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Abstract

Fixed-point algorithms are popular in statistics and data science due to their simplicity, guaran-
teed convergence, and applicability to high-dimensional problems. Well-known examples include
the expectation-maximization (EM) algorithm, majorization-minimization (MM), and gradient-
based algorithms like gradient descent (GD) and proximal gradient descent. A characteristic
weakness of these algorithms is their slow convergence. We discuss several state-of-art tech-
niques for accelerating their convergence. We demonstrate and evaluate these techniques in
terms of their efficiency and robustness in six distinct applications. Among the acceleration
schemes, SQUAREM shows robust acceleration with a mean 18-fold speedup. DAAREM and
restarted-Nesterov schemes also demonstrate consistently impressive accelerations. Thus, it is
possible to accelerate the original fixed-point algorithm by using one of SQUAREM, DAAREM,
or restarted-Nesterov acceleration schemes. We describe implementation details and software
packages to facilitate the application of the acceleration schemes. We also discuss strategies for
selecting a particular acceleration scheme for a given problem.
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1 Introduction
Computational problems in science and mathematics are often solved using iterative algorithms,
which produce a sequence of real-valued vectors converging to the solution of interest. Exam-
ples include solving systems of linear and nonlinear equations, numerical solutions of differential
equations, approximation of integrals, and minimization of multivariate functions. Parameter
estimation in many practical problems in statistics and data science can be ultimately reduced
to a specific optimization problem often involving parameter constraints. To solve such opti-
mization problems, various iterative algorithms have been developed including the expectation-
maximization (EM) algorithm (Dempster et al., 1977), the majorization-minimization (MM)
algorithm (Hunter and Lange, 2004), and gradient based methods like gradient descent (GD)
and proximal gradient descent (Boyd et al., 2004). These methods are general and easy to use,
and they can all be regarded as fixed-point iteration algorithms. A major appeal of these al-
gorithms is their stability and their ability to readily handle high-dimensional problems which
is a main reason for their surge in popularity for modern applications. However, a character-
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istic weakness of these algorithms is their potential slow convergence, i.e., the vector sequence
produced by the fixed-point iterative algorithm, xn+1 = F(xn), may converge very slowly (if
it converges) to the solution x∗, severely limiting their effective use in solving real problems.
Hence, it is desirable to have tools available that can accelerate the convergence of the sequence
{xn}. Please refer to Supplementary Material for a general, theoretical discussion of the rate of
convergence of fixed-point iterations.

As highlighted in Varadhan and Roland (2008), an acceleration scheme should possess cer-
tain key properties in order to be an effective and practical tool for high-dimensional optimization
problems. It should accelerate the convergence of the original iterative algorithm (fast local con-
vergence); it should converge to the solution from any reasonable starting value (robust global
convergence), provided, of course, that the base algorithm itself is convergent; it should have min-
imal storage/memory requirements (applicability to high-dimensional problems); and it should
require minimal problem-specific tuning (off-the-shelf usability). The minimal storage require-
ment eliminates Newton-type algorithms which make use of full second-order information. In
this paper, we examine several recently developed acceleration schemes that satisfy these listed
requirements. The acceleration schemes discussed include SQUAREM (Varadhan and Roland,
2008), Anderson acceleration and DAAREM (Henderson and Varadhan, 2019), Quasi-Newton
(Zhou et al., 2011), Nesterov acceleration with restarts (O’Donoghue and Candes, 2015), and
Parabolic-EM (Berlinet and Roland, 2009).

The paper is organized as follows. First, in the next section, we describe several well-
known fixed-point iterations and discuss their theoretical convergence properties. In Section 3,
we introduce and describe the accelerating methods to be studied. In Section 5, we test the
performance of each of these acceleration methods in a range of practical problems. In Section 4,
implementation details and available R packages are described, and in last Section, we discuss
the results and give strategies for choosing an acceleration scheme for a given problem at hand.

2 Popular Iterative Algorithms and Their Convergence

2.1 MM Algorithm

The MM in the MM algorithm stands for “Majorization-Minimization” or “Minorization-Max-
imization”, depending on whether the particular optimization problem is a minimization or
maximization problem. The MM algorithm actually describes a family of algorithms that are
implemented by creating a surrogate function that majorizes (minorizes) the objective function of
interest and optimizing this surrogate function in each iteration. A key feature of MM algorithms
is that the objective function will increase (decrease)in every iteration. See Hunter and Lange
(2004) for a general description of MM algorithms.

A function g(x|xk) is called a minorized version of the objective function f at xk if it satisfies
the following two conditions

∀x : g(x|xk) � f (x)

g(xk|xk) = f (xk).

Similarly, g(x|xk) will be called a majorized version of f at xk if −g(x|xk) is a minorized ver-
sion of −f . An MM maximization algorithm updates the current iterate xk by maximizing the
minorizing function g(x|xk). If we define F to be the argmax operator for g(x|xk), then we can
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express the MM iteration as

xk+1 = argmax
x

g(x|xk) =: F(xk). (1)

The fixed-point iteration (1) generates a sequence which is monotone with respect to the
objective function f ; that is, we are guaranteed to have f (x0) � f (x1) � f (x2) �.... This is due
to the fact that f (xk+1) � g(xk+1|xk) � g(xk|xk) = f (xk), and hence, one will get a strict increase
in the objective function whenever g(xk+1|xk) �= g(xk|xk).

If x∗ denotes an optimal point of f , then for xk close to x∗, we have the following local
approximation

xk+1 − x∗ ≈ dF(x∗)(xk − x∗),

where dF(x∗) is the Jacobian of F at x∗. It can be shown that dF(x∗) is given by

dF(x∗) = I − [d2g(x∗|x∗)]−1d2f (x∗), (2)

where d2f (x∗) and d2g(x∗|x∗) denote the Hessian matrices of f (x) and g(x|x) respectively
(with the derivatives in d2g(x∗|x∗) being taken with respect to the first argument of g(x|x)).
Therefore, an MM algorithm has linear convergence with a rate related to the largest eigenvalue
of the Jacobian in (2), and the value of this Jacobian depends on both the objective function and
choice of surrogate function. Globally, if the objective function f is strictly convex or concave,
an MM algorithm will converge to the unique optimal point, assuming it exists. Otherwise, the
MM algorithm will converge to one of the stationary points.

2.1.1 The EM Algorithm as a Special Case of MM

EM algorithms are used to find the value of a parameter vector x which maximizes a log-
likelihood function �(x) = log p(Y|x) of interest, where Y denotes the observed data vector
and p(·|x) is the probability distribution for the observed data that is parameterized by x. To
develop an EM algorithm for maximizing �(x), one introduces a vector of unobserved latent
data U and a probability distribution p(Y, U|x) for (Y, U) which is also parameterized by x.
Because �(x) can be decomposed as log p(Y|x) = log p(Y,U|x) − log p(U|Y, x) and log p(Y|x)

does not depend on U, if we take the expectation of log p(Y|x) with respect to the conditional
distribution [U|Y, xk] where xk is the current iterate of the EM algorithm, we obtain

log p(Y|x) = EU|Y,xk
{log p(Y,U|x)} − EU|Y,xk

{log p(U|Y, x)}
= Q(x|xk) + H(x|xk). (3)

In (3), Q(x|xk) is often referred to as the “Q-function”, and computing it is referred to as the “E-
step” of the EM algorithm. The term H(x|xk) is the cross entropy of the conditional distribution
[U|Y, x] relative to the conditional distribution [U|Y, xk].

After completing the “E-step”, xk+1 is found by maximizing the Q-function Q(x|xk) with
respect to x, namely,

xk+1 = arg max
x

Q(x|xk) =: F(xk).

Computing xk+1 by maximizing Q(x|xk) is usually referred to as the “M-step” of an EM algo-
rithm.
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To see why the EM algorithm is a special case of the MM algorithm, note first that it
directly follows from Jensen’s inequality that

H(x|xk) − H(xk|xk) = EU|Y,xk

[
log{p(U|Y, θ)/p(U|Y, xk)}

]
� log

[
EU|Y,xk

{
p(U|Y, θ)/p(U|Y, xk)}

]
= 0.

and hence Q(x|xk)+H(xk|xk) � log p(Y|x) for any value of x. In other words, Q(x|xk)+H(xk|xk)

is a minorized version of the log-likelihood log p(Y|x). Since H(xk|xk) is a positive constant
that does not depend on x, maximizing Q(x|xk) + H(xk|xk) is equivalent to maximizing the
Q-function. Hence, we can regard the EM algorithm as an MM algorithm with minorization
function Q(x|xk) + H(xk|xk).

