 3 provides a
description of the features available in the stepp packages and shows how they can be applied to
simulated data. In Section 4 we apply the package functionalities to a data set that is available
within the packages. Finally, Section 5 summarizes and provides some closing remarks.

2 The STEPP Methodology
We consider the general situation of a random sample of n units on which we collected the values
of an outcome measure Y , a treatment indicator X as well as a covariate Z. We consider here
only the case of a unidimensional covariate Z. The typical context where the STEPP method
is applied is a clinical trial in which subjects are randomized to one of two treatments and a
baseline covariate is observed for all subjects. We assume that the covariate Z is continuous or
ordered categorical, and that it does not change over time. Moreover, we let Z take values in the
range [Zmin, Zmax] ∈ R. Then, a STEPP analysis is typically conducted through the following
steps:
1. generate the subpopulations based on the covariate of interest Z;
2. estimate the treatment effect within each subpopulation using one of the available measures

https://cran.r-project.org/web/packages/stepp
https://github.com/steppdev/stepp
https://github.com/sergioventurini/stepp
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depending on the outcome type or the context (i.e., survival data with or without competing
risks, numeric, binary or count);

3. perform inference by constructing pointwise or simultaneous confidence regions around the
collection of treatment effects and by computing a permutation test for the equality of the
treatment effects across the different subpopulations;

4. report the results in some summary plots, which represent the main STEPP output (together
with additional text output).
In the next sections we provide more details for each step.

2.1 Generation of the Subpopulations

Given the observed covariate values zi for each sample unit, the first step consists of the gener-
ation of the subpopulations by selecting a finite collection of points {(lj , uj ), j = 1, . . . , K} for
the covariate Z such that lj + η � uj for all j = 1, . . . , K, where η is a positive constant (for
the technical justification of why we need to add η see Bonetti and Gelber (2004), in particular
Appendix 1). Therefore, each pair (lj , uj ) defines a particular subset of observations, those for
which lj � zi � uj . We will denote the corresponding set of indexes (i.e., the subpopulation) as
Pj . It must clearly hold that Zmin � lj < uj � Zmax for all j = 1, . . . , K. Different approaches
have been advanced to specify the (lj , uj ) pairs, in particular:
• the unit-based sliding window approach, originally referred to simply as sliding window

(Bonetti and Gelber, 2000, 2004);
• the event-based sliding window approach, which has been introduced more recently to improve

the stability of the STEPP results in some contexts (Lazar et al., 2016);
• the tail-oriented approach (Bonetti and Gelber, 2000).

The distinctive feature of STEPP as compared to other methods such as subgroup analysis
is that, no matter which windowing system is chosen, the subpopulations that are produced
overlap. We now briefly illustrate the different approaches developed so far.

2.1.1 Unit-based Sliding Window Subpopulations

The unit-based sliding window approach is implemented by specifying two parameters usually
denoted as r1 and r2, with r1 < r2 < n. The former number, r1, provides the (approximate)
extent of the overlap between the subpopulations in terms of number of units in common by
each pair of consecutive subpopulations. The latter parameter, r2, indicates the (approximate)
size of each subpopulation. More specifically, for a fixed choice of r1 and r2 (we discuss the choice
of the r1 and r2 values later, in particular see Section 2.1.4):
1. the first subpopulation P1 is defined as the set of units with covariate value zi in between

l1 = Zmin and u1 corresponding to the sample (r2/n × 100)th percentile of the covariate. In
case the exact percentile does not exist, u1 is chosen to allow P1 include at least r2 units;

2. the second subpopulation P2 is defined by choosing l2 so that at most r1 units fall between
u1 and l2, while u2 is identified to allow P2 include at least r2 units;

3. the same process is then iterated till the last subpopulation.
Note that setting r1 = �np1� and r2 = �np2�, with p1 and p2 so that 0 < p1 < p2 < 1, the

implementation above guarantees that the proportion of units in each subpopulation (except for
the last one, which is defined residually) converges to p2 as n → ∞ (assuming that the covariate
Z is continuous). In addition, it can be shown (Bonetti and Gelber, 2004) that the number of sub-
populations converges to the smallest integer greater than or equal to [1 + (1 − p2)/(p2 − p1)].
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Figure 1: Comparison of different approaches for the generation of subpopulations in a STEPP
analysis.

A generic unit-based sliding window pattern is represented in Figure 1a, where the horizontal
axis reports the K subpopulations while the vertical axis provides the covariate values. Cur-
rently, unit-based sliding window is the recommended approach and thus we have chosen it as
the default in the packages.

