
Journal of Data Science xx (xx), 1–8
July 2020

DOI: 0000

Supplementary Materials to ‘The Python package open-crypto: A
cryptocurrency data collector’

Steffen Günther1, Christian Fieberg 2,∗, and Thorsten Poddig1

1Department of Finance, University Bremen, Germany
2Empirical Capital Market Research and Derivatives, University Bremen, Germany

This online supplemental covers several aspects. Section 1 relates to the installation process. The
following Section 2 illustrates the usage of open-crypto with real-time data, in particular order
book and recent transactions data. Section 3 covers the cross-software usability and database
connectivity to MySQL and PostgreSQL.

Furthermore, the online supplemental provides scripts (as Jupyter Notebooks and Python
files) for all figures and tables used in the main manuscript. However, often the replication of
figures is limited, as cryptocurrency data sources change frequently. Specifically, all real-time
related data can no longer be obtained. Order-book snapshots (provided below in Section 2) are
typically not offered ex-post by an exchange and are thus no longer retrievable (but are provided
as SQLite databases upon request). Figures and tables regarding historical data may change
as well, as exchanges (and cryptocurrencies) occur and vanish frequently. For example, when
recreating the distribution of currency pairs across exchanges, the histogram will most likely
change over time as some exchange disappear or list/remove cryptocurrencies.

Our scripts provided in the online supplemental replicate all tables and figures, as illustrated
in the manuscript. The data itself may be down-scaled (i.e. from minute data to daily data) to
decrease the size of the files. All original datasets are available upon request. The results remain
unchanged.

1 Installation

1.1 Installation via pip

The package is uploaded to the Python package index (PyPI). Several third-party dependencies
are defined in the setup file and installed automatically. The requirements for this tool are
Python greater or equal to version 3.8. After downloading Python (https://www.python.org/
downloads/), it needs to be added to PATH during the installation when using Windows. Users
should be able to open Python from the terminal by typing either python or python3.

1.2 Troubleshooting

During development and testing of open-crypto, several issues occurred and got resolved. Never-
theless, the most important issues are listed below:
• MacOS users may need to install ssl-certificates before running open-crypto. We provide a
root-certificate if none is found by Python. However, since this issue can be resolved easily by
executing Install Certificates.command within the Python folder of the application direc-
tory, we recommend doing so. However, open-crypto will notify the user if this is necessary.

∗Corresponding author Email: cfieberg@uni-bremen.de.

https://www.python.org/downloads/
https://www.python.org/downloads/
mailto:cfieberg@uni-bremen.de


2 Günther, S. et al.

• Using popular IPython kernels like Spyder or Jupyter Notebook may conflict with the asyncio
event loop opened by open-crypto. That is, these kernels run within an asyncio.BaseEventLoop
itself, and by construction asyncio does not support nested event loops. We tackle this issue
by applying nest-asyncio (https://pypi.org/project/nest-asyncio/) which patches this
shortcoming for the most popular distributions. If this work-around fails, open-crypto will
raise a RuntimeError. In this case, we recommend either switching the IDE or running open-
crypto from the terminal with plain Python.

• Running the program with PostgreSQL as database server may result in installation prob-
lems with the client, psycopg2. Try installing the client manually, by typing pip install
psycopg2-binary in the terminal.

2 Real-time data

2.1 Data types and explanations

This Section demonstrates the capabilities of open-crypto when dealing with real-time data.
In the main article we only provided illustrations on historical data, from both, platforms and
exchanges. This section introduces two additional request methods for order book data and recent
transactions. We start with an introduction into order books, followed by transactions and their
linkage. Finally, we provide snippets from our database and add some (basic) financial insights.

The two request methods considered for real-time data are order books and trades. Order
book data provides information about orders filled but not yet executed. Commonly, the 50
highest buy orders (bids) and lowest sell orders (asks) at a particular point in time, sorted by
price, are retrieved. The spread between the highest bid price (buy) and lowest ask price (sell) is
called the bid-ask spread. The volume on both sides of the order book is called market depth and
regularly serves to proxy the strength behind price movements. The runner module provides an
example for this request method resulting in a plot of the accumulated amount on both sides of
the order book by executing:

# Request the current order book
runner.Examples.order_books()

Table 1 shows a snapshot of the database for the exchange Coinbase and the currency pair ETH-
BTC. By default, and common for many other cryptocurrency exchanges, Coinbase returns the
first 50 entries from both sides of the order book.