2.2 Gradient Based Algorithms

2.2.1 Gradient Descent

Consider the following optimization problem:

min
x

f (x) (4)

for a smooth function f that has all first order derivatives with ∇f (x) = (
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp
)

denoting the gradient of f at x. Gradient descent is an iterative algorithm that always updates
the current iterate xk linearly in the direction where f decrease the fastest, namely, the negative
gradient −∇f (xk). In particular, for a given choice of step size or learning rate tk, the gradient
descent update of xk is given by

xk+1 = xk − tk∇f (xk). (5)

Gradient descent may also be interpreted in the following way. At each step, we do not
directly minimize the original function f , but instead, we minimize its first order approximation
fk(x) around xk which is given by

fk(x) = f (xk) + ∇f (xk)
T (x − xk) + 1

2tk
||x − xk||2, (6)

where || · || is the Euclidean norm. One can directly check that the minimizer of the function fk

is equal to xk+1 in (5).

2.2.2 Proximal Gradient Descent

Optimization problem (4) is not general enough to handle optimization problems that have
non-smooth terms. In such cases, one might consider the following generalization of (4)

min
x

f (x) + h(x), (7)

where, again, f is assumed to be smooth up to first order but h is instead a non-smooth function.
As an example of (7), the objective function used in LASSO regression (Tibshirani, 1996) can
be expressed as a sum of a smooth function and the non-smooth L1 norm term.
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Using the same reasoning used to obtain approximation (6), we can approximate the target
f (x) + h(x) at each step by

(f + h)k(x) = f (xk) + ∇f (xk)
T (x − xk) + 1

2tk
||x − xk||2 + h(x)

= 1

2tk
||x − xk + tk∇f (xk)||2 + h(x) + Const, (8)

where Const is a constant term that does not depend on x. In step k, the proximal gradient
descent update xk+1 is defined as the minimizer of the approximation (f + h)k(x) shown in (8).
The minimizer xk+1 of (8) is typically expressed in terms of the proximal operator proxh(·) of a
function h which is defined as

proxh(x) = arg min
z

{ 1

2
||z − x||2 + h(z)

}
.

It follows from (8) that the proximal gradient descent update can be expressed in terms of the
proximal operator of the function tkh as

xk+1 = proxtkh
(xk − tk∇f (xk)) (9)

The proximal gradient descent algorithm is most useful when the proximal operator has
a closed form or is, at least, very easy to compute. For example, consider the case of LASSO
regression where the non-smooth component h(x) of the objective function is equal to the L1

norm multiplied by a tuning parameter λ, i.e., h(x) = λ||x||1 as L1 norm. The proximal mapping
of h can be expressed as

proxh(x) = arg min
z

{1

2
||z − x||2 + λ||z||1

}
= Sλ(x),

where the jth component of Sλ(x) is given by

[Sλ(x)]j =

⎧⎪⎨
⎪⎩

xj − λ if xj > λ

0 if − λ � xj � λ

xj + λ if xj < −λ

, j = 1, . . . , p, (10)

where xj is the jth component of x.
As shown in Boyd et al. (2004), both gradient descent and proximal gradient descent are

globally convergent with the same convergence rate in convex problems. Assuming f and h

are both convex and ∇f is Lipschitz continuous with Lipschitz constant Lf > 0 (i.e., ∀x, y :
|∇f (x) − ∇f (y)| � Lf |x − y|), then, for some constant C, the following inequality holds when
a constant step size tk = tf < 1/Lf is used

f (xk) + h(xk) − f (x∞) − h(x∞) � C
||x0 − x∞||2

ktf
, (11)

where x∞ is the optimal point and x0 the initial point. Therefore, to obtain a precision level
which is within at least ε of the optimal value of the objective function, we will need O(1/ε)

proximal gradient or gradient descent iterations.
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3 Acceleration Techniques

3.1 Anderson Acceleration and DAAREM

Anderson acceleration (AA), also known as Anderson mixing, was originally introduced by D.G.
Anderson in 1965 to accelerate the rate of convergence of fixed-point iterations in the context of
integral equations (Anderson, 1965), and this acceleration technique has turned out to be useful
in a range of other applications. Recent examples include computing the nearest correlation
matrix (Higham and Strabić, 2016), reinforcement learning (Geist and Scherrer, 2018), EM
acceleration (Henderson and Varadhan, 2019), and electronic structure computations (Fang and
Saad, 2009).

The Anderson acceleration algorithm with order m applied to solving the fixed-point prob-
lem f (x) = x is shown in Algorithm 1.

Algorithm 1: Anderson acceleration and DAAREM. In the description of the al-
gorithm, xk+1 = f (xk) is the base fixed-point iteration, and m is the order of the
acceleration scheme.
1 Initialize x0 ∈ X

2 Set x1 = f (x0)

3 for k = 1, 2, 3, . . . do
4 Set mk = min{k, m}
5 Find the {αk+1

j } to solve the following the minimization problem:

min∑k
j=k−mk

αk+1
j =1

∥∥∥∥∥∥
k∑

j=k−mk

αk+1
j (f (xj ) − xj )

∥∥∥∥∥∥
2

+ λk

∥∥∥αk+1
−k

∥∥∥2
(12)

6 Update xk+1 = (1 − βk)
∑k

j=k−mk
αk+1

j xj + βk

∑k
j=k−mk

αk+1
j f (xj )

7 if meets restart criteria then
8 Restart mk from 1
9 end

10 end

In Algorithm 1, αk+1
−k denotes the vector of length mk containing the values αk+1

j for j =
k − mk, . . . , k − 1, and βk is the relaxation factor used in Walker and Ni (2011) and Evans
et al. (2020). The non-negative scalar λk � 0 is an optional damping factor used in Henderson
and Varadhan (2019), and if λk = 0 for all k, then the update xk+1 in Algorithm 1 reduces
to the more typical formulation of Anderson acceleration shown, in, for example, Walker and
Ni (2011). Often, the minimization problem (12) in Algorithm 1 is stated as an equivalent
unconstrained minimization problem with respect to mk unconstrained parameters rather than
the mk + 1 constrained parameters {αk+1

j }. This formulation is used, for example, in Higham and
Strabić (2016), and in Henderson and Varadhan (2019), where the unconstrained version of the
minimization problem allows a more direct comparison with so-called multisecant quasi-Newton
methods (Fang and Saad, 2009).

The convergence of Anderson acceleration for a general, nonlinear fixed-point iteration has
been shown in Toth and Kelley (2015). A recent work (Evans et al., 2020) proved that Anderson
acceleration can improve the convergence rate in a scenario with linear convergence but is not
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guaranteed to improve the convergence rate in cases of quadratic convergence.
As shown in Algorithm 1, Anderson acceleration can be modified to include restarts, where

the order mk is sometimes reset to 1 and all previous memory are dropped. Different restart
schema have been proposed for Anderson acceleration. Henderson and Varadhan (2019) imple-
mented a direct, periodic restart scheme where the algorithm restarts whenever the mk reaches
the value m. Zhang et al. (2020) proposed an adaptive restart where the algorithm only restarts
only when the algorithm shows signs of stagnation. In many practical examples, using restarts
markedly improves the performance of Anderson acceleration and can reduce the occurrence of
algorithm stagnation.

In all of the numerical experiments shown in Section 5, we use the version of Anderson
acceleration described in Henderson and Varadhan (2019) which they refer to as the damped
Anderson acceleration with restarts and epsilon monotonicity (DAAREM) algorithm. The first
component which distinguishes DAAREM from many other implementations of Anderson ac-
celeration is the addition of the damping terms λk � 0. This L2 regularization term generates
an update which is a compromise between a pure fixed-point update and a pure Anderson ac-
celeration update. Having large values of λk in early iterations and allowing λk to decrease in
later iterations allows the procedure to bridge the robustness of the original fixed-point iteration
with the fast local convergence of Anderson acceleration. Another key component of DAAREM
is the use of systematic restarts rather than adaptive restarts, which as mentioned before, is im-
plemented by restarting whenever the value of mk reaches m. Finally, DAAREM includes some
degree of monotonicity control where the fixed-point iteration update is used if the proposed
Anderson acceleration increases the objective function (in a minimization problem) by more
than a small, pre-specified amount.