2.1.2 Event-based Sliding Window Subpopulations

In specific applications such as in clinical trials with a time-to-event (i.e., survival) outcome, the
generation of subpopulations through the unit-based sliding window approach may encounter
problems because not enough events may be available in each subpopulation to guarantee a
statistically sound estimation of the treatment effects. As a consequence, in presence of sparse
and imbalanced events across treatments the STEPP analysis produces unstable results and an
inflated type I error rate of the interaction test. A solution that has been proposed is to generate
the subpopulations by pre-specifying the number of events instead of the number of units within
each subpopulation (Lazar et al., 2016). This allows to produce treatment effect estimates that
have similar variances across the subpopulations.

In analogy with the unit-based approach, one can implement the event-based window pat-
tern by specifying two numbers, e1 and e2, where e1 represents the largest number of events
in common among consecutive (overlapping) subpopulations of each treatment group, while e2

indicates the minimum number of events in each treatment group of each subpopulation. It must
clearly hold that e2 > e1. The overlapping subpopulations are then constructed as follows:
1. units are ordered from the lowest to highest value of the covariate Z;
2. the first subpopulation P1 is formed by those units with at least e2 events within each

treatment group with the lowest covariate values;
3. the second subpopulation P2 is defined by removing units with (e2 − e1) events with the

lowest covariate values from P1 and replacing them with the next set of units with (e2 − e1)

events in the ordered list;
4. the process continues iteratively till all units have been included in at least one subpopulation

and each subpopulation includes at least e2 events per each treatment.
In cases when the last subpopulation does not include at least e2 events, it will be combined

with the previous subpopulation. In the context of competing risks, the e1 and e2 values denote
the number of events related to the cause of interest. Note that currently the event-based sliding
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window approach has been developed only for competing risks analyses. The extension to other
survival endpoints is one of the future directions in the STEPP agenda.

2.1.3 Tail-oriented Subpopulations

In the tail-oriented framework the (lj , uj ) pairs are set so that {lj = Zmin, uj ∈ [Zmin, Zmax]},
or {lj ∈ [Zmin, Zmax], uj = Zmax}. In the former case, the lower bounds lj are all set to Zmin

while the uj upper bounds are defined as u1 < u2 < · · · < uK = Zmax. Therefore, the jth
subpopulation Pj contains all units for which zi � uj . In other words, the first approach defines
the subpopulations as (strictly) increasing sets of units, with the last one including all the n

sample units. This situation is represented in the left part of Figure 1b, where the horizontal
axis reports the K subpopulations and the vertical axis represents the covariate values. The
label “ALL” refers to the entire sample. Alternatively, the second case listed above corresponds
to the opposite situation where the uj are all fixed at Zmax and the lj are chosen so that
Zmin = l1 < l2 < · · · < lK . In this case the subpopulations form a sequence of decreasing index
sets for which zi � lj . This situation is represented in the right part of Figure 1b starting from
the central rectangle labeled as “ALL” up to the rightmost one.

In the tail-oriented approach the cutoffs lj or uj may be defined according to different criteria
such as: (1) a constant number of units added (removed) from each subpopulation compared to
the next one, (2) values that are particularly relevant in the context of the application under
scrutiny, for example disease-specific cutoffs that are of clinical relevance, (3) the observed values
of a discrete covariate.

We note that, due to its definition, the aim of the tail-oriented framework is primarily to
focus the analysis on the impact of increasing values of the covariate to the right, and of decreas-
ing values of the covariate to the left on the magnitude of the treatment effect. Furthermore, it
is usually recommended that any testing procedure be applied separately to the left and right
parts of the plot shown in Figure 1b. The tail-oriented approach was introduced in the original
STEPP paper (Bonetti and Gelber, 2000), because the overall “ALL” result is featured in the
center of the plot as an anchor against which increasing or decreasing covariate values are de-
picted. It is, therefore, included in the packages although most recent applications of STEPP
favor the sliding window approach.

2.1.4 Selection of the Number of Subpopulations

The number of STEPP subpopulations generated by the sliding window approach is defined
by the r1 and r2 parameters together with the distribution of the covariate values. Ideally, the
selection of r1 and r2 results in a sufficient number of subpopulations for a meaningful analysis,
with each containing a number of subjects as near to the specified r2 value as possible. However,
in some cases, the sliding window approach will result in uneven numbers of subjects (usually
with one subpopulation being much smaller than the others). To address this issue, we have
implemented a simple algorithm that provides the (r1, r2) choice that minimizes the variability
of the subpopulations sizes. More specifically, let R1 = [

rmin
1 , rmax

1

]
and R2 = [

rmin
2 , rmax

2

]
be the

ranges of the two parameters one wants to consider. Then, for each pair {r1, r2}, with r1 ∈ R1,
r2 ∈ R2 and r1 < r2, the unit-based sliding window algorithm is run and the variance of the
corresponding subpopulation sizes is computed. The values r∗

1 and r∗
2 are then identified as those

corresponding to the smallest variance in the numbers of subjects within the subpopulations.
Note that the identification of the r∗

1 and r∗
2 values is performed without knowledge of the p-

value associated to each parameter combination, thus ensuring that no “fishing for significance”
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is performed. The same approach can also be extended to selecting the subpopulations in a
balanced manner but with respect to the number of events.

