
Journal of Data Science 21 (1), 127–144 DOI: 10.6339/22-JDS1059
January 2023 Computing in Data Science

The Python Package open-crypto: A Cryptocurrency Data
Collector

Steffen Günther
1
, Christian Fieberg

2,∗
, and Thorsten Poddig

1

1Chair of Finance, University of Bremen, Germany
2Empirical Capital Market Research and Derivatives, University of Bremen, Germany

Abstract

This paper introduces the package open-crypto for free-of-charge and systematic cryptocurrency
data collecting. The package supports several methods to request (1) static data, (2) real-time
data and (3) historical data. It allows to retrieve data from over 100 of the most popular and
liquid exchanges world-wide. New exchanges can easily be added with the help of provided tem-
plates or updated with build-in functions from the project repository. The package is available
on GitHub and the Python package index (PyPi). The data is stored in a relational SQL database
and therefore accessible from many different programming languages. We provide a hands-on
and illustrations for each data type, explanations on the received data and also demonstrate
the usability from R and Matlab. Academic research heavily relies on costly or confidential data,
however, open data projects are becoming increasingly important. This project is mainly moti-
vated to contribute to openly accessible software and free data in the cryptocurrency markets
to improve transparency and reproducibility in research and any other disciplines.

Keywords cryptocurrency; open data; Python

1 Introduction
Cryptocurrencies are a fairly new and rapidly developing market. The interest of researchers from
finance, economics, law, politics, computer science and mathematics, among others, is growing
and gaining importance. Moreover, cryptocurrencies as traded financial products are beyond a
mere theoretical construct and are attracting the interest of investors, public policy makers, and
regulators due to their success and popularity.

Cryptocurrencies are traded globally on mostly non-certified or non-registered exchanges
with limited or no regulation from official authorities. From an economic perspective, the cryp-
tocurrency markets still lack efficiency (Makarov and Schoar, 2020), are subject to fraud and
manipulation (Hougan et al., 2019; Aloosh and Li, 2019; Cong et al., 2019; Pennec et al., 2021,
among others), and their impact on the economy to date is mostly unexplored. Beyond Bitcoin
and its most famous followers (Ethereum, Ripple, Litecoin, among others) exist over 10,000
cryptocurrencies (www.coinmarketcap.com) with as many projects and ideas. Only a fraction is
actually developed as digital currency to serve as commonly accepted basis for exchanging goods
and services. Most originate from projects and start-ups that use ICOs (Initial Coin Offerings) or
similar methods to collect venture capital. In return, these coins grant specific privileges (utility
tokens), represent assets (asset-backed tokens), or serve as investments (security tokens).

∗Corresponding author. Email: cfieberg@uni-bremen.de.

© 2023 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received April 14, 2022; Accepted July 3, 2022

http://www.coinmarketcap.com
mailto:cfieberg@uni-bremen.de
https://creativecommons.org/licenses/by/4.0/

128 Günther, S. et al.

This project aims to address the data issue persistent in cryptocurrencies and is inspired by
similar ideas across disciplines. Gewin (2016) addresses the shift in science to publicly available
data repositories, in order to make findings reproducible. Reichman et al. (2011) call for feder-
ated data repositories and to overcome the inadequacy of rewards for sharing data in ecology.
Iacus (2015) publishes a practical guide for data collection using R (R Core Team, 2020). Sim-
ilar implementations to open-crypto already exist in other disciplines, for example, Szöcs et al.
(2020) introduce the R package webchem to collect publicly available chemical data. In cryptocur-
rencies, only some aggregated information are easily accessible. For instance, the Bitcoin price
published to the broad public is the (volume-weighted) average of several exchanges. The global
turnover volume is the respective summation of all trade quantities. These aggregated data on
cryptocurrencies are collected by well-known platforms like Coinmarketcap, Kaiko, Cryptocom-
pare, Coingecko and Coinpaprika. Aggregated data can be retrieved from the above mentioned
platforms while non-aggregated data must be retrieved from the exchanges’ application pro-
gramming interface (API) itself. The former keeps especially technical burdens outsourced, but
has major disadvantages. Platforms can change their terms of use, (and) require expensive fees
as introduced by Coinmarketcap (July 2018), data preprocessing can be intransparent, discon-
tinuous and vulnerable to biases (e.g. survivorship bias) or data can be simply unavailable due
to aggregation. On the other hand, exchanges emerge or go offline frequently and APIs are non-
standardized in the request and response format. Consequently, there is a lack of customized,
not preprocessed and free-of-charge data gathering.

We offer the Python (van Rossum and Drake, 2009) package open-crypto to fill this gap
by directly integrating the exchanges’ and platforms’ public APIs into our program. We im-
plement endpoints for (1) static currency pairs information like full-names or minimum trade
quantities, (2) real-time market-data, in particular price quotations, trading volume and or-
der book information, and (3) historical data for trading day summaries from over 100 of the
most liquid and popular exchanges and platforms. Compared to platforms, exchanges allow to
retrieve dis-aggregated and high-frequency data. The data is queried, extracted, and format-
ted automatically, and written into a relational database of choice. Supported are the most
common database management systems included in the popular object-relational-mapper (orm)
SQLAlchemy (Bayer, 2012), such as SQLite, MySQL, MariaDB and PostgreSQL.