3.2 SQUAREM

SQUAREM (Varadhan and Roland, 2008) is a technique originally designed to accelerate EM
algorithms, but it has also been shown to be useful in accelerating a range of other fixed-point
iteration problems. SQUAREM has been acknowledged as a useful, general-purpose acceleration
scheme by Lange and others: (Zhou et al., 2011),

Unfortunately, most acceleration techniques are ill-suited to complicated models in-
volving large number of parameters. The squared iterative methods (SQUAREM),
recently proposed by Varadhan and Roland, constitute a notable exception.

SQUAREM was motivated by an interesting and highly original modification of the Barzilai-
Borwein type spectral gradient algorithm for optimization (Raydan and Svaiter, 2002).
SQUAREM readily scales to high-dimensional settings and is very simple to implement. Hence
it has been used in numerous applications to accelerate convergence of underlying iterative algo-
rithm. Examples include: large-scale genome-wide enrichment analysis (Zhu and Stephens, 2018);
analysis of human movement (Raket et al., 2016); non-negative matrix factorization across mul-
tiple applications (Hobolth et al., 2020); analysis of differential expression in RNAseq data (Jin
et al., 2015)); inferring and visualizing cancer mutation signatures (Shiraishi et al., 2015); and sig-
nal processing techniques using MM algorithms (Song et al., 2016). Convergence of SQUAREM
was proved in Varadhan and Roland (2004) under certain restrictive assumptions. In Varadhan
and Roland (2008), the global convergence was shown for the monotonic version of SQUAREM
using the notion of Lyapunov function, which we describe in more detail in the supplementary
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material. To date, there is no proof that provides an insight on the improved convergence rate
from using SQUAREM.

Algorithm 2 describes the SQUAREM acceleration technique for finding a solution of the
fixed-point problem f (x) = x.

Algorithm 2: SQUAREM. In the description of the algorithm, xk+1 = f (xk) is the
base fixed-point iteration.
1 Initialize x0 ∈ X

2 for k = 1, 2, 3, . . . do
3 Set yk = f (xk−1) and zk = f (yk)

4 Set r = yk − xk−1 and v = zk − yk − r

5 Compute step length α = α(r, v)

6 Update xk = xk−1 + 2αr + α2v

7 Stabilize xk = f (xk)

8 end

There are different versions of SQUAREM which only differ according to how the step
length in step 5 of Algorithm 2 is computed. The three main choices of the step length are:
SqS1 which chooses α(r, v) = 〈r,v〉

〈v,v〉 , SqS2 which chooses α(r, v) = 〈r,r〉
〈r,v〉 , and SqS3 which chooses

α(r, v) = −||r||
||v|| .

One can also relate SQUAREM to an order 1 Anderson acceleration update when the
previous iterate has the form xk = f (xk−1). To see why this is the case, note that when λk = 0
and xk = f (xk−1) the solution of the minimization problem (12) in Algorithm 1 yields the
following update

xk+1 = xk−1 + (α + βk)r + αβkv,

where r = f (xk−1)−xk, v = f (f (xk−1))−2f (xk−1)+xk−1 and α = 〈r,v〉
〈v,v〉 . Therefore, a single SqS1-

SQUAREM update of an iterate xk−1 is equivalent to the following procedure: define x̃k = f (xk−1)

and find xk by applying an order-1 Anderson acceleration update with βk = α and where xk−1

and x̃k = f (xk−1) are considered to be the previous two iterates. Notice that α in SQUAREM
does not necessarily belong to (0, 1] and typically it can be much larger than 1, indicating that
SQUAREM can be viewed as an over-relaxed version of order-1 Anderson acceleration where βk

is not restricted to the interval (0, 1].

3.3 Parabolic-EM

Parabolic EM (Berlinet and Roland, 2009) is another extrapolation scheme designed to accelerate
the EM algorithm. At each step, parabolic EM finds new iterate by extrapolating along a Bézier
curve M(t) controlled by the most recent three iterations xk−2, xk−1, xk. Specifically, M(t) is
given by

M(t) = (1 − t)2xk−2 + 2t (1 − t)xk−1 + t2xk

= xk−2 + 2t (xk−1 − xk−2) + t2(xk − 2xk−1 + xk−2).

A direct calculation shows that, when recent iterations are obtained from the base EM iterations
(i.e., xk−1 = f (xk−2) and xk = f (xk−1) where f denotes the fixed-point iteration), all three forms



Accelerating Fixed-Point Algorithms in Statistics and Data Science 9

of the SQUAREM update xnew = xk−2 + 2α(f (xk−2) − xk−2) + α2(f ◦ f (xk−2) − 2f (xk−2) + xk−2)

lie on the curve M(t).
Parabolic EM applies a line search to find t by increasing t from 1 and stopping once the

likelihood decreases. If no values of t in the line search are found to increase the likelihood,
the algorithm will restart using the original fixed point iteration. Parabolic EM has two sub-
types called arithmetic search and geometric search version which differ only in the way they
perform the line search across values of t . Given a step size h > 0, arithmetic search evaluates
the likelihood at M(t) for t = 1 + h, 1 + 2h, . . . until the likelihood function decreases at which
point the line search stops. Similarly, given both a step size h > 0 and exponent a > 1, geometric
search evaluates the likelihood at M(t) for t = 1+a, 1+a2h, . . . and stops whenever the likelihood
function decreases. Algorithm 3 describes both the arithmetic and geometric search versions of
parabolic EM.

Algorithm 3: Parabolic EM. In the description of the algorithm, xk+1 = f (xk) is the
base fixed-point iteration.
1 Initialize x0 ∈ X, x1 = f (x0), x2 = f (x1)

2 for k = 3, 4, 5, . . . do
3 L2 = Likelihood(xk−1)

4 i = 0, t = 1 + aih (geometric) ; i = 1, t = 1 + ih (arithmetic)
5 xnew = (1 − t)2xk−3 + 2t (1 − t)xk−2 + t2xk−1

6 Lnew = Likelihood(xnew)

7 if Lnew < L2 then
8 xk−2 = xk−1; xk−1 = f (xk−2); xk = f (xk−1)

9 end
10 else
11 while Lnew � L2 do
12 xold = xnew; L2 = Lnew

13 i = i + 1; t = 1 + aih (geometric), t = 1 + ih (arithmetic)
14 xnew = (1 − t)2xk−3 + 2t (1 − t)xk−2 + t2xk−1

15 Lnew = Likelihood(xnew)

16 end
17 xk = f (f (xold))

18 end
19 end

Note that parabolic EM can also be applied to a general fixed-point iteration as long as the
fixed-point iteration has an associated loss function to minimize. In that case, one could directly
implement Algorithm 3 by replacing the likelihood evaluations in Algorithm 3 with evaluations
of the negative of the loss function of interest.

3.4 Quasi-Newton

Zhou et al. (2011) proposed a Quasi-Newton method that can be applied to accelerating fixed-
point iterations. Consider a map f : X ⊂ R

d → R
d from which we want to find its fixed point

x such that f (x) = x. This is equivalent as finding the root of function g(x) = x − f (x). If f

is assumed to be differentiable with Jacobian df , then Newton’s method for finding the root of
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g(x) yields the following iteration

xk+1 = xk − [I − df (xk)]−1g(xk). (13)

The goal in a quasi-Newton approach is to use an approximation of df (xk) in iteration (13)
rather than the true df (xk). The secant method is a well-known root-finding algorithm for a
function with scalar inputs that can also be thought of as a quasi-Newton algorithm.

Zhou et al. (2011) proposed Quasi-Newton method is based on the linear approximation
f ◦ f (xk) − f (xk) ≈ M(f (xk) − xk), where x∞ denotes the fixed point of the iteration and M =
df (x∞) denotes the Jacobian of f at x∞. If one sets vk = f ◦ f (xk) − f (xk) and uk = f (xk) − xk,
then the secant requirement for a proposed approximate Jacobian Mk at iteration k would be
that Mkuk = vk. For an improved approximation Mk, Zhou et al. (2011) require further that
the following q secant conditions Mkuk−j = vk−j , j = 1, . . . q − 1 hold. The matrix Mk with
the smallest Frobenius norm among all matrices satisfying these q secant conditions is given by
Mk = Vk(U

T
k Uk)

−1UT
k , where Uk is the matrix with the q columns {uk−q+1, . . . , uk} and Vk is the

matrix with columns {uk−q+1, . . . , uk}. Using this approximate Jacobian in iteration (13) leads
to the order q Quasi-Newton scheme described in Algorithm 4.