Taking the midpoint between lowest ask and highest bid as spot price, 1.0 ETH can be
exchanged to 0.031565 BTC, or reverse, 1.0 BTC equals 31.68066 ETH. The bid-ask spread,
calculated as spread relative to the spot price, is 3.168 basis points (0.03168%). The volume on
different positions of the order book is distributed very unevenly. A possible reason is that orders
are aggregated at the same price level. For example, the high bid volume at positions three (82.12
ETH) and ten (87.47 ETH) in the order book do most likely not represent a single large order,
but instead an aggregated sum of several orders.

https://pypi.org/project/nest-asyncio/


Supplementary Material 3

Table 1: Order book snapshot from the database. The table is structured as follows: PairID represents an internal
exchange currency pair (ETH-BTC), ID an unique identifier to distinguish between order book snapshots, Time
is the request time in UTC+0 (translated from UNIX timestamp), Position the ordered position in the book,
AsksAmount and BidsAmount the respective base volume. Order book data may be grouped by price.

PairID ID Time Position BidsAmount BidsPrice AsksPrice AsksAmount

108 2964948970 2021-03-03 08:14:27.069 0 18.97379004 0.03156 0.03157 15.43867249
108 2964948970 2021-03-03 08:14:27.069 1 59.00069015 0.03155 0.03158 46.94196312
108 2964948970 2021-03-03 08:14:27.069 2 42.27195103 0.03154 0.03159 30.72162118
108 2964948970 2021-03-03 08:14:27.069 3 82.11266096 0.03153 0.0316 78.55653857
108 2964948970 2021-03-03 08:14:27.069 4 24.69691738 0.03152 0.03161 24.50587123
108 2964948970 2021-03-03 08:14:27.069 5 39.12828203 0.03151 0.03162 17.27955085
108 2964948970 2021-03-03 08:14:27.069 6 9.84934641 0.0315 0.03163 20.205
108 2964948970 2021-03-03 08:14:27.069 7 16.3 0.03149 0.03164 3.56145
108 2964948970 2021-03-03 08:14:27.069 8 12.00049334 0.03148 0.03165 42.40052371
108 2964948970 2021-03-03 08:14:27.069 9 1.662 0.03147 0.03166 44.891038
108 2964948970 2021-03-03 08:14:27.069 10 87.47106332 0.03146 0.03167 12.3134
108 2964948970 2021-03-03 08:14:27.069 11 2.5966 0.03145 0.03168 70.39308132
108 2964948970 2021-03-03 08:14:27.069 12 15.78915905 0.03144 0.03169 37.00327507
. . . . . . . . . . . . . . . . . . . . . . . .
108 2964948970 2021-03-03 08:14:27.069059 49 1.12377398 0.03103 0.03206 19.55223117

To make the connection to transactions, we request every executed trade for the time around
the order book snapshot as shown in the Table 2. Whenever a transaction is executed, due to
a matching buy and sell order listed in the order book, the information is obtained, stored and
can be requested by open-crypto. This commonly includes a timestamp, an unique identifier, the
volume and price information from the order book, as well as the trade direction. The direction
is defined as the party of the trade who takes liquidity out of the market, i.e. matches an existing
offer in the order book and completes the transaction. The runner module provides an example
for this request method resulting in a plot of the most recent 1,000 transactions from the exchange
Coinbase:

# Request the most recent transactions
runner.Examples.trades()

Referring to the order book snapshot above, the transaction in row four of Table 2 was executed
right after the order book snapshot. The transaction is labeled as ‘sell’, which conveys that the
seller of the asset took an existing buy offer to complete the transaction. Recent trades data as
in Table 2 contain important information. For one, if all trades are captured, the data is stated
to be at tick-level, which represents the most valuable and highest resolution of pricing data.
Furthermore, the sum of all trade quantities reflects the daily trading volume and is typically
used to calculate the global turnover and volume-weighted price indexes.



4 Günther, S. et al.

Table 2: Database entries for the request method trades. The table is structured as follows: PairID represents
an internal exchange currency pair (ETH-BTC), ID an unique identifier to distinguish between trades, Time
represents the transaction time (translated from UNIX timestamp), Amount the trade size in base currency.
<null> values are not returned by an exchange. For example, the first row represents the transaction of 0.001
ETH for a price of 0.03159 BTC per one unit ETH.

PairID ID Time Amount BestBid BestAsk Price Direction

108 14232964 2021-03-03 08:14:19.548 0.001 <null> <null> 0.03159 buy

108 14232965 2021-03-03 08:14:20.179 0.00058714 <null> <null> 0.03159 buy

108 14232966 2021-03-03 08:14:26.241 0.06132751 <null> <null> 0.03157 sell

108 14232967 2021-03-03 08:14:29.514 0.04035327 <null> <null> 0.03159 sell

108 14232968 2021-03-03 08:14:35.775 0.00620771 <null> <null> 0.03157 sell

108 14232969 2021-03-03 08:14:42.421 0.00310545 <null> <null> 0.03157 sell

108 14232970 2021-03-03 08:14:43.396 0.653052 <null> <null> 0.03157 sell

108 14232971 2021-03-03 08:14:43.396 0.30196308 <null> <null> 0.03157 sell

108 14232972 2021-03-03 08:14:44.917 0.00953594 <null> <null> 0.03157 sell

108 14232974 2021-03-03 08:14:51.550 0.94785805 <null> <null> 0.03156 buy

108 14232973 2021-03-03 08:14:51.550 0.05214195 <null> <null> 0.03156 buy
. . . . . . . . . . . . . . . . . . . . . . . .