The program is intuitive to use, does not require any specific knowledge and is highly
customizable and expandable. New exchanges, platforms and API endpoints can be implemented
with provided templates and manuals. The code is written in Python, however data can be
retrieved from the database with any software capable to connect SQL (including e.g. R, Matlab,
Stata or SPSS) or written into a csv-file. The open-source project comes with a standard GNU
General Public License (GPL) and is offered as both a GitHub repository for development and
a Python module, called open-crypto, for quick installation using Python’s package installer pip.
The data collector addresses the call of Gewin (2016) and Reichman et al. (2011), among others,
for FAIR data principles in research to support the findability, accessibility, interoperability,
and reusability of data (www.go-fair.org). It is an important tool for any type of application in
need of original, free-of-charge, and high-quality cryptocurrency data and lines up with existing
tools from other disciplines like the project webchem. We hope to support independent and
transparent research.

Our paper is structured as follows: Section 2 describes the installation and provides a
hands-on. Furthermore, we give detailed illustrations on the available data and request methods
in Section 3. The Section 4 discusses different data export methods, while Section 5 summarizes
and concludes. Additional notes on the installation process, a troubleshooting list, cross-platform

http://www.go-fair.org

A Cryptocurrency Data Collector 129

Figure 1: Workflow sketch of the program. From left to right: Cryptocurrency exchanges and
platforms offer public available data over API endpoints. Platforms aggregate data available
from exchanges. Every endpoint contains specific information, which can be controlled by the
program. Requests can be scheduled asynchronously to increase efficiency. After requesting and
retrieving, data is extracted, formatted and persisted into a database. The user controls the
program by applying a configuration file.

interoperability from R and Matlab, and some advanced configurations are presented in the online
supplement.

2 Installation and Hands-on
For a general overview, Figure 1 displays the work-flow of open-crypto and user interactions.
Users can retrieve data from exchanges and/or platforms.

Cryptocurrency exchanges are market places, centralized or decentralized, for trading vari-
ous pairs of cryptocurrencies. Several hundreds of exchanges around the globe exist and are very
heterogeneous in architecture, liquidity, and reliability. Exchanges offer API endpoints for both
market data retrieval and trading purposes. While trading obviously requires authentication,
market data are often publicly available. We use these API endpoints to request recent and
historical pricing information, exclusively from public Representational State Transfer (REST)
APIs. However, data requirements may not be fulfilled by exchanges alone. Some additional
information, like the global market capitalization of a cryptocurrency, can not be obtained from
a single exchange. We therefore developed open-crypto to be applicable to both data sources,
exchanges and platforms. This enables users to also retrieve aggregated cryptocurrency informa-
tion. Referring to Figure 1, users take control by applying a configuration file. This defines the
exchange(s) or platform(s), currency pair(s) of interest, and the data type (static, historical or
real-time). Detailed instructions on creating the configuration file are provided in the subsequent
Section 3. The file is read and executed in an asynchronous input/output (I/O) scheduler, which
performs requests across exchanges concurrently by making use of the popular libraries asyncio
(van Rossum, 2012) and aiohttp (Kim and Svetlov, 2020). After retrieval and several processing
steps, the data is written into a relational (SQL) database system to which the user has access
via open-crypto or any other software. The following of this section will cover the installation,

130 Günther, S. et al.

discuss implemented API endpoints and the retrieved data from exchanges and platforms. This
paper then continues with several illustrative examples in Section 3.

2.1 Installation
The program is uploaded to the Python Package Index (PyPI) and GitHub. For regular instal-
lation, use pip install open-crypto. This downloads and installs the program including all
dependencies. For development, clone the GitHub repository (https://github.com/SteffenGue/
open-crypto) and run the setup file within the directory. Further details on the installation pro-
cess can be found in the online supplement. Python stores all modules in its site-package folder.
However, as some files need to be modifiable to run the program, the current working directory
(cwd) is used for all configuration files, exchange mappings, and the database(s). Furthermore,
all relevant functionality is gathered in the wrapper module runner.

Import the runner module from the package
from open_crypto import runner

More details on the documentation of all methods can be printed via Python’s help function
help(runner). An abbreviated description yields the following:
• update_maps: Download the latest exchange mappings from the GitHub repository.
• exchanges_and_methods: List all exchanges and their implemented request methods.
• get_session: Return an open connection to the database.
• get_config_template: Create a new (blank) configuration file.
• export: Export data into a csv- or hdf-file.
• run: Start the program.
• Examples: Execute several example scripts.