Algorithm 4: Quasi-Newton acceleration. In the description of the algorithm, xk is
a vector of length p, q is the order of the acceleration scheme, and xk+1 = f (xk) is
the base fixed-point iteration.
1 Initialize β0 ∈ X. Create an empty p × q matrix U

2 for i = 1, 2, . . . , q + 1 do
3 β1 = f (β0)

4 if i > 1 then
5 Add new column β1 − β0 to the right of matrix U

6 end
7 β0 = β1

8 end
9 Set β2 = f (β1)

10 Create matrix V = U

11 Remove the first column of V and add column β2 − β1 to the right of V

12 Set x0 = β0

13 for k = 1, 2, . . . do
14 Compute QN-updates xk = f (xk−1) − V (UT U − UT V )−1UT (xk−1 − f (xk−1))

15 Remove the leftmost columns of matrices U and V

16 Add column f (xk) − xk to the right of U

17 Add column f (f (xk)) − f (xk) to the right of V

18 Check for convergence
19 end

3.5 Restarted Nesterov
Nesterov accelerated gradient descent (Nesterov, 2013; Tseng, 2009) is a popular technique for
accelerating first order optimization methods. Using the same notation as in Section 2.2.2,
Algorithm 5 outlines Nesterov acceleration applied to the composite optimization problem (7).
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Algorithm 5: Nesterov accelerated proximal gradient descent. In the description of
the algorithm, the objective function to be minimized is f (x) + h(x), where f (x) is
assumed to be a smooth function.
1 Initialize x0 = x−1 and θ−1 = 1, k = 0
2 Find the Lipschitz constant Lf of f and set t = 1

Lf

3 while not converged do

4 θk =
√

θ4
k−1+4θ2

k−1 − θ2
k−1

2 ; αk = θk(1−θk−1)

θk−1

5 yk = xk + αk(xk − xk−1)

6 xk+1 = proxth(yk − t∇f (yk))

7 k = k + 1
8 end

It can be proved that Algorithm 5 has an error rate of O( 1
k2 ), where k is the iteration

number. This is a substantial improvement over the O( 1
k
) error rate shown in Equation (11) for

the fixed step length proximal gradient descent algorithm. Readers can consult Tseng (2009) for
a proof of this result.

Unlike most implementations of gradient descent, Algorithm 5 does not guarantee or check
for monotonicity of the objective function. In practice, if you trace the objective value when
running Algorithm 5, it is often the case that you see ripples or bumps in the objective function
across iterations, which reduces the efficiency of the algorithm. To address this, O’Donoghue and
Candes (2015) introduce a heuristic adaptive restart technique to Nesterov acceleration that can
dramatically improve the convergence rate. The basic idea is to reset θk to 1 whenever you see
an increase of objective function f (xk) + h(xk) > f (xk−1) + h(xk−1). Setting θk = 1 reduces the
momentum term αk+1(xk+1 − xk) to 0 and the accleration algorithm will degenerate to ordinary
proximal gradient descent in the following step.

Notice that in Algorithm 5, the momentum coefficients αk do not depend on the proximal
gradient descent updates in any way. Therefore, it is possible to just replace the step xk+1 =
proxt (yk − t∇f (yk)) with any fixed-point iteration xk+1 = F(yk) and obtain a Nesterov-like
acceleration method for a general fixed-point iteration problem. In Section 5, we show that
this strategy can accelerate convergence in problems where gradient descent is not the base
fixed-point iteration. To the best of our knowledge, this is the first work to examine Nesterov
acceleration for general fixed-point iteration problems.

4 Implementations
R packages are available to facilitate application of the acceleration schemes described above. For
example, the squarem package (Du and Varadhan, 2020) implements the SQUAREM algorithm,
and the daarem package (Henderson and Varadhan, 2020) implements the DAAREM algorithm
described in Section 3.1. The turboEM package (Bobb and Varadhan, 2021) provides a unified
API for SQUAREM, Parabolic-EM, and Quasi-Newton acceleration. Currently, turboEM does
not implement DAAREM, although this should be available in the near future. In turboEM,
when the objective function value for a proposed update increases the objective value by more
than 0.1, we replace this update with one iteration of the base fixed-point iteration. This can
dramatically increase the stability of the Quasi-Newton method and, in many cases, can improve
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the ultimate convergence speed. Monotonicity control is also a default in the implementations
of DAAREM, SQUAREM and Parabolic-EM. The use of restarts in Nesterov acceleration also
plays a similar role to monotonicity control as the algorithm is restarted whenever a monotonicity
violation occurs. It is worth mentioning that the implementation of the Quasi-Newton in turboEM
includes the option of monotonicity control even though monotonicity control was not originally
implemented in (Zhou et al., 2011).

Our package AccelBenchmark is available from Github which can be used to easily bench-
mark all of the methods described in this paper. We actually used it in all the experiments
described in this paper.

There is an R package called FixedPoint which contains various acceleration methods
for fixed-point problems, including Anderson acceleration and several vector extrapolation al-
gorithms. A fundamental difference between that package and our software packages is that
FixedPoint doesn’t contain safeguards such as steplength and monotonicity controls, damping,
and restarts. Consequently, the algorithms are less reliable for general purpose use.

5 Experiments
5.1 Settings for the Experiments
In all of the experiments in this paper we have used the default control parameters implemented
in each of the acceleration packages (turboEM and daarem). We did not optimize the algorithmic
settings for each problem. This is an important point because we would like to explore the
performance of these methods when they are used directly off-the-shelf. Also, unless otherwise
stated, convergence is defined as the first iteration where the norm of the parameter difference
||xk+1 − xk|| is less than 10−7. We evaluated the performance of each acceleration algorithm in
terms of the number of fixed-point iterations (fpevals) and the elapsed time in seconds (elapsed).
We report the mean ± standard deviation of fpevals and elapsed across a certain number of
simulated experiments. Some of the performance metrics have distributions with a heavy tail
making the standard deviation bigger than the mean, which is a sign of instability of that
algorithm. We also report the number of failures (# failures), where failure is defined as not
achieving convergence within an allotted number of iterations, which varied for each problem. We
also plotted the convergence trajectories of algorithms in terms of the objective function (e.g.,
log-likelihood). The panels of Figure 1 in the Supplementary Material display the objective
function values versus fixed-point iteration for each of the five main acceleration methods. The
Loss item in the figures are normalized by subtracting the minimum value of the objective
function. For every experiment, we only plot results for the most difficult setting (e.g., ν = 25
in the multivariate t distribution).

5.2 Multivariate t-Distribution
A d-dimensional Student-t distribution Tν(μ, �) with ν > 0 degrees of freedom, location param-
eter μ ∈ R

d , and positive definite scatter matrix � has the density function:

p(x|ν, μ, �) = �(d+ν
2 )

�(ν
2 )ν

d
2 π

d
2 |�| 1

2

1

(1 + 1
ν
(x − μ)T �−1(x − μ))

d+ν
2

,

where �(s) denotes the Gamma function �(s) = ∫ ∞
0 t s−1e−t dt . For observations x1, . . . , xn arising

from a d-dimensional Student-t distribution, setting the derivative of the associated log likelihood

https://github.com/bhtang127/AccelBenchmark
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Algorithm 6: EM for estimating multivariate t-distribution parameters.
1 Initialize ν0, μ0, �0.
2 for k = 1, 2, . . . do
3 E-Step:
4 zi,k = (xi − μk)

T �−1
k (xi − μk)

5 γi,k = νk+d

νk+zi,k

6 M-Step:
7 μk+1 =

∑
i ωiγi,kxi∑
i ωiγi,k

; �k+1 = ∑
i ωiγi,k(xi − μk+1)(xi − μk+1)

T

8 νk+1 = zero of φ
(

ν
2

) − φ
(

νk+d

2

) + ∑
i ωi(γi,k − log(γi,k) − 1)

9 end

function with user-specified weights ω1, . . . , ωn to zero results in the following system of equations

0 =
n∑

i=1

ωi

xi − μ

ν + (xi − μ)T �−1(xi − μ)
, (14)

I =(d + ν)

n∑
i=1

ωi

�− 1
2 (xi − μ)(xi − μ)T �− 1

2

ν + (xi − μ)T �−1(xi − μ)
, (15)

0 =φ
(ν

2

)
− φ

(ν + d

2

)

+
n∑

i=1

ωi

(
ν + d

ν + (xi − μ)T �−1(xi − μ)
− log

(
ν + d

ν + (xi − μ)T �−1(xi − μ)

)
− 1

) (16)

where φ(x) = 1
�(x)

d�(x)

dx
− log(x) and where the weights ωi are assumed to satisfy ωi � 0,∑n

i=1 ωi = 1.
Here, we are interested in maximizing the weighted log-likelihood function under the as-

sumption that all parameters, including the degrees of freedom ν, are unknown. Hasannasab
et al. (2021) show that, under certain conditions, either a minimizer of the negative weighted
log-likelihood exists, or the maximum likelihood estimator corresponds to the case ν → ∞, for
which the Student-t distribution approaches the Gaussian distribution.