2.2 Requesting real-time data

After clarifying the context and terminology of the data, this section continues with an illustra-
tive example. Specifically, we collect transaction data for the currency pair ETH-BTC from 64
different exchanges, from 2021-01-13 until 2021-02-13, to analyze differences in trading frequency
on the various exchanges. The time between transactions is dependent on the liquidity of an ex-
change and can range from seconds up to days. The settings in the configuration file to retrieve
the respective data are shown below:

general: <...>
jobs:

TradeData:
request_method: trades
exchanges: all
update_cp: false
exclude: null
currency_pairs: eth-btc
first_currencies: null
second_currencies: null

Table 3 displays the average time passed between trades. For each exchange, the first and last
timestamp is selected, as well as the total amount of trades. Afterwards, we divide the total
amount of seconds passed between both timestamps by the total number of trades. The metric
therefore returns the average time between transactions. The next step groups similar exchanges
into buckets. The constituents of each bucket are listed in the right column. We add the total



Supplementary Material 5

amount of listed currency pairs available on a specific exchange in brackets. The purpose is to
yield a better impression about the importance of the various exchanges. For instance, the first
row groups all exchanges which record transactions, on average, more often than once a second.

Table 3: Summary of all recorded trades for the currency pair ETH-BTC. Exchanges are aggregated into buckets
depending on the average time passed between trades. The data period starts 2021-01-13 and ends 2021-02-13.
Intervals are given in seconds, are left-exclusive and right-inclusive. The column ‘Exchanges’ lists all exchanges
inside a bucket and is sorted by the total amount of currency pairs supported by an exchange (brackets). For
better readability: 3,600 seconds equal one hour; 43,200 seconds equal 12 hours; and 86,400 seconds equal one
day.

Interval in Seconds Total Exchanges

0 - 1 6 Binance(1,434), HitBtc(1,164), CoinDcx(786),
LBank(405), Bitrue(253), WhiteBit(253)

1 - 5 14 Mxc(840), KuCoin(654), Okex(509), Hbtc(377),
P2pb2b(358), Bitmart(296), Bitz(205), Coin-
base(198), Coinbene(180), Mexo(116), Hydax(93),
Bidesk(85), Xtheta-Global(81), Chiliz(54)

5 - 10 9 Bittrex(874), Bkex(718), LAToken(443),
Tidex(382), Exrates(341), Folglory(326), Xt(279),
Btc-Alpha(105), Bw(96)

10 - 30 9 Yobit(8,786), Coinex(450), Ftx(442),
Bithumb(337), Exmo(189), Alterdice(123),
Aax(115), Bitstamp(75), Bitfront(13)

30 - 60 3 Gateio(1,543), Bitmax(353), Bitso(25)

60 - 600 10 Crex24(1,670), Mercatox(764), Hoo(511), Bi-
box(353), Wazirx(259), Cexio(202), Bitvavo(151),
Bitbay(195), Gemini(64), Btc-Turk(42)

600 - 3,600 5 Lykke(206), Zaif(32), Currency.com(31), Bleu-
trade(26), Buda(19)

3,600 - 43,200 3 Vindax(726), Crypto.com(153), Gopax(35)

43,200 - 86,400 1 Braziliex(81)

86,400 - max 1 Bisq(52)

From these exchanges with the highest turnover frequency, Binance lists the largest amount
of currency pairs, in total 1,434. Exactly half of the exchanges record transactions within ten
seconds. Within ten minutes, the vast majority (86%) records at least one trade. Note, however,
that the results may vary depending on the popularity of a cryptocurrency in general or in
a specific region. By far the most trades are received from Binance with around 13.5 million,
leading to five trades per second on average. The distance to the exchange with the second most



6 Günther, S. et al.

recorded trades (HitBtc) is large, 3.88 million trades and, on average, 1.44 trades per second.
The exchange with the lowest reported turnover is Bisq, with a total of 136 trades over the whole
period. This results in one trade every 40 hours. The considerations above provide an idea on
how reliable the data on a certain cryptocurrency from a certain exchange is.

3 Further Information

3.1 Exchanges and endpoints

The proposed package has a total of 106 exchanges connected. The following Table 5 counts the
amount of implemented request methods. Obviously all exchanges support to query the underly-
ing cryptocurrency pairs, roughly 100 support the real-time request methods, while 87 (65) offer
to return limited (unlimited) historical data. It is, nevertheless, noteworthy, that cryptocurrency
exchanges emerge and disappear frequently.

