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Abstract

Our paper introduces tree-based methods, specifically classification and regression trees (CRT),
to study student achievement. CRT allows data analysis to be driven by the data’s internal
structure. Thus, CRT can model complex nonlinear relationships and supplement traditional
hypothesis-testing approaches to provide a fuller picture of the topic being studied. Using Early
Childhood Longitudinal Study-Kindergarten 2011 data as a case study, our research investigated
predictors from students’ demographic backgrounds to ascertain their relationships to students’
academic performance and achievement gains in reading and math. In our study, CRT displays
complex patterns between predictors and outcomes; more specifically, the patterns illuminated
by the regression trees differ across the subject areas (i.e., reading and math) and between the
performance levels and achievement gains. Through the use of real-world assessment datasets,
this article demonstrates the strengths and limitations of CRT when analyzing student achieve-
ment data as well as the challenges. When achievement data such as achievement gains in our
case study are not linearly strongly related to any continuous predictors, regression trees may
make more accurate predictions than general linear models and produce results that are easier
to interpret. Our study illustrates scenarios when CRT on achievement data is most appropriate
and beneficial.
Keywords achievement; early childhood education; tree-based methods

1 Introduction

1.1 Background

Linear models have been widely used in educational research because they often show adequate
fit, and perhaps because they are the most commonly taught (Yan and Su, 2009). However,
there are also times that alternative nonlinear models have not been fully explored; as a result,
a nonlinear complex relationship may not be uncovered, and opportunities for new insights from
data are missed. In comparing the use of three types of nonlinear models and linear regres-
sion modeling on school-level data on 183 elementary schools, Baker (2001) found that flexible
modeling raised unique questions and identified nonlinear relationships that linear regression
modeling overlooked.
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Baker’s observation carries contemporary importance because one consequence of the di-
versity of the US is that differences in relationships between predictors and outcomes across the
subgroups could be a common occurrence. Further, reasonably homogeneous subgroups may not
be definable by just a single student characteristic, such as student’s ethnicity, socioeconomic
status, gender, or special status as English Language Learners (ELLs) or Individual Educational
Plan (IEP) status. Instead, relevant subgroups are likely to be defined by a combination student
and/or school characteristics. For example, the relationships between predictors and outcomes
may differ for students of different ethnicities from families with higher or lower socioeconomic
status and may also depend on whether the student is classified as ELL or IEP.

This kind of nonlinearity can be illustrated by posing questions. When boys’ and girls’
performances differ, is that observed difference of the same magnitude and in the same direction
at the lower and higher ends as well as the middle of a socioeconomic status scale? Is that
same difference seen in every ethnic group? Is the same difference observed in ELLs and IEPs
in different ethnic groups at each socioeconomic level?

Although there is a rich class of linear models, and they can include interactions among
predictors, each term in the model must apply to the whole population unless a term of one
order higher was used to separate subgroups. Terms including the interactions have to be pre-
specified if automatic model building methods are not used, and the higher-order interaction
terms are often hard to interpret. Even without interactions, multicollinearity can complicate
interpretation. A nonlinear model that does not require the pre-specification of the interactions
among predictors can significantly aid in understanding the educational phenomenon being
studied and in generating new insights from data.

1.2 Purpose

This manuscript aims to introduce tree-based methods, in particular, classification and regres-
sion trees (CRT), to study student achievement. CRT can be used (1) directly to allow data
to be driven by its internal structure, (2) to supplement existing hypotheses testing to pro-
vide a fuller picture of the topic being studied, and (3) in combination with other modeling
approaches to allow a hybrid modeling approach. Section 2 of this paper reviews the concepts
of recursive partitioning and regression tree algorithms. Sections 3 and 4 focus on the regres-
sion tree for uses (1) and (2) for student achievement. The research on the Early Childhood
Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K: 2011) provides a case study to
demonstrate the application of the regression tree. In particular, we used kindergarten year
fall term and spring term assessments of performance in reading and in math to investigate
the impact of factors from students’ demographic backgrounds on those reading and math skill
levels. The analysis of students’ gains in math and reading skills drew on both fall term and
spring term assessment data from 2011 ECLS-K. A similar approach using a nonlinear analysis
yielded findings of important differences among the subpopulations identified. Section 5 briefly
discusses additional uses of tree-based methods in educational research and the use of classifica-
tion and regression tree in possible hybrid modeling approaches. Through the use of real-world
assessment datasets, this article will demonstrate the strengths and limitations of CRT when
analyzing student achievement data as well as the challenges. Such illustration will contribute
to the use of CRT on achievement data by highlighting scenarios it is most appropriate and
beneficial.
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2 Overview of Classification and Regression Tree Algorithms
2.1 Concept for Recursive Partitioning
CRT is a simple-to-use but powerful tool for analyzing complex data that can be used for
exploration, description, and prediction. CRT and other recursive partitioning algorithms are
widely used in various fields of study (e.g., ecology, medicine, genetics, bioinformatics), but
have only relatively recently been introduced into educational research and applied in areas
such as studying the rate of growth in educational achievement and drop-out and educational
measurement modeling (e.g., Rupp et al., 2001; Ma, 2005; Jeon and De Boeck, 2016; Jeon et al.,
2017).