2.2 Treatment Effect Estimation

After the overlapping subpopulations have been generated, the treatment effect θj for subpop-
ulation j , with j = 1, . . . , K, is estimated using the appropriate method depending on the type
of the outcome variable and context. Currently, STEPP has been developed to deal with the
following cases:
• time-to-event (survival) outcomes when the treatment effect θj is measured as the difference

SA(t∗) − SB(t∗) in survival at a fixed time point t∗ between treatment arms A and B; in this
context the survival functions are estimated through the Kaplan-Meier estimator (Bonetti
and Gelber, 2004);

• time-to-event (survival) outcomes in presence of competing risks when the treatment effect
θj is represented by the log hazard ratio, which is estimated by a first-order approximation of
the partial likelihood (Lazar et al., 2016). In particular, in that paper the authors show how
to extend the “O minus E methodology” (Peto et al., 1977), where O denotes the observed
number of events among the treated subjects and E is the corresponding expected (log-rank)
number of events, to the competing risks setting (Fine and Gray, 1999) for the cases of no
censoring, complete censoring and randomly censored data;

• a generic (i.e., non time-to-event) outcome Y with a distribution belonging to the exponen-
tial family; in this context treatment effects θj are estimated via generalized linear mod-
els (GLMs) and can be expressed in either absolute or relative terms (Yip et al., 2016).
More specifically, denoting the treatment group as G, the absolute treatment effect corre-
sponds to the difference between the treatment-specific outcome expected values, that is
[E(Y |G = A) − E(Y |G = B)], for all outcome types, while the relative effect is measured by
the ratio of the treatment-specific outcome expected values, E(Y |G = A)/E(Y |G = B), for
Gaussian and Poisson distributed outcomes, or as the odds ratio, E(Y |G=A)/[1−E(Y |G=A)]

E(Y |G=B)/[1−E(Y |G=B)] , for
binary outcomes.

2.3 Inference

To perform inference on the vector of treatment effects (θ1, . . . , θK) for the K subpopulations
P1, . . . ,PK , one must derive the joint distribution of the corresponding vector of estimates
(θ̂1, . . . , θ̂K). Bonetti and Gelber (2004) have shown that under mild conditions the asymptotic
distribution of the vector of estimates (θ̂1, . . . , θ̂K) is multivariate normal with mean vector
(θ1, . . . , θK) and covariance matrix �, that is

√
n

⎛⎜⎝ θ̂1 − θ1
...

θ̂K − θK

⎞⎟⎠ d−→ NK

⎛⎜⎝
⎛⎜⎝ 0

...

0

⎞⎟⎠ , �

⎞⎟⎠ , (1)

where � can be consistently estimated from the data. Note that the specific form of the matrix
� depends on the outcome type considered (see Section 2.2).

Thanks to the result above, one can then compute simultaneous confidence regions around
the collection of estimators. More specifically, a (1 − α) × 100% rectangular confidence region
is defined as {θj ∈ θ̂j ± γ · zα/2 · σ̂j , j = 1, . . . , K}, where zα/2 is the (1 − α/2)-th percentile for
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a standard normal random variable, σ̂j = [
v̂ar(θ̂j )

]1/2 is a consistent estimator of
[
var(θ̂j )

]1/2,
while γ is obtained by solving numerically the following equation

P

⎛⎝ K⋂
j=1

{
θj ∈ θ̂j ± γ · zα

2
· σ̂j

}⎞⎠ = 1 − α

for a sample of random variables generated from the estimated asymptotic distribution of the
estimates. The quantity γ represents the widening of the marginal confidence intervals that is
necessary to produce the desired simultaneous coverage of the confidence region.

Together with a confidence region for the vector of treatment effects, one may also desire
to test the null hypothesis of equality of treatment effects, that is H0 : θ1 = θ2 = · · · = θK ,
which corresponds to the absence of interaction between the covariate of interest (i.e., across
subpopulations) and the treatment effect. One possibility is to develop an “omnibus” test using
a quadratic form based on the asymptotic normality of the estimators. However, it has been
shown (Bonetti and Gelber, 2000) that such a test is too sensitive to the particular choice of the
subpopulations and thus it is not recommended. An alternative approach is to base the test on
the following supremum test statistic

T = max
{ ∣∣θ̂j − θ̂ALL

∣∣[
v̂ar

(
θ̂j − θ̂ALL

)]1/2 , j = 1, . . . , K

}
, (2)

where θ̂ALL represents the treatment effect estimate computed on all units in the study and
[v̂ar(θ̂j −θ̂ALL)]1/2 is a consistent estimator of [var(θ̂j −θ̂ALL)]1/2. The asymptotic null distribution
of T can be estimated by sampling repeatedly from the asymptotic distribution of the (scaled)
vector (θ̂1−θ1, . . . , θ̂K−θK, θ̂ALL−θALL) under the null hypothesis H0 : θ1 = θ2 = · · · = θK = θALL,
and a Monte Carlo p-value can thus be produced.