Table 5: Summary of all implemented exchanges and their offered request methods. Historic Rates (iterate) is a
genuine subset of ‘Historic Rates’ and represents exchanges offering to iterate backwards in time, thus being able
to receive all available candlesticks.

Currency-Pairs 106
Tickers 98
Recent Trades 99
Order-Books 101
Historical Rates 87
Historical Rates (iterate) 65

Exchanges Total: 106

3.2 Cross-software usability

Relational database systems are widely supported, moreover, the interoperability of different
software is increasingly demanded. It is noteworthy that programming languages often offer
interfaces for Python, for example using reticulate (Ushey et al., 2022) within R. However, this
section shows how to access the data gathered with open-crypto from R and Matlab. To access
the database from R the packages RSQLite (Müller et al. (2022)) and DBI (R Special Interest
Group on Databases (R-SIG-DB) et al. (2021)) can be used. Following the official documentation,
connecting to the illustrative database and executing a simple query is achieved by:

library(RSQLite, DBI)

con <- dbConnect(RSQLite::SQLite(), "Trades.db")
statm <- "SELECT time, price, amount FROM trades LIMIT(3)"
query <- dbSendQuery(con, statm)
dbFetch(query)

time price amount
1 2021-03-03 08:14:35.775000 0.03157 0.00620771
2 2021-03-03 08:14:29.514000 0.03159 0.04035327
3 2021-03-03 08:14:26.241000 0.03157 0.06132751



Supplementary Material 7

The first command defines a variable to handle the database connection, followed by a simple
query in standard SQL notation. The example returns time, price and amount of the first three
database entries from the historical data. R users can furthermore make use of the package
dbplyr (Wickham et al., 2021), the database backend for the popular package dplyr (Wickham
et al., 2022), which implements, to some extent, object-relational mapping (ORM). dbplyr then
automatically translates function calls into SQL notation (for more information, visit: https:
//dbplyr.tidyverse.org/).
The Matlab syntax is as well straightforward. Note that users of Matlab need the database toolbox.
However, there are open-source alternatives provided by the community, e.g. mklite (https:
//sourceforge.net/projects/mksqlite/files/).

>>con = sqlite("ExampleDB.db");
>>statm = "SELECT time, price, amount FROM trades LIMIT(3)";
>>result = fetch(con, statm);

3.3 Database Connection

During the illustrations we chose SQLite as database. This system is server-less and well equipped
for most applications. However, users may wish to make use of one of the other mentioned
database management systems. Accordingly, in order to connect to MariaDB or MySQL, small
changes need to be made in the configuration file. Note that we only use default values for the
purpose of demonstration, which can be retrieved from the official documentations. Furthermore,
users need to ensure to install the database system and the client beforehand.

general:
database:

sqltype: mariadb # or mysql
client: pymysql
user_name: root
password: *******
host: localhost
port: 3306
db_name: ExampleDB

operation_settings: <..>
jobs: <...>

Slightly different, when using PostgreSQL:

general:
database:

sqltype: postgresql
client: psycopg2
user_name: postgres
password: *******
host: localhost
port: 5432
db_name: ExampleDB

https://dbplyr.tidyverse.org/
https://dbplyr.tidyverse.org/
 https://sourceforge.net/projects/mksqlite/files/
 https://sourceforge.net/projects/mksqlite/files/


8 Günther, S. et al.

operation_settings: <..>
jobs: <...>

Similar to the SQLBrowser, server-based database management systems do have visualization/ad-
ministration tools available. Most popular for PostgreSQL is the open-source platform pgAdmin
(https://www.pgadmin.org/). MySQL and MariaDB can be connected by the open-source tool
HeidiSQL (https://www.heidisql.com/).

References

Müller K, Wickham H, James DA, Falcon S (2022). RSQLite: SQLite Interface for R. R package
version 2.2.14.

R Special Interest Group on Databases (R-SIG-DB), Wickham H, Müller K (2021). DBI: R
Database Interface. R package version 1.1.2.

Ushey K, Allaire J, Tang Y (2022). reticulate: Interface to ’Python’. R package version 1.25.
Wickham H, François R, Henry L, Müller K (2022). dplyr: A Grammar of Data Manipulation.

R package version 1.0.9.
Wickham H, Girlich M, Ruiz E (2021). dbplyr: A ’dplyr’ Back End for Databases. R package
version 2.1.1.

https://www.pgadmin.org/
https://www.heidisql.com/

	Installation
	Installation via pip
	Troubleshooting

	Real-time data
	Data types and explanations
	Requesting real-time data

	Further Information
	Exchanges and endpoints
	Cross-software usability
	Database Connection


