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This special issue features eight articles on “Data Science Meets Social Sciences.” Data sci-
ence is playing an increasingly important role in the social sciences through the use of a wide
variety of data – structured and unstructured, quantitative and qualitative – to facilitate our
understanding of human and society. The social sciences, historically rich in theories and con-
textual knowledge, are well positioned to guide development and translation of data products
into meaningful decisions and practices. This special issue is dedicated to highlighting scientific
approaches at the conjunction of the social sciences and data science. It covers a wide range of
topics including applications of current state-of-the-art data science methods as well as develop-
ment of new data science approaches in education, psychology, political science, economy, public
health and other social sciences.

All articles in this special issue were peer-reviewed. Anglin et al. (2022) compared two dif-
ferent methods of text annotation: a “complex” method where all codes were annotated for all
pieces of text in context and a “simple” method in which codes were annotated one at a time for
individual pieces of text, and found that the complex annotation scheme was more accurate and
efficient. Social scientists and computational linguists that are tasked with making annotation de-
cisions will find this paper’s contribution to the data science of annotation of text data especially
appealing. Bluhm and Cutura (2022) demonstrated how to handle big data with Apache Spark,
an open-source distributed computing toolset, using reproducible econometrics examples. The
paper targets explicitly a non-expert audience, making it a valuable reference for researchers with
a limited background in data handling and distributed computing. Lehoucq (2022) argued that
optimism among American liberals and conservatives about technology, specifically, the fairness
of predictive automation, is becoming increasingly polarized. The author relied on nationally-
representative survey data from the Pew Research Center’s American Trends Panel and utilized
a variety of machine learning techniques to understand difference in American perceptions about
predictive automation. The author showed that Americans who think predictive automation is
fair tend to lean conservative, accept more controversial social media practices, and have a posi-
tive view of technology corporations. Ma and Xu (2021) discussed and compared the methods to
test latent hierarchical structures in Cognitive Diagnosis Models (CDMs), a model that has been
widely used in social and biological sciences. They demonstrated the effectiveness and superi-
ority of a parametric bootstrap method in testing latent hierarchical structures in CDMs using
comprehensive simulations and an educational assessment dataset. Mo et al. (2022) explored
the application of classification and regression trees (CRT) in educational research, particularly
in studying students’ performance levels and achievement gains. Through a case study of Early
Childhood Longitudinal Study-Kindergarten 2011 (ECLS-K: 2011) data, the advantages and
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limitations of using CRT on achievement data are demonstrated, which provides a practical
illustration of scenarios when CRT is appropriate and beneficial. Sanders et al. (2022) empir-
ically investigated the relationship between grit and age. Using a within and between genera-
tional cohort age difference-in-difference approach, they found a negative-parabolic relationship
between grit and age, which was driven by generational variation and not by age variation.
Yang and Bradley (2021) developed a more efficient implementation of the Conway-Maxwell
(COM) Poisson model, which is unique in its ability to handle under- and over-dispersion. The
authors made a number of novel improvements over the model to deal computational issues in
the estimation process and impose a conditional independence assumption to avoid inflating vari-
ance of the data with spatial random effects. They highlighted the utility of their approach using
simulated examples and a real world application to voting data from the 2016 US presidential
election. Yang and Shang (2022) investigated different disaggregation structures in grouped func-
tional time series and their implications for forecasting. Using Japanese sub-national age-specific
mortality rates from 1975 to 2016 as an example, they found that the dynamic multivariate func-
tional time series method, combined with reconciliation methods, obtained improved point and
interval forecasts when applied to the functional time series formed by disaggregated series.

We are grateful to the authors for their timely contributions and to the anonymous reviewers
for their thoughtful reviews of the manuscripts. It is our hope that this special issue will be of
interest to social scientists and data scientists alike.
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