Recursive partitioning algorithms including CRT are a class of machine learning techniques
that partition a population into a set of internally homogeneous and mutually exclusive sub-
groups, where the defining factors need not be the same for all subgroups (Ma, 2018). Inference
can then be made about the role of factors at both subgroup and population level; and predic-
tions can be made and tested based on the subgroup profiles.

The recursive partitioning algorithms create generations of subsets. Starting with the whole
population (i.e., the first parent node), child nodes are created by selecting one “best factor” to
use in splitting the data into two or more subsets and by determining the optimal cut point(s)
for that factor. These child nodes become the next generation of parent nodes. The key is that
in this next generation each new parent node is individually split using the optimal choice
of factor and the cut points for that node only. A chain of nested subsets terminates, and
the process ends (separately for each subset chain) when a later-generation child node cannot
be profitably split. The tree that is created is commonly annotated with information about
the split and the resulting subsets. Depending on the outcome variable and the purpose of the
analysis, CRT algorithms have a variety of possible specifications. For example, a binary outcome
variable leads to a classification algorithm and the criterion for predictor selection is usually
some measure of misclassification. In contrast, regression may be the basis when the outcome
variable is continuous and the criterion may be regression sufficiency (e.g., R2, F-statistic or
other goodness-of-fit measure) or regression coefficient precision (e.g., CV or p-value). Typical
termination rules include minimum values for the criterion and/or minimum sample size in the
terminal nodes.

2.2 Comparison of Trees and Linear Models
For the case of continuous response variables, the data sets where CRT may be applicable can
also be approached using general linear models such as regression, ANOVA, or ANCOVA. When
the relationship between outcome variables and predictors are essentially linear, linear models
are likely to outperform the trees. However, when the relationship between outcome variables
and predictors are nonlinear and complex, tree-based methods are likely to outperform linear
models in prediction accuracy. Furthermore, in such cases the tree-based methods are preferable
because of their interpretability and visualization (James et al., 2017).

Similarity CRT faces a similar challenge to that of linear models when using stepwise pro-
cedures instead of “best subsets” procedures – the procedure for selecting the best partition is
optimal at each step but not overall. When stepwise variable selection is used, variables are se-
lected considering what was entered before and not considering what variables yet to come. More
specifically, among all the possible partitions, the partition chosen is optimal for the particular
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step of the tree growing instead of being optimal for the entire tree (Breiman et al., 1984); this
type of search method is called a “greedy” search. The greedy algorithms have the weakness of
sometimes not finding globally optimal solution by not considering all the possible solutions.

Difference While the different predictors are combined linearly in linear regression, CRT
consists of rectangular partitions derived from recursive splitting, including nonlinear and non-
monotone association rules (Strobl et al., 2009). Further, CRT does not assume a normal error
distribution; thus, making it easier for researchers in terms of not having to deal with the conse-
quences of violating distributional assumptions. The interactions included in the linear regression
are typically limited to the two-way interactions specified before the fitting process; on the other
hand, “only the interactions that are actually used in the tree are generated during the fitting
process” (Strobl et al., 2009, p. 5). In addition, categorical variables may need to be dummy
coded in linear models, but CRT can be applied to any data structure with various kinds of pre-
dictors (e.g., sparse, skewed), including both categorical and continuous data without a necessity
of pre-processing them (Kuhn and Johnson, 2013).

Tree-based methods resemble human’s decision-making process more than traditional re-
gression and classification approaches (James et al., 2017). When reporting the results, CRT
presents the results in an easy-to-interpret form; the tree classifiers illuminate the structure of
the data and the steps one should use to decide. However, less-than-optimal predictive perfor-
mance can happen when the relationship between the independent variables and the outcome
variable cannot be best captured by the rectangular homogenous subspaces defined by the tree
partitions. Ensemble methods that combine multiple trees and average over them, such as ran-
dom forests, have shown great improvement in the prediction accuracy, although with a loss in
interpretability (James et al., 2017; Kuhn and Johnson, 2013; Strobl et al., 2009).