Because one can represent a Tν(μ, �) random variable as

μ + �
1
2 Z/

√
Y ∼ Tν(μ, �), (17)

where Z ∼ N(0, I ) and Y ∼ �(ν/2, ν/2), one can develop an EM algorithm for parameter
estimation by augmenting the observed data x1, . . . , xn with latent data y1, . . . , yn where it is
assumed that yi ∼ �(ν/2, ν/2) independently and use the fact that the conditional distribution
xi |yi is a multivariate normal distribution with mean vector μ and covariance matrix �/yi .
This data augmentation leads to the conventional EM algorithm (Liu and Rubin, 1995) for
solving equations (14)–(16). The conventional EM algorithm for the multivariate t-distribution
is described in Algorithm 6.

Recently, Hasannasab et al. (2021) suggested a number of alternative algorithms for such
problem that accelerated the naive EM algorithm. Among them, the Multivariate Myriad Filter
(MMF) algorithm shows excellent overall performance. The MMF algorithm is the same as the
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EM algorithm (Algorithm 6) except that the updates for �k and νk are changed to

�k+1 =
n∑

i=1

ωiγi,k(xi − μk+1)(xi − μk+1)
T∑n

i=1 ωiγi,k

νk+1 = zero of φ
(ν

2

)
− φ

(
ν + d

2

)
+

n∑
i=1

ωi

(
νk + d

νk + zi,k+1
− log

(
νk + d

νk + zi,k+1

)
− 1

)
.

We conducted a simulation study to determine whether or not our black-box acceleration
schemes can further accelerate the fast MMF algorithm. In this simulation study, we set μ =
(0, 0) and � = diag{0.1, 1}, and we considered the three choices for the degrees of freedom ν

from {3, 10, 25}. For each choice of ν, we simulated 1000 observations from the corresponding
t-distribution and ran the MMF algorithm together with all acceleration methods to estimate
the parameters μ, �, ν, and this procedure was repeated across 200 simulation runs. In each
run, we initialized μ0 to be the value of the sample mean, �0 be the sample covariance matrix,
and we initialized the degrees of freedom ν0 by sampling with equal probability from the set
{2, 3, 4}. The hyperparameters of the acceleration algorithms and the convergence criteria are
set to their defaults. These default settings are discussed in detail in Section 4.

Results from this simulation study can be found in Table 1. From this table, we observe
that SQUAREM, DAAREM and parabolic-EM (pEM) provide consistent acceleration when
compared to the original MMF algorithm, and the factor of speedup from these methods increases
as ν increases. Quasi-Newton and Nesterov acceleration also accelerated the MMF algorithm in
some simulation settings, but the improvement over MMF was not as consistent as SQUAREM,
DAAREM, and pEM.

It is interesting to note that the MMF algorithm already gives a huge speed advantage when
compared to the original EM algorithm. For example, in the ν = 25 case, the EM algorithm
required, on average, 1235 fixed point iterations before convergence which is 9 times more than
that of the MMF algorithm. Despite the fact MMF is much faster than EM, we can still further
accelerate MMF using the methods described in this manuscript.

5.3 Poisson Mixtures
A finite mixture of Poisson distributions with C components has the following discrete proba-
bility distribution

f (y | p, λ) =
C∑

c=1

pcfP(y | λc), (18)

where fP(y | λc) = e−λcλ
y
c /y! denotes the probability distribution of y conditional on belonging

to the cth cluster of the mixture distribution. For observations y1, . . . , yn, we can develop an EM
algorithm for estimating the parameters in (18) by introducing latent variables z1, . . . , zn defined
as zi = c if yi belongs to the cth cluster. This particular data augmentation scheme generates the
following EM algorithm updates for the parameters of interest (p1, . . . , pC) and (λ1, . . . , λC):

π̂
(k)
ic = p(k)

c

(
λ(k)

c

)yi
e−λ

(k)
c

/ C∑
l=1

p
(k)
l

(
λ

(k)
l

)yi

e−λ
(k)
l

p(k+1)
c = 1

n

n∑
i=1

π̂
(k)
ic ; λ(k+1)

c =
n∑

i=1

π̂
(k)
ic yi

/ n∑
i=1

π̂
(k)
ic .
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Table 1: Simulation results for the multivariate t-distribution from 200 independent runs. MMF
represents the original MMF algorithm described above, and other columns show results for
different accelerated version of it. If an algorithm failed to converge or if it converged to a
negative log-likelihood more than 1% larger than that of the original MMF algorithm, then we
called it a failure. As a measure of robustness, we also recorded the number of failures for each
method.

Metric MMF SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals (ν = 3) 34.3 ± 2.94 15.2 ± 1.31 14.4 ± 1.45 21.1 ± 2.4 17.8 ± 17.9 29.5 ± 2.5

elapsed (ν = 3) 1.12 ± 0.097 0.398 ± 0.035 0.501 ± 0.056 0.693 ± 0.088 0.678 ± 0.718 0.929 ± 0.085

# failures (ν = 3) 0 0 0 0 0 0

fpevals (ν = 10) 67.7 ± 12.7 20.4 ± 3.67 16.0 ± 1.42 22.5 ± 1.65 51.4 ± 39.3 50.2 ± 14.2

elapsed (ν = 10) 2.20 ± 0.419 0.54 ± 0.103 0.561 ± 0.056 0.761 ± 0.063 1.38 ± 1.08 1.58 ± 0.451

# failures (ν = 10) 0 0 0 0 0 0

fpevals (ν = 25) 128 ± 42.1 22.9 ± 4.61 17.3 ± 3.37 24.9 ± 1.88 30.7 ± 12.8 77.8 ± 150

elapsed (ν = 25) 4.11 ± 1.36 0.61 ± 0.127 0.615 ± 0.14 0.859 ± 0.08 1.22 ± 0.52 2.46 ± 4.81

# failures (ν = 25) 0 0 0 0 0 1

We explored our acceleration methods using the real count data from Hasselblad (1966)
which contains 1096 observations with each observation representing a day of survival. In this
dataset, the observations range from 0 to 9 and the frequencies for these values are 162, 267,
271, 185, 111, 61, 27, 8, 3, 1 respectively, no censoring is presented. Using this dataset, we fit a
finite mixture of Poisson distributions with 2 components so the parameters of interest are the
mixture probability p1 and the cluster-specific Poisson rates λ1 and λ2.

To study the performance of each acceleration procedure, we ran the original EM algorithm
and all acceleration schemes 500 times. In each run, the mixture probability p1 was drawn
from a uniform distribution over (0, 1), and the Poisson rates λc were independently drawn
from a uniform distribution over (0, 4). In the Quasi-Newton algorithm, the order was set to 2
since we only have 3 parameters in this problem. The maximum number of fixed-point iteration
evaluations is set to 3000. Other hyperparameters of the acceleration algorithm and convergence
criteria are set to their defaults, which will be discussed in more detail in Section 4. Results
can be found in Table 2. In this experiment, all of the methods listed in Table 2 dramatically
accelerated the original EM algorithm with an up to 11-fold reduction in execution time.