The finite sample properties of the procedures above for the case of survival outcomes are
discussed in Bonetti et al. (2009). The results show an inflation of the type I error probability even
for large sample sizes, which clearly may lead to false rejections of the null hypothesis. The same
results also show that the coverage of the confidence region can be considered satisfactory only
for sample sizes equal to or above 500. To overcome the limitations of the inferential procedures
described above, in the same paper the authors propose to adopt a permutation distribution
approach to inference (see for example Pesarin, 2001) in which one permutes the covariate values
across the units within each treatment group and then re-computes the test statistic (2) on the
permuted samples. The variances are also estimated from the permuted samples. This procedure
returns a sample from the permutation distribution of the test statistic T that can be used for
testing. More specifically, the permutation p-value is computed as the proportion of times the
permutation-based statistic is more extreme than the observed test statistic value.

Different simulation studies have shown that the permutation-based test improves the per-
formance of the asymptotic approach in all cases, that is for survival outcomes (Bonetti et al.,
2009), for survival outcomes with competing risks (Lazar et al., 2016), as well as for outcomes
from the exponential family (Yip et al., 2016).

2.4 The Subpopulation Treatment Effect Pattern Plot
The main output of a STEPP analysis is a plot of the estimated treatment effects (θ̂1, . . . , θ̂K)

against the median covariate value in each subpopulation. In addition, the plot also reports the



114 Venturini, S. et al.

corresponding confidence regions and the subpopulation sizes. The treatment effect estimates
may be reported either in absolute or relative terms. We remark that the ability to detect
heterogeneity both graphically and via statistical testing may depend on the scale used for
measuring the effects. As such, the treatment effects may be statistically significant on one scale
but not on the other. Finally, note that the overall treatment effect (i.e., θALL) is, in general,
not a linear combination of the subpopulations’ treatment effects. The output of a STEPP
analysis also includes the description of the subpopulations and the corresponding treatment
effect estimates.

3 The stepp Package
The stepp packages allow one to perform the STEPP analyses described in Section 2 and pro-
duce the corresponding plots for all outcomes and treatment effect measures. In this section we
provide a more practical description of the package characteristics focusing in particular on the
R implementation.

The stepp package uses the S4 framework and it is built around the following six classes
(more details can be found in the package documentation):
• stwin, which defines objects to represent the window system type to use for generating the

overlapping subpopulations in a STEPP analysis,
• stsubpop, which defines objects representing the subpopulations, the main component of a

STEPP analysis,
• steppes, which provides the object class containing the results regarding a specific STEPP

analysis,
• stmodelKM, which defines objects are for a STEPP analysis involving survival outcomes with

no competing risks,
• stmodelCI, which defines objects for the STEPP analyses of survival outcomes in presence

of competing risks,
• stmodelGLM, which defines objects for the STEPP analyses of outcomes with distribution

belonging to exponential family.
For all these classes, the package provides specific methods for initializing, printing, sum-

marizing and plotting, some of which will be illustrated in more detail in the rest of this section.
The steps required to perform a STEPP analysis with the stepp package are:

1. choose the windowing system to use and the corresponding parameters by defining a new
stwin object

2. define a new stsubpop object that will contain the overlapping subpopulations to use in the
STEPP analysis

3. populate the stsubpop object by generating the subpopulations with a call to the generate()
generic function

4. create a new steppes object which will enclose all the results of the analysis
5. depending on the problem context, create a new model object of class either stmodelKM,

stmodelCI or stmodelGLM
6. perform the analysis by calling the estimate() and test() generic functions; the former

computes the treatment effect estimates, while the latter performs the permutation-based
test

7. finally, the results contained in the steppes object can be represented graphically by calling
the corresponding plot method.
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As a demonstration of this workflow, we present an example using some simulated data
contained in the simdataKM object available in the package (the code to generate these data can
be retrieved from the simdataKM documentation). These data can be used to perform a STEPP
analysis for a survival outcome without competing risks. First, we create a new stwin object
using the unit-based sliding window approach with r1 = 200 and r2 = 300:

library(‘‘stepp’’)
data(‘‘simdataKM’’, package = ‘‘stepp’’)
swin <- new(‘‘stwin’’, type = ‘‘sliding’’, r1 = 200, r2 = 300)

Then, we create a new stsubpop object and generate the overlapping subpopulations using the
covariate values in the covar column of the simdataKM data frame:

subp <- new(‘‘stsubpop’’)
subp <- generate(subp, win = swin, covariate = simdataKM$covar)
summary(subp)

