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1 Basic Properties of Fixed-Point Algorithms

Let F : Rp 7→ Rp be the fixed-point mapping associated with a given iterative algorithm. That is, iterates
x0, x1, x2, ... are generated from the updating scheme

xk+1 = F (xk), k = 0, 1, ..., (1)

where x0 is a given initial point for the algorithm. We will let x∗ denote a fixed-point of F ; that is, x∗

satisfies x∗ = F (x∗). If F ′(x∗) denotes Jacobian of F at x∗, the iteration scheme (1) is locally convergent to
x∗ provided that ρ{F ′(x∗)} < 1, where ρ{F ′(x∗)} denotes the spectral radius (i.e., the largest eigenvalue)
of the Jacobian F ′(x∗). By local convergence, we mean the following: there exists a δ > 0 such that
whenever ||xk − x∗|| ≤ δ the iteration defined by Eq. (1) converges to x∗.

Assuming that F is sufficiently smooth, we can write a Taylor series expansion of F (x) around the
fixed point:

F (x) = F (x∗) + F ′(x∗)(x− x∗) + o
(
||x− x∗||

)
.

Because xk+1 = F (xk), we can express xk+1 as

xk+1 = F (x∗) + F ′(x∗)(xk − x∗) + o
(
||xk − x∗||

)
,

and hence we obtain
||xk+1 − x∗||
||xk − x∗||

=
||F ′(x∗)(xk − x∗) + o(||xk − x∗||)||

||xk − x∗||
. (2)

To characterize the convergence speed of the iteration (1), we first note that any sequence y0, y1, y2, . . .
that converges to a point y∗ is said to converge linearly to y∗ with rate r ∈ (0, 1) provided that

lim
k−→∞

||yk+1 − y∗||
||yk − y∗||

= r.

Hence, from (2), we can see that the iterative scheme defined by (1) converges linearly with rate equal
to the spectral radius of F ′(x∗), provided that F ′(x∗) ̸= 0. In the case of the EM algorithm, the linear
convergence rate can be expressed as the ratio of the observed information to the complete information.

An alternative approach to studying the convergence of iterative processes utilizes Lyapunov functions.
[1] shows how this approach can be used to establish the convergence of iterative processes. A mapping
L : Rp 7→ R is said to be a Lyapunov function for F at a fixed-point x∗ if there is an open neighborhood
D around x∗ such that

L(x) > 0, ∀x ∈ D,x ̸= x∗;L(x∗) = 0

L(F (x)) < L(x), ∀x, F (x) ∈ D,x ̸= x∗ (3)

A fixed-point iteration with fixed point mapping F that is endowed with a Lyapunov function as defined in
(3) is guaranteed to be locally convergent. Note that this characterization does not require the existence of a
Jacobian of F . In fact, the existence of a Lyapunov function guarantees that the iteration is asymptotically
stable, which is a stronger property than local convergence. For the EM algorithms in statistics, a Lyapunov
function can be readily constructed from the log-likelihood function, and a Lyapunov function for any
MM algorithm can also be readily obtained from the objective function of that problem. The Lyapunov
function plays an important role in acceleration algorithms which are generally non-monotone. In the
implementation of an acceleration scheme, it is important to enforce some degree of monotonicity after
each acceleration step, either by employing some control on the degree of extrapolation or by forsaking
extrapolation and relying upon the base algorithm.

2 Convergence Visualization

We give a visualization of convergence for different algorithms in different problems in a typical run, where
losses are plotted out against the number of fixed point iteration evaluated until convergence. Please check
Figure 1.
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(a) Multivariate t distribution (ν = 25) (b) Poisson Mixture

(c) LASSO (λ = 0.1) (d) Bayesian Variable Selection (m = 100)

(e) Sinkhorn Scaling (H50) (f) t-SNE

Figure 1: Visualization of convergence. Loss is normalized by subtracting the minimum value of the
objective function attained across all methods. The figure only shows results from the most difficult
setting of each experiment (if there are multiple settings). And EM line always indicates the original
method that is not accelerated.
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3 Sinkhorn Iteration Supplementary Analysis

It is also possible to use a different approach to matrix scaling. Here we treat the intermediate scaled
matrix Γk as parameters, in which case the Sinkhorn iterations can be write as Γk+1 = DkΓkEk, with
diag(Dk) = a / Γk1 and diag(Ek) = b / ΓT

k 1. It may be observed that this algorithm is well-known in
statistics as the iterative proportional fitting (IPF) algorithm, originally proposed by [2]. We accelerate the
IPF algorithm where the scaled matrix is treated as the parameter vector to be estimated. We do observe
dramatic acceleration based on this base iteration. Table 1 shows the results for order 50 Hessenberg
Matrix. It should be noted that this method does not guarantee that the converged Γ obtained from
acceleration methods is also a scaling of the original matrix, which means Γ ̸= DAE could happen for any
D and E. There is a discernible deviation from the unique true solution. However, the deviation is fairly
small, see the relative difference ∥Γ− Γtrue∥F / ∥Γtrue∥F in Table 1 for reference. Therefore, the approach
seems to be adequate. It would be an interesting future study to investigate whether acceleration with Γk

is guaranteed to yield bounded error, and hence might be suitable as a fast approximation algorithm.

Metric SK SQUAREM DAAREM pEM Quasi-Newton Nesterov

fpevals 50000+ 461± 81.2 346± 31.5 17836± 33.6 9606± 16782 1006± 53.8

elapsed 9.6± 0.36 0.056± 0.015 0.114± 0.02 2.9± 0.19 2.04± 3.66 0.14± 0.03

rel. diff.
(
×10−6

)
0 0.33± 0.089 9.53± 2.05 0.43± 0.071 145.92± 266.3 25.88± 1.32

Table 1: Scaling diag{u0}H50diag{v0} for 200 independent runs, where u0,v0 i.i.d drawn from Unif [0.5, 2] to
create some randomness. SK represents the original Sinkhorn-Knopp algorithm, and the other columns are different
accelerated versions of it. Elapsed time are reported in seconds. Rel. diff. refers to the Frobenius norm between
the output and the optimal result divided by the Frobenius norm of the optimal result. It is reported in the scale
of 10−6. All other settings remain the same as in the main paper.
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