5.4 LASSO

The least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) is a widely
used technique for high dimensional inference due to its ability to perform simultaneous feature
selection and coefficient estimation. However, the additional L1 penalty in the LASSO objective
function also makes it impossible to obtain a general, closed-form solution for the regression co-
efficient estimates, and therefore, iterative algorithms are needed for optimization. A simple but
effective iterative algorithm is proximal gradient descent which uses the iteration (9) described



16 Tang, B. et al.

in Section 2.2.2.
In this experiment, we use the Madelon data (Guyon et al., 2004) to study the performance

of difference acceleration methods applied to the proximal gradient descent algorithm. The
Madelon data is artificially constructed to illustrate a particular difficulty for feature selection.
It contains n = 2600 binary outcomes y1, . . . , yn, and for each yi , we have a predictor vector xi

of length p = 500. We use the logistic regression version of LASSO where the objective function
�(β) to be minimized is given by

�(β) = f (β) + h(β) =
n∑

i=1

(
log

(
1 + exT

i β
)

− yixT
i β

)
+ λ

p∑
p=1

|βp|,

where λ is a parameter that controls the regularization level and where h(β) = λ
∑p

p=1 |βp|.
Following (9)–(10) yields the following proximal gradient descent iteration

βk+1 = proxtkh

(
βk − tk∇f (βk)

)
= Sλtk

(
βk − tkXT {y − μ(Xβk)}

)
, (19)

where X is the n × p matrix whose ith row is xT
i and where μ(Xβk) is the n-dimensional vector

whose ith element is 1/{1 + exp(xT
i βk)}.

In each simulation run, we initialized each coefficient βj independently and uniformly within
(−1, 1), and we then applied the proximal gradient descent algorithm (19) and each of the
acceleration versions of it. The values of the tuning parameter λ where set to one of three values
λ ∈ {0.1, 1, 10}. The maximum number of fixed-point iterations for each method was set to 20,
000. Other hyperparameters of the acceleration methods and convergence criteria were set to
their defaults. For each choice of λ, we evaluated all of the methods using 200 independent
simulation runs.

Results from this simulation study can be found in Table 3. On average, all of the methods
provided consistent acceleration of the original proximal gradient descent algorithm. Among
the different acceleration methods, DAAREM consistently gave the greatest acceleration with
a more than 20 fold improvement in execution time across different choices of λ. The failure of
gradient descent for smaller values of λ is due to slow convergence, i.e. it did not converge with
a maximum number of iterations.

Table 2: Simulation results for estimating Poisson mixture parameters from 500 independent
runs. Elapsed times are reporting in milliseconds. If an algorithm failed to converge or if it con-
verged to a negative log-likelihood more than 1% larger than that of the original EM algorithm,
then we called that run a failure. As a measure of robustness, we also recorded the number of
failures for each acceleration method.

Metric EM SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals 2238 ± 273 77 ± 19.1 53 ± 14.3 195 ± 101 131 ± 144 166 ± 23.5

elapsed 32.8 ± 6.34 2.82 ± 4.62 5.4 ± 4.28 5.49 ± 4.96 5.01 ± 5.82 3.82 ± 3.45

# failures 0 0 0 0 1 0
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Table 3: Simulation results for estimating regression coefficients using LASSO logistic regression
with 200 independent runs. pGD represents the original proximal gradient descent algorithm,
and the other columns represent different acceleration methods. If an algorithm failed to converge
or if it converged to a loss more than 1% larger than the optimal loss, we considered it to be a
failure. As a measure of robustness, we also recorded the number of failures for each acceleration
method.

Metric pGD SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals (λ = 10) 11125 ± 1721 351 ± 53.2 214 ± 61.2 1894 ± 126 617 ± 170 404 ± 53.7

elapsed (λ = 10) 31.3 ± 4.85 0.782 ± 0.13 0.711 ± 0.22 5.47 ± 0.678 1.68 ± 0.49 1.23 ± 0.22

# failures (λ = 10) 0 0 0 0 0 0

fpevals (λ = 1) 19292 ± 720 1057 ± 104 603 ± 481 3094 ± 597 2947 ± 1874 676 ± 44.4

elapsed (λ = 1) 56.3 ± 5.84 2.46 ± 0.645 2.01 ± 1.69 9.09 ± 2.32 7.78 ± 4.88 2.17 ± 0.84

# failures (λ = 1) 54 0 10 0 1 0

fpevals (λ = 0.1) 20000+ 1063 ± 156 618 ± 429 2603 ± 80.8 3112 ± 1741 658 ± 77.6

elapsed (λ = 0.1) 58 ± 2.46 2.52 ± 0.717 1.96 ± 1.34 7.55 ± 0.55 8.74 ± 4.85 2.08 ± 0.33

# failures (λ = 0.1) 200 0 0 0 0 0

5.5 Variational Inference in Bayesian Variable Selection

Bayesian variable selection methods for a regression model (e.g. George and McCulloch (1997),
Chipman et al. (2001)) with binary outcomes often consider the following model:

logit{p(yi = 1|X, β)} = β0 +
p∑

j=1

Xijβj ; βj = γjZj ;

γj ∼ Bern(π); Zj ∼ N (0, σ 2
β ); θ = (π, σ 2

β ) ∼ pθ(·),
where Bern(p) denotes the Bernoulli distribution with success probability p and pθ(·) denotes
the prior distribution for the vector of hyperparameters θ = (π, σ 2

β ). The values of the variables
γj drive the model selection as βj = 0 whenever γj = 0. For simplicity, in this section we set
β0 = 1 as a known constant.

In Bayesian variable selection, calculation of the marginal posterior inclusion probabilities
is a primary interest. The marginal posterior inclusion probability for variable j , defined as
PIP (j) = p(γj = 1|X, y), can be expressed as

PIP (j) =
∫

p(γj = 1|X, y, θ)p(θ |X, y)dθ, (20)

where X is the n × p design matrix whose (i, j) element is Xij and y = (y1, . . . , yn).
The quantity p(γj = 1|X, y, θ) does not have a closed-form and is often calculated using

Markov Chain Monte Carlo (MCMC) methods, for example Bottolo et al. (2010) and Clyde
et al. (2011). However, in high-dimensional applications, MCMC can be very computationally
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inefficient and often requires days or even weeks to run. To address this, Carbonetto et al. (2012)
propose using variational inference to approximate p(γj = 1|X, y, θ) and then approximate the
integral in (20) with importance sampling.

To approximate p(γj = 1|X, y, θ), one first approximates the posterior density p(β, γ |X, y,

θ) with a density function of the form q(β, γ |α, μ, s2) = ∏p

j=1 q(βj , γj |αj , μj , s
2
j ), where the

components of this product are assumed to be a mixture of a normal density and a point mass
at 0. Specifically,

q(βj , γj |αj , μj , s
2
j ) =

{
αjN(βj |μj, s

2
j ) if γj = 1

(1 − αj )δ0(βj ) otherwise,
(21)

where N(·|μ, σ 2) stands for a normal density with mean μ and variance σ 2 and δ0(·) for a delta
mass centered at 0. To find the best set of parameters, Carbonetto et al. (2012) derives an
EM-type algorithm that can maximize the evidence lower bound (ELBO):

s2
j = 1

(XT ÛX)jj + 1/σ 2
β

(22)

μj = s2
j

⎛
⎝(XT ŷ)j −

∑
h�=j

(XT ÛX)hjαhμh

⎞
⎠

αj

1 − αj

= π

1 − π
× sj

σβ

× exp

(
μ2

j

2s2
j

)

where (XT X)hj denotes the (h, j) element of the matrix XT X and (XT y)j denotes the jth element
of the vector XT y. Also, Û and ŷ are defined as Û = diag{u} − uuT /ū; ŷ = y − 1

2 − u, where
u = (u1, . . . , un) and ū = ∑n

i=1 ui . The terms ui = 1
η i

(
ψ(ηi) − 1/2

)
are updated from

η2
i =

⎛
⎝ p∑

j=1

XijE[βj ]
⎞
⎠

2

+
p∑

j=1

X2
ijVar[βj ],

where ψ(x) = 1/(1 + e−x). From the variational approximation (21), we have E[βj ] = αjμj and
Var[βj ] = αj (s

2
j + μ2

j ) − (αjμj )
2.