Window type: sliding
Number of patients per subpopulation (patspop r2): 300
Largest number of patients in common among consecutive subpopulations (minpatspop r1): 200
Number of subpopulations created: 8

Subpopulation summary information (including all treatments)
Covariate Summary Sample

Subpopulation Median Minimum Maximum size
1 47.79 33.1156 51.3941 300
2 50.42 45.8536 53.2784 300
3 52.46 49.3066 55.0570 300
4 54.30 51.4095 56.7860 300
5 56.09 53.2844 58.9007 300
6 57.62 55.0621 61.0561 300
7 59.86 56.8181 64.1091 300
8 62.38 58.9031 77.2494 300

The output shows that 8 subppopulations have been generated and it reports the corre-
sponding minimum, maximum and median covariate values as well as their sizes, which in this
example correspond exactly to the r2 parameter value.

The next step requires the creation of a new steppes object, which will then be populated
with the estimates produced by the estimate() function as well as with the results of the
permutation test returned by the test() function. In this example we are interested in assessing
the treatment effect measured as the difference in the survival functions at time 4 (output partly
omitted):

res <- new(‘‘steppes’’)
modelKM <- new(‘‘stmodelKM’’, coltrt = simdataKM$trt,
survTime = simdataKM$time, censor = simdataKM$censor,
trts = c(1, 2), timePoint = 4)

res <- estimate(res, subp, modelKM)

set.seed(101)
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nperm <- 500
res <- test(res, nperm)
print(res, estimate = TRUE, cov = FALSE, test = TRUE)

Sample size in treatment 1: 479
Sample size in treatment 2: 521
Total sample size (excluding missing data): 1000

[...]

Survival differences at time point and hazard ratio estimates

trt 1 vs. trt 2

Survival differences at time point 4
Comparing trt 1 vs. trt 2

Survival
Subpopulation Difference Std. Err.

1 -0.3147 0.0567
2 -0.2337 0.0594
3 -0.2299 0.0594
4 -0.2030 0.0592
5 -0.2384 0.0577
6 -0.1464 0.0585
7 -0.1280 0.0595
8 -0.0263 0.0621

Overall -0.1910 0.0324

Hazard ratio estimates
Subpopulation Log HR Std. Err. Hazard Ratio

1 1.328788 0.206001 3.78
2 0.803914 0.188752 2.23
3 0.703132 0.177723 2.02
4 0.500376 0.175574 1.65
5 0.638177 0.172646 1.89
6 0.399095 0.172902 1.49
7 0.474916 0.169297 1.61
8 0.173798 0.172673 1.19

Overall 0.632647 0.098281 1.88

Supremum test results
trt 1 vs. trt 2
Interaction p-value based on Kaplan-Meier estimates: 0.006
Interaction p-value based on hazard ratio estimates: 0

Chi-square test results
Interaction p-value based on Kaplan-Meier estimates: 0.028

The results show the presence of a significant treatment-covariate interaction because the
supremum test p-value is smaller than the usual 0.05 significance level. Moreover, the tables
reported in the output permit to describe how the covariate interacts with the treatment by
providing the results in the different subpopulations. The rows labeled Overall correspond
to the estimation results for the whole sample. The numbers in the tables allow to conclude
that treatment 2 appears to be more effective than treatment 1 because it provides a higher
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probability to survive. More specifically, the differences in survival decrease as the covariate
values increase, with the survival difference in the last subpopulation being very close to zero.
Finally, we note that in the output above we skipped printing the estimate of the asymptotic
covariance matrix � defined in (1) because we specified cov = FALSE in the print method.

To aid the user in getting the results, the stepp package also provides the stepp.test()
wrapper function that allows to automate some of the steps described above. The package also
includes constructor functions for the different object classes described above. More specifically,
the constructor functions are stepp.win(), stepp.subpop(), stepp.KM(), stepp.CI() and
stepp.GLM(). The aim of these functions is substantially to hide to the end user the call to the
new() function when creating a new instance for the corresponding object classes. In particular,
stepp.test() directly implements steps 4, 6 and 7, that is the creation of a new steppes object,
estimation of the model and execution of the permutation test. So, the code provided above for
the STEPP analysis on the simdataKM data can be recast more compactly as follows:

set.seed(101)
res <- stepp.test(subp, modelKM, nperm)

After the STEPP model has been specified and fitted, the results can be represented graph-
ically using the plot method for steppes objects available in the package. The graphs produced
are those for the outcome measure, absolute and relative treatment effect estimates. The plot
method allows to set a number of graphical parameters whose details can be found in the pack-
age documentation. Here, we demonstrate the capabilities of the commands by concluding the
example on the simdataKM simulated data and producing the three graphs described above (see
Figure 2):

plot(res, subplot = TRUE, ylabel = ‘‘Survival’’,
tlegend = c(‘‘Treatment 1’’, ‘‘Treatment 2’’),
legend_diff = c(1, 2))

The picture confirms the same conclusions we reached by inspecting the numerical out-
put, that is the data support the presence of a significant treatment-covariate interaction since
most of the treatment effect estimates (on both scales) appear to be significantly different from
zero across the subpopulations. In particular, the effect of treatment 2 relative to treatment 1
diminishes as the covariate value increases.