To initialize the program in the first place, ensure that all resource files are located within the
current working directory, and updated to the latest release. This can be achieved by using the
following method:

Prepare the program
runner.update_maps()

The command downloads the most recent exchange mappings from the GitHub repository and
creates a directory named ‘resources’ within the cwd. The folder contains all important files to
control the program. When set up and started, open-crypto imports and executes a configuration
file which specifies the request. The introduction of the latter is covered in detail in Section 3.
Meanwhile, the following Section 2.2 covers the data retrieved from exchanges and platforms.
Every type of data is typically offered via separate API endpoints, which are referred to as
request methods. Users of open-crypto specify the request method in the configuration along
with the data source(s) and currency pair(s) of interest.

2.2 Data and API-endpoints
This part presents possible configurations before executing exemplary requests in Section 3. Ta-
ble 1 outlines that open-crypto allows to retrieve three categories of information (static, historic,
real-time) from two sources (exchanges and platforms). Whether certain information is available
from a specific source is marked with a cross. The first line (Data) of Table 1 specifies the data

https://github.com/ SteffenGue/open-crypto
https://github.com/ SteffenGue/open-crypto

A Cryptocurrency Data Collector 131

Table 1: Overview of all implemented request endpoints for both types of data providers.

Static Real-Time Historical

Data Currency Pairs Tickers Trades Order Books Historic Rates
Request Method currency_pairs tickers trades order_books historic_rates

Exchanges X X X X X
Platforms X X

type, while the second line (Request Method) names the request methods that are to be set
in the configuration file. Each exchange API has several endpoints, that define the underlying
data. Typically, exchanges offer (meta-) data for the underlying currency pairs (Static); real-
time market data on transactions (Real-Time); and summarizing information on past trading
periods (Historical). Up to date, open-crypto supports the public API endpoints from over 100 of
the largest and most liquid exchanges worldwide. Platforms on the other hand offer aggregated
market data like the market capitalization and global turnover volume of each cryptocurrency.
This information is not provided by exchanges, which makes platforms an important supplement
for a global perspective on the cryptocurrency market. We focus on Coingecko and Coinpaprika,
as they are, as of the time of this study, free-of-charge and well known in the community.

For an overview of all exchanges and their supported request methods, the following com-
mand can be called:

List available exchanges and their supported request methods
df = runner.exchanges_and_methods()
df.index.name = "exchanges"
Print the first five exchanges
df.head()

currency_pairs historic_rates trades order_books tickers
exchanges
50x True True True True False
aax True False True True False
alterdice True True True True True
ascendex True True True True True
b2bx True True True True True

The static endpoint contains information about the listed cryptocurrency pairs. Further-
more, many exchanges provide basic parameters about the currencies themselves, including
transaction fees and associated full names. We provide a unique identifier for each exchange
currency pair combination because cryptocurrencies do not necessarily share the same ticker
across exchanges. The available currency pairs for each exchange are written into the database
and imperative for all further requests. Real-time data subsumes most of the request meth-
ods and includes tickers, recent trades and order book data. Tickers returns the latest price,
frequently including the bid-ask spread and rolling 24-hours turnover volume. Trades contains
price, quantity, timestamp, direction (determined by the agent who adds volume to (maker)
and who takes volume from (taker) the market) and some trade identifier from the most recent
transactions. This request method is most suitable to obtain tick-level data for an exchange

132 Günther, S. et al.

currency pair. Order books provides a snapshot of all open buy and sell orders at one point
in time. The gap between the highest bid (buy) and lowest ask (sell) order is called bid-ask
spread. The total volume on both sides of the order book is called market depth and is often
interpreted as an indicator for price movements as it shows the ability to absorb the price impact
of larger trade quantities. Historic rates summarizes a fixed period of trading by returning
open-high-low-close prices and the daily turnover volume (OHLCV). Many exchanges offer to
modify the frequency of historical data. Therefore, open-crypto supports requesting historical
data from one-minute up to monthly candles. We illustrate the possibility for users to gather
high-frequency minute candles in Section 3.2. One fundamental difference to the stock market is
the non-stop trading as cryptocurrency exchanges never close. This leaves questions about the
closing time on different exchanges across time-zones. The consensus is to use 23:59:59 UTC as
the daily closing time.

3 Illustrations
In this Section, we provide examples on how to request static, real-time or historical cryptocur-
rency data using open-crypto. This is achieved by using configuration files that can easily be
adapted by users of open-crypto. All configuration files are stored within the current working
directory. The name can be arbitrarily chosen, and goes as an input argument when starting the
program. Before we turn to the examples, we describe which settings users can make in the config-
uration file. It contains three sections, database, operation_settings and jobs. A full configu-
ration file is available in the GitHub repository (./resources/templates/request_template.yaml).
Each is separately explained in the following. To save space, we unfold only the parts of interest
and mark the others with <...>.