In this experiment, we examined whether the acceleration schemes described above can
effectively accelerate the coordinate descent algorithm for Bayesian variable selection in the
case of logistic regression. For this simulation study, we use a setting similar to that described
in Carbonetto et al. (2012). Specifically, we assume that logit{p(yi = 1|β, X)} = −1 − Zi1 +
Zi2 + ∑p

j=1 Xijβj , where Zi1 and Zi2 are independent standard normal distributions. In these
simulations, β = (β1, . . . , βp) has length 2000, and only the first m components of β are assumed
to be nonzero. The nonzero components of β were sampled independently from a N(0, 0.25)

distribution, and the remaining components were set to 0. The elements Xij of X were drawn
independently from a Binomial(2, pij ), where pij is drawn from a uniform distribution over
(0.05, 0.5). Values of m = 100 and m = 200 were considered, and we performed 200 simulation
runs for each setting of m. In each run, we set the sample size and number of covariates to
n = 200 and p = 2000 respectively. We initialized the αj by drawing independently from a
uniform distribution over (0, 1), the μj were initialized by drawing from a normal distribution
with mean 0 and variance 0.1, and the sj do not need to be initialized as they are first updated
using equation (22). The model hyperparameters (π, σ 2

β ) were set to π = m/2000 and σβ = 0.5.
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Table 4: Simulation results for Bayesian variable selection using 200 independent runs. EM
represents the original algorithm with the various acceleration methods in other columns. If an
algorithm failed to converge or if it converged to a loss more than 1% larger than the optimal
loss, we called it a failure. We also recorded the number of failures for each method as a measure
of robustness.

Metric EM SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals (m = 100) 207 ± 11.7 115 ± 21.5 883 ± 230 158 ± 22 349 ± 205 77.5 ± 10.3

elapsed (m = 100) 4.71 ± 0.54 1.3 ± 0.29 20.4 ± 5.49 3.65 ± 0.64 5.06 ± 3.06 1.76 ± 0.31

# failures (m = 100) 0 0 150 0 0 4

fpevals (m = 200) 194 ± 7.42 102 ± 13.5 157 ± 37.3 132 ± 22.6 603 ± 310 81.3 ± 6.88

elapsed (m = 200) 4.19 ± 0.26 1.1 ± 0.15 3.6 ± 0.85 2.89 ± 0.47 8.29 ± 4.23 1.75 ± 0.21

# failures (m = 200) 0 0 0 0 51 0

The maximum number of fixed-point iterations was set to 1000. The hyperparameters of the
acceleration algorithms and convergence criteria were set to their default values (see Section 4).

Results from this simulation study are shown in Table 4. We do not observe a huge accel-
eration in this experiment, but SQUAREM still provides a consistent speedup with a roughly 4
fold improvement for both settings of m. DAAREM, on the other hand, failed frequently partly
due to it convergence to a solution with a slightly higher than the optimal value of the loss
function.

5.6 Sinkhorn Scaling

Given a matrix A, the problem of re-scaling its rows and columns to form a doubly stochastic
matrix � = DAE, where D and E are diagonal matrices, is called a matrix balancing problem. A
more constrained version of the matrix balancing problem is to find diagonal scaling matrices D,
E such that � = DAE and that � has specified row and column sums, that is, �1 = a; �T 1 = b,
where 1 is a vector whose entries are all equal to 1. This problem has a vast array of applications
including, for example, ranking web pages (Knight, 2008), learning permutation matrices from
data (Mena et al., 2018), solving optimal transport problems (Altschuler et al., 2017), etc.

A naive algorithm for the constrained matrix balancing problem is the Sinkhorn–Knopp
algorithm (Sinkhorn and Knopp, 1967). The algorithm simply scales the matrix iteratively by
rows and columns. Given an initialization u0, v0, the algorithm finds the next updates by

uk+1 = a
Avk

; vk+1 = b
AT uk+1

, (23)

where the division of vectors in (23) is done element-wise and A is the matrix with entries Aij .
In this numerical experiment, we tested the performance of the acceleration methods on

the Sinkhorn-Knopp algorithm for a constrained matrix balancing problem where we used cer-
tain ill-conditioned matrices known as Marshall-Olkin and Hessenberg matrices (Parlett and
Landis (1982)). A Marshall-Olkin matrix M3 is a 3 × 3 matrix with columns (100, 100, 0)T ,
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Table 5: Experimental results for matrix scaling from 200 independent runs. SK represents the
original Sinkhorn-Knopp algorithm, and the other columns are different accelerated versions of
it. Elapsed time are reported in milliseconds. The number of failures (failure to converge) is also
recorded to capture the robustness of each algorithm.

Metric SK SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals (M3) 5764 ± 121 68 ± 10.1 29.4 ± 0.83 1243 ± 89.9 27.5 ± 10.8 218 ± 1.45

elapsed (M3) 185 ± 13.9 2.36 ± 0.69 3.88 ± 0.65 39.5 ± 3.91 1.55 ± 1.91 6.76 ± 4.51

# failures (M3) 0 0 0 0 0 0

fpevals (H10) 2671 ± 2.5 146 ± 53.6 3216 ± 5888 804 ± 17.1 7139 ± 1933 246 ± 10.1

elapsed (H10) 83.2 ± 4.26 4.88 ± 3.51 388 ± 721 29.3 ± 1.89 475 ± 148 8.14 ± 4.46

# failures (H10) 0 0 1 0 0 0

fpevals (H50) 50000+ 4857 ± 10503 50000+ 17853 ± 15.2 33307 ± 1910 1336 ± 735

elapsed (H50) 4700+ 218 ± 516 7610+ 1130 ± 37.2 3139 ± 168 71.1 ± 38.9

# failures (H50) 200 10 200 0 0 0

(100, 10000, 1)T , (0, 1, 100)T . We choose the order n Hessenberg matrix Hn to be the n × n ma-
trix such that Hn(i, i) = 100 for all i and Hn(i, j) = 1, for all (i, j) such that j > i − 1, j �= i.
All of the other elements in Hn are equal to 0. For simplicity, a and b in iteration (23) will be
set to all 1s.

We run such experiment for 200 independent times. In each run, we used Hessenberg ma-
trices of order 10 and 50. We initialized parameter v as i.i.d draws from a uniform distribution
between [0.5, 2]. Notice that u can be calculate from algorithm (23), therefore we do not treat
it as part of the parameter vector in the acceleration algorithms. The maximum number of
fixed-point iterations was set to 50,000. We measured the performance of the scaling algorithm
by calculating the mean absolute differences (MAD) between row/column sums and 1. If the
two MAD values were, at any time, both smaller than 10−10 we terminated the algorithm and
regarded it to be converged. Other hyperparameters of the acceleration algorithms are set to
their defaults (see Section 4).

Results from this numerical experiment can be found in Table 5. The results in Table 5
show that we gain substantial and consistent acceleration by using either Nesterov with restarts
or SQUAREM.

It is also possible to use a different approach to matrix scaling, which uses a different
fixed-point iteration (see Supplementary section 3). By using the intermediate scaled matrix
diag{uk} A diag{vk} as parameter vector rather than u, v. The acceleration schemes perform
much better with this approach. Although the final output from this method is not guaranteed
to be feasible, we confirmed that the relative difference is small. For example, in H50 case, the
DAAREM algorithm, which originally failed, converged in a few hundreds of iterations. It also
gave a reasonably accurate answer, the discrepancy from true result being smaller than 10−5.
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5.7 Manifold Embedding
Manifold learning is a useful approach for performing both dimension reduction and data visu-
alization of high-dimensional data. However, many manifold learning approaches can potentially
be influenced by the exploding distance in high-dimensional space, and make points with mod-
erate distance in the original space become too crowded in the embedded low-dimensional space.
This phenomenon is of called the “crowding problem” (Cook et al., 2007). To address this prob-
lem, Van der Maaten and Hinton (2008) extended the Stochastic Neighborhood Embedding
(SNE) method by using a t-distributed neighborhood probability for points in the embedded
space. The corresponding method is called t-SNE, and this method achieved great success in
visualizing handwritten digits data and a variety of other higher-dimensional images and text
data.