4 Application
In this section we present an application of the STEPP approach using the R version of the
stepp package. The Stata code to perform the same analyses is available in the do file included
in the supplementary material. The example involves the estimation of the cumulative incidence
of breast cancer recurrence for postmenopausal women data collected as part of a randomized
clinical trial with two treatment groups (Lazar et al., 2010, 2016). A second application, which is
provided in the supplementary material available online, focuses on a clinical trial that aims at
evaluating the effect of oral aspirin as a chemoprevention agent against colorectal adenomas (Yip
et al., 2016). In this case the endpoint is binary (presence or not of adenomas), and thus a GLM
analysis will be appropriate. In both examples we explore the presence of a treatment-covariate
interaction using the STEPP tools described above.
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Figure 2: simdataKM data. Plot of: (a) survival function (Kaplan-Meier) estimates, (b) absolute
treatment effect measured as the difference in survival estimates, (c) relative treatment effect
measured as the hazard ratio. Panels (b) and (c) also report the corresponding 95% confidence
regions.

Here, we illustrate how to fit a STEPP model using the data from the BIG (Breast Inter-
national Group) 1-98 study, an international, double-blind, phase III randomized clinical trial
of 8010 postmenopausal women with hormone receptor–positive early invasive breast cancer.
Patients were randomly assigned to receive one of four adjuvant endocrine therapy groups:
letrozole, tamoxifen, or sequences of letrozole to tamoxifen or tamoxifen to letrozole. A first BIG
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1-98 report (Breast International Group (BIG) 1-98 Collaborative Group et al., 2005; Coates
et al., 2007) presented results indicating that letrozole significantly reduced the cumulative in-
cidence of breast cancer recurrence as compared with tamoxifen in presence of two competing
risks, second non-breast primary event and death prior to breast cancer recurrence. A known
important prognostic factor of breast cancer is the Ki-67 biomarker, a nuclear protein present
in cycling cells that represents an indicator of tumor proliferation and is associated with the
extent of chemotherapy efficacy (Gerdes et al., 1983; Clahsen et al., 1999). In particular, high
values of Ki-67 are predictive of a strong response to preoperative chemotherapy. The primary
endpoint in the BIG 1-98 study was disease-free survival (DFS), which is defined as the time
from randomization to the first of the following events: (1) invasive recurrence of breast cancer
in local, regional, or distant sites, (2) a new invasive breast cancer in the contralateral breast,
(3) any second nonbreast malignancy, or (4) death as a result of any cause.

Of the whole sample of patients in the trial, we consider here only women that were ran-
domized to receive 5 years of monotherapy with either letrozole or tamoxifen who had tumors
with centrally confirmed estrogen receptor expression and tumor material available for Ki-67
determination in a central laboratory. This selection resulted in a subset of 2685 women (Viale
et al., 2008). In the following we focus on a STEPP analysis of 4-year DFS, where the 4-year time
point was chosen to match the time point used in the original BIG 1-98 report. Furthermore, we
use the recurrence of breast cancer as the primary outcome of interest, while non-breast second
malignancies and deaths without recurrence were considered competing risks. Our aim here is
that of investigating the presence of a treatment-covariate interaction by focusing on potential
patterns of treatment effect for varying levels of the Ki-67 biomarker. The data for the BIG 1-98
study are included in the stepp package as an object called bigCI:

data(‘‘bigCI’’, package = ‘‘stepp’’)

The data set contains the following four columns:
• trt, the treatment indicator, where value 1 indicates the letrozole arm while value 2 refers

to the tamoxifen arm;
• time, the survival times, that is the length of time in years from randomization to the

occurrence of the event of interest, with mean and median values equal to 3.953 and 3.580
years respectively;

• event, the event indicator, where value 0 means no event occurred, value 1 indicates the
recurrence of breast cancer and value 2 refers to competing risks (i.e., either non-breast
second malignancies or death without recurrence);

• ki67, the Ki-67 biomarker measurements, from 0 to 90%, which show a strongly right-skewed
distribution.
Table 1 shows the number of patients that experienced each one of the competing events. In

the following, the presence of a treatment-covariate interaction is investigated with reference to
the heterogeneity of treatment effects both in absolute and relative terms. Absolute treatment
effects are measured as the difference in 4-year cumulative incidence of breast cancer recurrence,
while relative effects are measured by the subdistribution hazard ratio (Fine and Gray, 1999;
Collett, 2015).