• database – Firstly, the database is specified. Users can choose from a variety of embedded
and server-based database management systems supported by SQLAlchemy, namely SQLite,
MariaDB, MySQL or PostgreSQL. The client defines the adapter used by Python to establish a
connection. These are not part of the package dependencies but are automatically installed upon
usage. The database name (db_name) is free to choose, and the only necessary parameter for
the (embedded) server-less system SQLite. Variables for server-client based systems, especially
host and port, can be obtained from the respective documentation. We choose SQLite for all
illustrations provided in what follows in this section. We demonstrate the connection to the
other database systems in the online supplement.

general:
database:

sqltype: # sqlite, mariadb, mysql, postgresql
client: # sqlite3, pymysql, pymysql, psycopg2
user_name:
password:
host:
port:
db_name: ExampleName # Arbitrarily chosen name

operation_settings: <..>
jobs: <...>

With the database specified, open-crypto is able to store the data. The next step defines how
the data should be collected.

https://github.com/SteffenGue/open-crypto/blob/master/open_crypto/resources/templates/request_template.yaml

A Cryptocurrency Data Collector 133

• operation_settings – Secondly, in the operational settings, several variables can be set
to change the behaviour of open-crypto. The frequency is the time between two runs. It has to
be specified in minutes (e.g. 0.1 is equal to six seconds) when real-time data is requested. If a
single run takes longer than the target frequency, it is restarted immediately after completion but
not terminated intermittently. A value of zero leaves no waiting time in-between runs. If instead
once (e.g. to retrieve static or historical data) is passed, the program terminates automatically
after a single run. The key timeout defines the maximum time (in seconds) open-crypto waits
for an exchange to respond. If the value is exceeded, the exchange is neglected for this run but
requested again thereafter. Further, enable_logging allows to write several status statements
and/or intercepted error messages in a separate log-file, while asynchronously sets open-crypto
to either request exchange currency pairs in parallel or iteratively. In addition, interval defines
the granularity of historical candles and is only relevant for this request method. Accepted values
are minutes, hours, days, weeks, months. The default value is days.

general:
database: <...>
operation_settings:

frequency: once # or any number in minutes
timeout: 10
interval: days # minutes, hours, days, weeks, months
enable_logging: true
asynchronously: true

jobs: <...>

After this part of the configuration file, open-crypto knows how to request the data and where
to store them. The last task for the user is to define what to request.

• jobs – Thirdly, specifications about the request itself follow. Users have to provide the
name of the request_method, exchange(s) and currency pair(s) to consider. For every job, an
arbitrary name can be selected and replaces the field Job_Name. The request methods allowed
are specified in Table 1. To update the currency pairs of an exchange, update_cp can be enabled.
This is recommended as new currencies are listed and unlisted frequently. The specification of
exchanges, single cryptocurrencies and currency pairs allow for multiple values, which need to
be comma-separated. Currency pairs can either be specified directly or filtered by base and/or
quote currencies in order to reduce typing efforts. Furthermore, exchanges and currency pairs
can be replaced by the key all which will take all objects available. Several illustrations on
this are provided in the following Sections 3.2 for historical data, and the online supplement for
real-time data.

general: <...>
jobs:
Job_Name:

request_method:
exchanges: # exchange1, exchange2
update_cp: false
exclude: null # exclude a specific exchange or platform
currency_pairs: btc-usd, eth-usd

134 Günther, S. et al.

first_currencies: null
second_currencies: null

For every data type introduced in Table 1 (static, real-time and historical), the remainder of this
section and the online supplement provide intuitive illustrations. Section 3.1 (static) gives an
idea of the amount and distribution of cryptocurrencies across exchanges, Section 3.2 (historical)
requests time series from the data provider Coingecko and high-frequency one-minute candles
from all supported exchanges to get an idea of the ex-post data coverage and the differences
between both sources. Finally, the online supplement contains (real-time) exemplary analysis
regarding the trading behaviour of exchanges as such data cannot be retrieved from platforms.
Example scripts are embedded for each of the following request methods and are designed to
reproduce the results, whenever possible.

3.1 Static Information

The request method currency_pairs allows to retrieve all listed pairs from one or several
exchanges. The following code block shows the configuration to gather static data from all
exchanges. The important fields in the configuration file are request_method, and exchanges,
where the parameter to take all available exchanges is applied. The Job_Name, called Static in
this example, is arbitrarily chosen.

general:
database: <...>
operation_settings: <...>

jobs:
Static:

request_method: currency_pairs
exchanges: all
update_cp: false
exclude: null
currency_pairs: null
first_currencies: null
second_currencies: null

The script which runs the above configuration file and creates the following Figure 2 can be
executed by the following line of code. Note that requesting all currency pairs from over 100
exchanges may take several minutes to complete. All configuration files are available in the
GitHub repository (./resources/configs/user_configs/examples), where the files follow the nam-
ing convention of the methods in this paper, along with the scripts which create the plots
(./examples.py):

Request all exchange currency pairs and plot a histogram
runner.Examples.static()

Figure 2 plots the distribution of currency pairs across exchanges. Aggregated over more than
100 exchanges, this endpoint returns about 6,300 tickers and 36,700 exchange currency pairs,
excluding platforms. For comparison, the platform Coingecko lists 7,169 (crypto-)currencies from

https://github.com/SteffenGue/open-crypto/blob/master/open_crypto/resources/configs/user_configs/examples
https://github.com/SteffenGue/open-crypto/blob/master/open_crypto/examples.py