The main input into the t-SNE procedure, is a collection of vectors x1, . . . , xn from which
one can compute nonnegative similarity scores Pij between pairs xi and xj normalized so that∑

ij Pij = 1. Given the matrix P containing the values of Pij , t-SNE seeks to find an embedding
matrix Y = (y1,y2, . . . ,yn)

T with each yk in a lower-dimensional space by minimizing the
following KL divergence-based loss function with respect to Y

L(Y ;P) =
∑
ij

Pij log
Pij

Qij

(24)

Qij =
(
1 + ||yi − yj ||2

)−1

∑
ab

(
1 + ||ya − yb||2

)−1 . (25)

Yang et al. (2015) derived an alternative algorithm for solving a range of manifold embedding
problems and claimed it can be more efficient than many existing algorithms. The algorithm
proposed by Yang et al. (2015) is essentially an MM algorithm that iteratively majorizes the
complex loss function of interest by a specially designed quadratic form and then minimizing
it with a closed-form solution. In the context of t-SNE where we want to minimize (24), this
algorithm results in the following updating scheme for a current embedding matrix Yk

Yk+1 =
(
LP◦q + ρ

4
I
)−1 (

LQ◦qYk + ρ

4
Yk

)
, (26)

where q is the matrix with elements qij = (
1 + ||yi − yj ||2

)−1, the operation ◦ denotes the
Hadamard product, Q is the matrix whose elements are defined in (25), and ρ is a positive

Table 6: Experiment results for t−SNE from 50 independent runs. MM represents the original
MM algorithm, and the other columns are different acceleration versions of it. objval is the
final Kullback–Leibler divergence obtained by the acceleration method. Smaller values of objval
correspond to better embeddings.

Metric MM SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals 62.3 ± 24 162 ± 84.2 50 ± 10.6 100 ± 45.8 114 ± 57.1 127 ± 128

elapsed 11.8 ± 4.41 22.1 ± 11.4 9.6 ± 1.98 18.1 ± 8.4 17.9 ± 9.17 26.9 ± 27.2

objval 0.328 ± 0.022 0.279 ± 0.017 0.289 ± 0.024 0.309 ± 0.016 0.299 ± 0.023 0.347 ± 0.054
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Figure 1: Visualizing one run of experiments. (a) Embedding from the original MM algorithm
with objective value 0.343. (b) Embedding from the SQUAREM algorithm with objective value
0.264. Different colors are used for different objects. We can see that SQUAREM, which obtained
a lower value of the objective function, does provide better separation quality across different
objects.

scalar. Also, LM is the Laplacian of the matrix M which is defined as LM = � − M, where � is
a diagonal matrix with diagonal entries �ii = ∑

j Mij .
In this experiment, we used the COIL20 data to study the MM algorithm (26) and its

acceleration using the methods described in Section 3. The COIL20 dataset has 1440 images of
20 objects with resolution 128×128. Each object has 72 images which were taken by capturing an
image at every 5 degrees along a 360 degree viewing circle. To evaluate the different acceleration
methods, we ran each method 50 times using the MM algorithm (26) as the base iteration. In
each of the 50 runs, we initialized the elements of the embedding matrix Y by sampling from
a Normal distribution with mean zero and standard deviation 10−3. The value of ρ in iteration
(26) is found by using an initial value of 10−5 in each iteration and using a backtracking search to
maintain monotonicity. Since the parameter values are not identified in embedding problems, we
guided convergence using values of the objective function. Specifically, an algorithm is terminated
whenever 1000 fixed point iterations have been reached or when the relative change of the
objective function is less than 10−4. All other hyperparameters were set to their default values
(see Section 4).

Results from this numerical experiment can be found in Table 6. We can see that SQUAREM,
DAAREM, parabolic-EM, and Quasi-Newton all achieved a substantially better objective value
upon convergence when compared to the original MM algorithm. Moreover, DAAREM achieved
this improved objective value with an even shorter computation time than the MM algorithm.
Figure 1 visualizes and compares the embedding results between MM and SQUAREM, indicat-
ing that better values of the objective function achieved by SQUAREM do result in a better
quality embedding.
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6 Discussion
In Section 5, we tested all the acceleration schemes described in Section 3 on six different
practical problems. Although no single method is guaranteed to always work, at least one of
SQUAREM and DAAREM effectively accelerated the original algorithm in every setting of the
six examples. Moreover, SQUAREM is particularly robust in providing improved performance in
every scenario of our numerical experiments. Nesterov algorithm is most popular for accelerating
proximal gradient. Here we have shown that SQUAREM and DAAREM are competitive when
compared to Nesterov and hence deserving of greater attention.

We summarize the results from the six main simulation studies. SQUAREM effectively
accelerated the original algorithm in 5 of the 6 problems, giving up to 78 fold improvement in
elapsed time with a mean reduction of roughly 18 fold. In the t-SNE problem, SQUAREM did
not accelerate the convergence of the original algorithm, but it did consistently converge to a
better solution than the original MM algorithm. Nesterov with restarts accelerates convergence
in 4 of the 6 problems, with a speedup of up to 68 fold and a mean of 16 fold improvement.
DAAREM can also accelerate 4 of the 6 tasks, gaining a factor of up to 48 fold improvement
with a mean of a 13 fold reduction in computation time. Quasi-Newton also accelerates 4 of
the 6 problems with mean of a 13 fold improvement in convergence time. Lastly, Parabolic-EM
accelerated convergence in 4 of the 6 tasks with a mean 4 fold improvement in convergence.
Since the relative performance of the acceleration methods can vary across specific problems, we
suggest trying SQUAREM, DAAREM, and Nesterov with restarts when acceleration is needed
for a specific problem.

We refer the reader to the our AccelBenchmark Github package, which allows the user to
easily identify the best acceleration scheme for their specific problem. To use AccelBenchmark,
the user only needs to supply the data, fixed-point mapping function, and a loss function if one
is available, and the package will then automatically benchmark the performance of the original
algorithm and all acceleration methods. For details, one can consult the package vignette.

We would like to draw attention to the importance of monotonicity control implemented
in all our acceleration algorithms. The base algorithms such as EM and MM are intrinsically
monotone. Hence they have guaranteed global convergence. Acceleration schemes are based
on extrapolation methods. They are fast in the neighborhood of the solution. However, they
are non-monotone and are not globally convergent. Therefore, we implement safeguards such
as controlling the steplength and ensuring monotonicity to ensure reliable convergence from
any starting value (note that in the default settings monotonicity is relaxed as the solution is
approached). Performance is not guaranteed without such safeguards. More importantly, adding
the safeguards seldom degrades the speed of convergence, while providing a better guarantee of
convergence that is essential for general purpose implementation.

It is worth noting that the fixed-point iterations used in some of the examples discussed here
are already faster versions of the original fixed-point schemes. Specifically, the MMF procedure
for the multivariate-t distribution is a faster version of the original EM algorithm; proximal gradi-
ent is a faster version of the subgradient method for the LASSO problem; and the MM algorithm
for t-SNE is a faster procedure than gradient descent. Nevertheless, as we have demonstrated
in our simulation studies, we can further accelerate these faster schemes using the described
acceleration schemes and achieve more significant speedups in many cases. Therefore, the ac-
celeration schemes listed here are worth trying even in problems where there is a relatively fast
fixed-point iterative algorithm already available.

We have shown that acceleration methods can be very effective in a wide range of appli-

https://github.com/bhtang127/AccelBenchmark
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cations where fixed-point iteration algorithms are used. However, the use of these or similar
acceleration methods in other contexts are still lacking in development. For example, adapt-
ing these methods to handle nondeterministic iterations such as stochastic gradient descent or
Markov chain Monte Carlo procedures would be an interesting topic for future research. Adapt-
ing these acceleration techniques to infinite-dimensional parameter settings (e.g., solutions of
integral equations (Atkinson, 1976)) would also be an interesting direction for future study. The
main issue here is that the parameter dimension can change across iterations, which may require
the introduction of operators like an inner product in a certain Hilbert space to compute the
acceleration method updates. For example, the Picard iteration (Junkins et al., 2013) and gra-
dient tree boosting (Friedman, 2001) involve update functions where the number of parameters
increases across iterations.

Supplementary Material
1. We provide an R package AccelBenchmark, available from Github that can be used to

reproduce the experiments in this paper. Please check the vignette and the demo.R file under
vignette folder for reference.

2. We provide an additional pdf file that includes a) some basic properties of fixed point iter-
ations; b) visualization of the convergence for all the experiments and c) additional analysis
for the Sinkhorn scaling problem.
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