The first step in a STEPP analysis is the choice of the windowing system to use. Given that
we focus here only on the patients who experienced recurrence of breast cancer (i.e., cases with
event == 1), the unit-based sliding window approach would result in sparse events within the
overlapping subpopulations and a strong imbalance of events across treatment subpopulations
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Table 1: bigCI data. Number of patients experiencing the different competing events by treat-
ment group.

event

trt 0 (censored) 1 (relapse) 2 (other events) total

1 (letrozole) 1239 73 49 1361
2 (tamoxifen) 1143 123 58 1324

total 2382 196 107 2685

which in turn may cause instability in the estimation of the treatment effects. Therefore, we
embrace the event-based sliding window approach. As for the choice of the e1 and e2 parameters,
we decide to set e1 = 5 and e2 = 15. Clearly, a good suggestion is to perform some sensitivity
analysis (not reported here) to assess the impact on the results of the choices for the e1 and
e2 values. The code reported below sets the stage for the main analysis by generating the
corresponding subpopulations:

swin <- new(‘‘stwin’’, type = ‘‘sliding_events’’, e1 = 5, e2 = 15)
subp <- new(‘‘stsubpop’’)
subp <- generate(subp, win = swin, covariate = bigCI$ki67,
coltrt = bigCI$trt, trts = c(1, 2), coltype = bigCI$event)

summary(subp)

Window type: sliding_events
Number of events per subpopulation (eventspop e2): 15
Largest number of events in common among consecutive subpopulations (mineventspop e1): 5
Number of subpopulations created: 5

Subpopulation summary information
Covariate Summary Sample Type 1 Events

Subpopulation Median Minimum Maximum Size Trt Group 1 Trt Group 2
1 4.00 0.0000 7.0000 964 25 17
2 9.00 7.0000 11.0000 618 15 16
3 14.00 11.0000 17.0000 577 28 15
4 20.00 17.0000 24.0000 399 27 15
5 28.00 21.0000 90.0000 511 42 22

Note that in the case of event-based sliding windows it is not enough to provide the covariate
information for generating the subpopulations but it is also required to include the information
about the treatment indicator (coltrt argument), the list of treatments (trts argument) as
well as the event type variable (coltype argument). Then, the generate method automatically
uses the value 1 of coltype for the event of interest (here, the recurrence of breast cancer), the
value 0 for no events and any other value for the competing events.

The output shows that 5 overlapping subpopulations have been generated with varying
sample sizes but with a number of events per each treatment group that satisfies the requirements
imposed by e1 and e2, thus guaranteeing a sufficient number of events in each subpopulation to
reliably estimate the treatment effects.

We then proceed with the setup of the problem by defining new steppes and stmodelCI
objects as shown in the following code:
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res <- new(‘‘steppes’’)
modelCI <- new(‘‘stmodelCI’’, coltrt = bigCI$trt, coltime = bigCI$time,
coltype = bigCI$event, trts = c(1, 2), timePoint = 4)

Next, we fit the STEPP model and compute the permutation test p-value by using the
estimate and test methods as follows, where in the test we use 2500 Monte Carlo replications
to achieve a reliable interpretation of the p-value (output partly omitted):

res <- estimate(res, subp, modelCI)
set.seed(101)
nperm <- 2500
res <- test(res, nperm)
print(res, estimate = TRUE, cov = FALSE, test = TRUE)

Sample size in treatment 1: 1361
Sample size in treatment 2: 1324
Total sample size (excluding missing data): 2685

[...]

Cumulative incidence differences at time point 4

trt 1 vs. trt 2
Cumulative
Incidence

Subpopulation Difference Std. Err.
1 -0.0246 0.0154
2 0.0090 0.0175
3 -0.0429 0.0232
4 -0.0734 0.0342
5 -0.0936 0.0356

Overall -0.0403 0.0112

Hazard ratio estimates
Subpopulation Log HR Std. Err. Hazard Ratio

1 -0.4121 0.3087 0.66
2 0.0573 0.3595 1.06
3 -0.5331 0.3056 0.59
4 -0.8547 0.3111 0.43
5 -0.7405 0.2502 0.48

Overall -0.5635 0.1429 0.57

Supremum test results
trt 1 vs. trt 2
Interaction p-value based on cumulative incidence estimates: 0.0952
Interaction p-value based on hazard ratio estimates: 0.0604

Chi-square test results
Interaction p-value based on cumulative incidence estimates: 0.0968