A Cryptocurrency Data Collector 135

Figure 2: Histogram of listed currency pairs across exchanges. The x-axis is discontinuous for
illustrative purposes. The highest values are retrieved from the exchanges/platforms YoBit
(8,786), Coingecko (7,169), Crex24 (1,670), GateIO (1,543) and Binance (1,256). Figure and
data as of 2021-05-12.

around 460 exchanges at the same point in time (all information as of 2021-05-12). The low
difference of cryptocurrencies indicates that the implemented exchanges of open-crypto cover
the vast majority of the (liquid) cryptocurrency market. To provide a better understanding
about the distribution, Figure 2 plots the amount of currency pairs across exchanges. Most of
the exchanges list under 500 currency pairs, with only a few exceptions reaching up to several
thousand tradable asset pairs. Among those are large exchanges like Binance and HitBtc, but
as well the platform Coingecko with 7,169 currency pairs, which are all quoted against the
US-Dollar. Differently, YoBit lists 8,786 trading pairs but only 1,466 single currencies, due to
multiple quotations. Most commonly, exchanges quote the cryptocurrencies against Tether with
a share of 29.16%, Bitcoin (24.30%), Ethereum (14.96%), US-Dollar (8.08%) and Waves (4.12%)
of all quotations in our data.

The database entries themselves can be inspected in several ways, as further demonstrated
in section 4. Within Python, or any other SQL supporting language, the database is queried the
following way:

Retrieve an open database session
session = runner.get_session("examples/static")

Query the first exchange entry in the database
exchange_obj = session.query(runner.Exchange).first()
print(exchange_obj)

#1: 50X, Active: True

This returns the first exchange in the database. The following request shows how to retrieve the
currency pairs related to the first exchange in our database:

136 Günther, S. et al.

Query currency pairs related to the exchange object
query=session.query(runner.ExchangeCurrencyPair).filter(
runner.ExchangeCurrencyPair.exchange_id == exchange_obj.id

).limit(5)

for pair in query:
print(pair)

#1: 50X(1), XLM(1)-USDT(2)
#2: 50X(1), CRV(3)-USDT(2)
#3: 50X(1), AIV(4)-USDT(2)
#4: 50X(1), A2A(5)-USDT(2)
#5: 50X(1), LINK(6)-USDT(2)

For a more convenient way to look at the received data itself, we also recommend the use of
third-party programs like SQLBrowser (https://sqlitebrowser.org). This is a quick and simple
way to evaluate the received data. In particular, users can inspect the listed currency pairs of
exchanges in order to perform subsequent individual requests.

With all the information about the listed currency pairs on every exchange and platform
available in the database, users can specify the exchange and currency pairs in the configuration
file accordingly. This step is demonstrated in the following subsections. Exemplary requests are
performed for historical and real-time data for a variety of currency pairs, in Section 3.2 and
the online supplemental, respectively.

3.2 Historical Data

This subsection is divided into three parts. Firstly, we query several cryptocurrencies from the
platform Coingecko and plot the price, market capitalization and total supply. Secondly, we
query historical data for major cryptocurrencies from all exchanges. Thirdly, we request data
for the major currency pair ETH-BTC to compare the available data frequency of the various
exchanges, in the following Section 3.2.3.

3.2.1 Platform Data

For the first part, we configure the program to retrieve historical data for Bitcoin, Ethereum and
Dogecoin from Coingecko. There is one major difference in the configuration between exchanges
and the platforms: Coingecko (and Coinpaprika) use full names as identifiers (i.e. Bitcoin or
Btc-Bitcoin), whereas exchanges typically only provide the ticker (i.e. BTC). We do not map
full names with exchange tickers, which allows for keeping data from both sources separated in
the database. Users can query the currency pairs table, as shown in the previous section 3.1, to
retrieve the correct spelling. Consequently, the configuration is as follows:

general:
database: <...>
operation_settings: <...>

jobs:
Historical:

https://sqlitebrowser.org

A Cryptocurrency Data Collector 137

request_method: historic_rates
exchanges: coingecko
update_cp: false
exclude: null
currency_pairs: null
first_currencies: bitcoin, ethereum, dogecoin
second_currencies: usd

The fields request_method and exchanges are set to retrieve historical data from the respec-
tive data source. The pairs of interest are provided under the keys first_currencies and
second_currencies. It would yield the same result if instead the pairs are defined in the field
currency_pairs. Users can perform this request and create the following Figure 3 (with more
recent data) by executing the following script:

Request time series data from a platform
runner.Examples.platforms()

To inspect the received data, users can choose different approaches in order to establish a link
to the database, in particular between intern open-crypto functionalities and third party tools
like the SQLBrowser. These approaches are described in detail in Section 4. For simplicity and
illustrative purposes, we stick with console output. Using the open database session from Section
3.1, the following request the retrieved historical candles:

import pandas as pd # Load the data directly into a dataframe

query = session.query(runner.HistoricRate.time,
runner.HistoricRate.close,
runner.HistoricRate.volume,
runner.HistoricRate.market_cap)

df = pd.read_sql(query.statement, con=session.bind, index_col="time")
print(df.head())

close volume market_cap
time
2021-02-21 23:59:59+00:00 56377.633478 7.735179e+10 1.050556e+12
2021-02-20 23:59:59+00:00 56038.727759 7.139724e+10 1.044190e+12
2021-02-19 23:59:59+00:00 51733.075539 5.848651e+10 9.639114e+11
2021-02-18 23:59:59+00:00 52143.678845 6.847874e+10 9.715166e+11
2021-02-17 23:59:59+00:00 49238.136907 6.414113e+10 9.173397e+11

Each row of the database consists of the closing price, daily turnover volume, and the market-
capitalization. The retrieved data in our database starts at 2013-04-28, volume is added on
2013-12-28.

The following Figure 3, created by runner.Examples.platforms(), shows the data for
Bitcoin. The top of Figure 3 contains the price series, which is the average of daily closing prices
from exchanges around the world. Beneath, the daily turnover volume, scaled to billion US-
Dollars is shown. We also calculate the total amount of Bitcoin in existence at each point in time

138 Günther, S. et al.

Figure 3: Bitcoin price, volume and total coin supply. Closing price and volume are in units of
US-Dollar. The total coin supply is calculated by dividing the daily market capitalization by the
daily closing price.

by dividing the market capitalization by the price. The line for Bitcoin shows a steady increase
with breakpoints in mid 2016 and 2020. This is due to so-called halvings, which decrease the
amount of newly mined coins per year by half. Halvings take place every 210,000 blocks. Bitcoin
is designed to increase the total float by a (relatively) constant amount until the maximum of
21 million coins is reached.

Figure 3 illustrates the advantages of platform data, namely the availability of the aggre-
gated (global) turnover volume and market capitalization. The data series are necessarily aggre-
gated from several exchanges and cannot be decomposed. Dis-aggregated or high-frequency data
(historical data) or trade and order book data (real-time data) requires to request exchanges
directly. We will therefore deal with exchange data in what follows.

3.2.2 Exchange Data

Leaving the aggregated view on the cryptocurrency market and focusing on the exchanges them-
selves, open-crypto offers a large variety of data. The following part of this section investigates
the ex-post coverage of cryptocurrencies by exchanges. For illustrative purposes, we focus on
ten of the largest cryptocurrencies as representatives of the liquid market, namely BTC, ETH,
LTC, XRP, ADA, DOGE, LINK, BCH, XLM, and ATOM, all quoted against USDT (Tether)
or USD (US-Dollar). As Tether is the digital pendant to the US-Dollar, and therefore equal in

A Cryptocurrency Data Collector 139

Figure 4: Monthly (median) amount of (cross-sectional) price notations per currency pair. Price
quotations from all exchanges and for every currency pair are counted daily and are down-
sampled to the monthly median. Tether and the US-Dollar are treated equally. The exchanges
are summed up.

price by construction, we do not distinguish between both in the following. The setting below
configures open-crypto to request daily historical data for the mentioned currency pairs from all
available exchanges.

general:
database: <...>
operation_settings: <...>

jobs:
DailyCandles:

request_method: historic_rates
exchanges: all
update_cp: false
exclude: null
currency_pairs: null
first_currencies: btc, eth, ltc, xpr, ada, doge, link, bch, xml, atom
second_currencies: usd, usdt

Users can perform this request and replicate the following plot (with more recent data) by
executing the following script (this request can take a long time to complete. It is therefore
provided as cut-down version here to run in several minutes):

runner.Examples.exchange_listings()

Figure 4 shows the number of exchanges on which a certain cryptocurrency is available. The
x-axis represents time and the y-axis the number of exchanges providing pricing information. For

140 Günther, S. et al.

example, the plot shows that the number of exchanges on which the currency pair ETH/USD(T)
is available increases from 20 in 2018 to 70 in 2021.

Bitcoin has the longest price history on exchanges (reaching back into 2011), far longer
than the time series from the platform Coingecko as shown in Figure 3, as the whitepaper
was already published in 2008 (Nakamoto, 2008). Starting with the end of 2017, many new
cryptocurrencies and exchanges emerged, which accelerated the listings significantly. Ethereum
(ETH) and Litecoin (LTC) are by far listed and traded on the most exchanges today, followed
by Ripple (XRP), Bitcoin (BTC) and Bitcoin Cash (BCH).