Finally, we produce the three STEPP graphs which report the cumulative incidence and
treatment effect estimates together with the corresponding 95% confidence regions (see Figure 3):
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plot(res, ylabel = ‘‘4-Year Cumulative Incidence of BCR (%)’’,
xlabel = ‘‘Median Ki-67 in Subpopulations (% immunoreactivity)’’,
tlegend = c(‘‘Letrozole’’, ‘‘Tamoxifen’’), legendy = 30,
pointwise = FALSE, ylimit = c(0, 30, -30, 30, 0, 2.8),
lsty = c(2, 1), marker = c(15, 17), ncex = 0.8, at = 8,
legend_diff = c(1, 2))

These results show that the letrozole arm (reported as treatment 1 in the output above)
achieves a lower cumulative incidence in all but one subpopulation. In particular, subpopula-
tions with high Ki-67 values show the largest treatment difference, reported as letrozole minus
tamoxifen, thus indicating benefit for letrozole compared to tamoxifen (see Figure 3b). Although
the differences provide evidence in favor of heterogeneity across subpopulations, the supremum
test p-value does not support it. A similar conclusion is also achieved on the relative scale (see
Figure 3c): the subdistribution hazard ratio estimates for breast cancer recurrence tend to be
less than 1, thus confirming that letrozole is more beneficial than tamoxifen, but the supremum
test p-value is still above the usual 0.05 level. Nonetheless, the confidence regions for the ratios
provide support for a significant stronger effect of letrozole in the last two subpopulations, that is
for subgroups of patients with the largest Ki-67 values. A sensitivity analysis, not reported here
but included in the supplementary material, confirmed the same findings (see also Lazar et al.,
2016). Therefore, contrary to the results in the official BIG 1-98 reports (Breast International
Group (BIG) 1-98 Collaborative Group et al., 2005; Coates et al., 2007), the STEPP analysis
allows to conclude that the superiority of letrozole over tamoxifen is more clearly observed for
subgroups of women with large Ki-67 values.

5 Discussion
STEPP is a well established exploratory tool for identifying the presence of treatment-covariate
interactions. We remark that STEPP is not meant to be used to determine specific cutpoints
in the range of values of the covariate of interest, but rather to provide some indication re-
garding the ranges of values of the covariate of interest for which the treatment effect might
have a particular behavior. The permutation test p-value indicating the statistical significance
of treatment heterogeneity should always be presented together with the graphical representa-
tion of STEPP to avoid over-interpretation of the results. Notably, STEPP makes little or no
modeling or distributional assumptions while estimating the treatment effects across values of
the covariate, so that it is essentially non-parametric in nature. Although STEPP addresses the
multiple testing issues in subpopulation analysis, as heterogeneity is evaluated globally with an
omnibus statistical test, it only does so for one covariate. One still needs to address the multi-
ple testing issue if several different covariates are examined. In addition, the STEPP approach
does not consider the issue of post-hoc analysis as opposed to pre-specified analysis as well as
issues of confounding if the analysis is based on retrospective exposure assessments as opposed
to randomized treatments. As is the case with any exploration of subgroup treatment effects,
hypothesis generating analyses should be distinguished from those intended to evaluate pre-
specified hypotheses. Finally, we remark that the STEPP idea is not directly connected with the
kernel conditional density estimator as illustrated in Hyndman et al. (1996) and implemented
in the hdrcde R package (Hyndman et al., 2022), even if both approaches exploit the idea of
generating subgroups based on the values of a covariate of interest.
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Figure 3: bigCI data. Plot of: (a) cumulative incidence estimates for recurrence of breast cancer,
(b) absolute treatment effect measured as the difference in the cumulative incidence estimates
(letrozole minus tamoxifen; a value below zero suggests that letrozole is better), (c) relative
treatment effect measured as the subdistribution hazard ratio (letrozole vs. tamoxifen; a value
less than one suggests that letrozole is better). Panels (b) and (c) also report the corresponding
95% confidence regions.

In this paper, we presented the stepp packages that allow researchers to perform an analysis
according to the STEPP methodology. The package is available for both the R and Stata soft-
ware. Note that the current implementation of the packages has some limitations. In particular,
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it restricts the analysis to the comparison of two treatment groups. Furthermore, it allows for the
study of only one covariate of interest. The extension to more than one covariate is not straight-
forward and may be conducted following different strategies. However, a simple approach to deal
with the case of multiple covariates involves the creation of a composite score by combining the
covariates of interest through some dimension reduction techniques such as principal component
analysis. Indeed, the vast majority of the applications of STEPP to analyses of randomized
trials have focused on comparing treatments with respect to absolute differences in recurrence
risk with respect to a composite risk score incorporating multiple covariates. The most recent
published example is the STEPP analysis for the Aphinity trial (Gelber et al., 2022), where
the score was calculated using a Cox regression model that included some prespecified clinical
characteristics. Other references of the use of composite risk indexes are Viale et al. (2008, 2011)
and Regan et al. (2016).

Supplementary Material
The R and Stata scripts containing the code related to the examples discussed in the paper and
a second application that involves a binary outcome are available in the supplementary material
on the journal website.
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