3.2.3 Data Frequency

The previous paragraph demonstrated that open-crypto is capable to retrieve a comprehensive
historical-data feed. However, we only focused on a daily frequency. We do now turn our focus to
high-frequency (intra-day) data. As exchanges may restrict data availability in different ways,
we address the question of historical-data quality, in terms of completeness. For illustrative
purposes, we limit to a single but very commonly traded currency pair, namely ETH-BTC. The
following configuration file sets interval: minutes. The task is to query historical ETH-BTC
data (on a minute basis) from all exchanges available:

general:
database: <...>
operation_settings:

frequency: once
timeout: 10
interval: minutes
update_cp: false
enable_logging: true
asynchronously: true

jobs:
MinuteCandles:

request_method: historic_rates
exchanges: all
update_cp: false
exclude: null
currency_pairs: eth-btc
first_currencies: null

This request can take several hours to complete, as exchanges do not return the whole data at
once, but only batches, therefore open-crypto has to request data iteratively. Again, the example
script is provided as a cut-down version with only three exchanges and a timer variable to
terminate the program (defined in seconds):

Request historical one minute candles
runner.Examples.minute_candles()

Table 2 summarizes the requested data from the 15 exchanges providing the most data
points. Exchanges are sorted by the total amount of received observations. The earliest time-
stamp dates back to 2015-08-14. We note that Ethereum was published on 2015-07-30, only

A Cryptocurrency Data Collector 141

Table 2: Summary statistics of the top 15 exchanges for historical data coverage. Minutes is
defined as the time delta between start/end in minutes. Entries counts the total number of
‘OHLCV’-rows retrieved. The currency pair requested is ETH/BTC, with minute candles. A
total of 53 exchanges returned data for this pair, including lower frequencies. The latest times-
tamps are from 2021-02-04. For reasons of comparability: one day is equal to 1,440 minutes. All
timestamps are in UTC.

Exchanges Start (UTC±0) Time Delta (Min) No. of Entries %

Bittrex 2015-08-14 09:06:00 2,880,893 2,880,893 100.00
HitBTC 2015-12-08 10:53:00 2,714,660 2,090,747 77.02
Binance 2017-07-14 04:01:00 1,874,113 1,708,734 91.18
LBank 2017-09-29 01:48:00 1,763,364 1,708,585 96.89
KuCoin 2017-09-27 02:46:00 1,766,187 1,519,188 86.02
Bitfinex 2016-03-09 16:10:00 2,581,863 1,506,103 58.33
Currency.com 2017-05-01 00:00:00 1,980,913 1,474,454 74.43
Maicoin 2018-05-31 10:21:00 1,411,491 1,347,952 95.50
Oceanex 2018-11-30 03:01:00 1,148,411 1,138,098 99.10
Bitz 2018-06-30 17:52:00 1,367,841 1,038,316 75.91
Upbit 2017-08-20 08:33:00 1,820,554 873,569 47.98
Digifinex 2019-07-29 16:00:00 800,593 733,838 91.66
Bitstamp 2019-11-07 23:16:00 654,717 603,000 92.10
Nominex 2019-10-09 13:37:00 697,055 574,412 82.41
Ftx 2020-05-14 09:11:00 383,402 376,063 98.09

two weeks before. Calculating the difference (in minutes) between this date and the most re-
cent date available results in about 2.88 million possible data points. We find that the most
data points are available on Bittrex. In total, only two exchanges provide data points for less
than 70% of the maximum time period, whereas most exchanges reach coverages above 90%.
Reasons for missing data are multifaceted: exchanges may simply delete redundant candles
with no changes and therefore no additional information to the previous period, can undergo
maintenance or experience temporary blackouts. From over 100 exchanges, the request returned
data from a total of 53 exchanges. Exchanges where the frequency is not available will request
daily candles instead. This behaviour can be changed which is further described in the project’s
repository.

After having described how open-crypto can be used to retrieve static and historical data
from platforms and exchanges, we do now turn our focus on how to access the database in which
the data is stored. We provide additional insights on how to use open-crypto on real-time data,
specifically order books and recent transactions, in the online supplementary materials.

4 Data Export
The export method depends on the purpose pursued. The following is based on data collected in
Section 3.2, in particular historical minute candles. If not already executed during Section 3.2,
in order to reproduce the following, run:

142 Günther, S. et al.

from open_crypto import runner
runner.run(configuration_file="examples/minute_candles", kill_after=60)

This section documents three possibilities to retrieve data from the database, (1) third-party
tools like SQLBrowser, (2) inherent functions to write data into csv- or hdf-files, and (3) opening
a database session and using either plain SQL or the ORM-mapper functionality.

Firstly, SQLBrowser comes with a clearly arranged interface and offers, among other func-
tionalities, data inspection, manipulation, filtration and exportation. Server-based database plat-
forms, for example PostgreSQL, offer different tools like pgAdmin.

Secondly, regarding the inherent export method, the block database in the export con-
figuration file below is unchanged to the main program and sets the connection string to the
database. The block query_options defines table and time horizon, followed by filters for ex-
changes and currency pairs. The key query_everything ignores any filter and returns the table
as a whole.

export:
database: <...>
query_options:

delimiter: ","
decimal: "."
table_name: HistoricRate
query_everything: True
from_timestamp: null
to_timestamp: null

exchanges: all
currency_pairs: eth-btc
first_currencies: null
second_currencies: null

The export is executed by calling the function export within the module runner. The respective
export configuration file needs to be passed as an argument and open-crypto will save the data
within the current working directory as a csv- or hdf-file. The file name consists of the database
table name and the current timestamp. The export itself is done with Pandas (The pandas
development team (2020)). Additional arguments can be passed as keyword-arguments:

Write the data into a csv file
runner.export(file='examples/example_export', file_format='csv')

Thirdly, it is possible to retrieve an open database session from the runner module. This
is achieved by typing:

Receive an open database session
session = runner.get_session('examples/minute_candles')

The command above takes the configuration file that was executed in order to run the example.
The returned database connection is capable of handling either plain SQL language to construct
queries, or to stick with Python’s object-oriented syntax. Taking the session to explore the
database structure further, yields:

A Cryptocurrency Data Collector 143

from sqlalchemy import inspect

Inspect the associated database engine from the session
inspector = inspect(session.bind)
table_names = inspector.get_table_names()

for table in table_names:
print(table)

currencies
exchanges
exchanges_currency_pairs
historic_rates
order_books
tickers
trades

This prints all table names from the database describing schema. Note that the table names,
unlike the class name, are typically written in lowercase and plural. Consequently, the class
Exchange, used for queries in the object oriented syntax, refers to the table exchanges. A valid
query could be:

query = session.query(runner.Exchange.id, runner.Exchange.name)
query.order_by(runner.Exchange.id).first()

(1, ’50X’)

This returns the first (auto-incremented) exchange identifier and the corresponding exchange
name. Depending on the order in which users have executed the examples, the returned exchange
name may differ. Going one step further, currency pairs listed on exchanges can be retrieved by:

Request the first ExchangeCurrencyPair entry in the database
session.query(runner.ExchangeCurrencyPair).first()

#1: 50X(1), XLM(1)-USDT(2)

The proposed package open-crypto thus offers a variety of possibilities to access the collected
data from the database. The most intuitive and fastest approach is the SQLBrowser which fits
most applications. Alternatively, users can write the data in a csv or hdf file. Finally, an open
database session can be retrieved to load data directly into the RAM or to be further used within
other programs.

5 Summary
This paper introduces a new open source Python package to request cryptocurrency market
data. The program is designed to be OS independent, easily customizable and expandable to

144 Günther, S. et al.

attract a wide range of users. Due to the increasing interoperability of programming languages,
open-crypto is widely applicable. We provide a tool to request both platforms and over 100
exchanges directly, which offers users the possibility for unprocessed and free-of-charge data
from the sources. The importance of being able to access both sources is demonstrated with
short illustrations about the global aggregated price series in Section 3.2.1 and the underlying
information only available from the exchanges themselves in Section 3.2.2. We contribute to
open and FAIR data principles in research to make data findable, accessible, interoperable,
and reusable. Independent and transparent research is build upon free data and software. The
package is uploaded to Python’s package index and provided as a Github repository. We hope
for the cryptocurrency community to adapt, use and further develop this tool.

Supplementary Material
We provide several additional information in the supplementary materials, regarding (1) further
information on the installation process, (2) troubleshooting list, (3) requesting real-time data,
(4) exchanges and endpoints, (5) cross-software usability from R and Matlab and (6) connectivity
to server-based database management systems.

References
Aloosh A, Li J (2019). Direct evidence of bitcoin wash trading. Working paper.
Bayer M (2012). Sqlalchemy. In: The Architecture of Open Source Applications Volume II: Struc-

ture, Scale, and a Few More Fearless Hacks (A Brown, G Wilson, eds.). aosabook.org.
Cong L, Li X, Tang K, Yang Y (2019). Crypto wash trading. Working paper.
Gewin V (2016). Data sharing: An open mind on open data. Nature, 529(7584): 117–119.
Hougan M, Kim H, Lerner M (2019). Economic and non-economic trading in bitcoin: Exploring

the real spot market for the world’s first digital commodity. Working Paper.
Iacus SM (2015). Automated data collection with R – A practical guide to web scraping and

text mining. Journal of Statistical Software, Book Reviews, 68(3): 1–3.
Kim N, Svetlov A (2020). Aiohttp. Release 4.0.0a1.
Makarov I, Schoar A (2020). Trading and arbitrage in cryptocurrency markets. Journal of Fi-

nancial Economics, 135(2): 293–319.
Nakamoto S (2008). Bitcoin: A peer-to-peer electronic cash system.
Pennec GL, Fiedler I, Ante L (2021). Wash trading at cryptocurrency exchanges. Finance Re-

search Letters, 43: 101982.
R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria.
Reichman OJ, Jones MB, Schildhauer MP (2011). Challenges and opportunities of open data in

ecology. Science, 331(6018): 703–705.
Szöcs E, Stirling T, Scott ER, Scharmüller A, Schäfer RB (2020). webchem: An R package to

retrieve chemical information from the web. Journal of Statistical Software, 93(13): 1–17.
The pandas development team (2020). pandas-dev/pandas: Pandas.
van Rossum G (2012). Asyncio: Asynchronous IO support rebooted: The "asyncio" module.
van Rossum G, Drake FL (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.

	Introduction
	Installation and Hands-on
	Installation
	Data and API-endpoints

	Illustrations
	Static Information
	Historical Data
	Platform Data
	Exchange Data
	Data Frequency

	Data Export
	Summary