2.3 CHAID Algorithm

The CHAID (Chi-square automatic interaction detection; Kass, 1980) is a stepwise CRT pro-
cedure that uses chi-square statistics (for categorical outcomes) and F-statistics (for continuous
outcomes) to measure the relationship between the outcome and categorical or continuous pre-
dictor variables. Instead of binary splits of the predictor variables, CHAID would ideally search
through all possible groupings of a categorical predictor or groupings of a continuous predictor
(Ledolter, 2013). In order to avoid the time-consuming process of searching through all possible
groupings, a three step simplification is used: (1) If there is a continuous predictor, the predictor
is divided into categories with an approximately equal number of cases in each category; (2) For
a particular node and a particular predictor, if there is not a significant association between a
pair of the categories of the predictor and the outcome variable at a predefined alpha-to-merge
value, it will merge the pair of the predictor categories and iterate this step; if there is a signifi-
cant association, a Bonferroni adjusted p-value will be computed for the set of categories; and
(3) The predictor variable with the smallest Bonferroni adjusted p-value will be selected as the
split variable if its adjusted p-value is smaller than a predefined alpha-to-split value; otherwise,
there will be no further splits; the nodes become terminal nodes (Ma, 2018; Ledolter, 2013).
An advantage of CHAID among CRT methods is that it assigns more or less the same num-
ber of cases to each node, thus not creating extreme terminal nodes, which allows for drawing
appropriate policy and practice implications (Ma, 2018).

The default alpha-to-split value and alpha-to-merge values for the CHAID algorithm in
SPSS Modeler 18.3 (IBM Corp, 2021a) are both .05. For classification problems, Pearson Chi-



Tree-Based Methods 363

square statistics are used as the default for the Chi-square test with the likelihood-ratio Chi-
square is an alternative; for regression problems, F-tests are used. For the estimation of the
CHAID model, the default convergence value is .05, and the default maximum number of iter-
ations is 100. The Bonferroni correction is the default of adjusting for significance values with
multiple comparisons. A continuous predictor variable is banded into ten discrete intervals by
default, but the number of discrete intervals can be increased up to 64 for and will be applied
to all scale predictors in the regression tree.

In the following Sections 3 and 4, a case study using the 2011 ECLS-K data will demonstrate
the application of CRT using the CHAID algorithm on a continuous response, and will compare
the regression tree results to linear model results.

3 Case Study: Application of Regression Tree on ECLS-K Study

3.1 Background

With the increasing racial and ethnic diversity in the US student population and the increasing
economic disparities between advantaged and disadvantaged students, the student population
continues to undergo change. The present study focuses on a few key demographic variables
that are routinely reported as being related to math and reading performance: students’ gender,
ethnicity, SES, schools’ characteristics including school percent free or reduced-price lunch (%
FRPL) and geographic designation (Mulligan et al., 2012). This study contributes to the pool
of research examining the complex and the intricate relationships among students’ and schools’
demographic factors and students’ math and reading performance in early childhood education
(e.g., Cheadle, 2008; Cooper et al., 2010). Differing from previous studies, this study utilized
a data-driven analytic approach – regression tree analyses – to display the patterns of the
interplay between demographic factors in relation to students’ outcomes. This study highlights
the strength of using regression tree on achievement data, such as its interpretability and utilizing
best predictors for subgroups, but also discusses the challenges as student achievement is often
strongly linearly related to dominant continuous predictors such as students’ prior achievement
or students’ socioeconomic (SES) status.

3.2 Data and Sample

The ECLS-K Fall 2010 and Spring 2011 data were used for this study. ECLS-K: 2011 provides
information on children’s early school experiences by following a nationally representative sample
of children from kindergarten through elementary school. For kindergarten students, it consists of
one-on-one assessments of children, interviews with parents, and self-administered questionnaires
from teachers, school administrators, and nonparental out-of-school care providers.

A total of approximately 18,170 kindergartners from about 1,310 schools participated in the
ECLS-K study. Their parents, teachers, school administrators, and out-of-school care providers
also supplied information about them through participating in the interviews and answering
questionnaires (Tourangeau et al., 2015). Approximately 12,900 kindergarten students who have
valid math and reading achievement scores were selected for the sample. Around 850 kindergarten
students were excluded because of missing information or because their race was not ascertained,
or numbers of students in the ethnic group were too small for analysis.
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3.3 Variables

Outcomes Students’ item response theory (IRT)-based scale scores are used as outcome vari-
ables because (1) they are the overall measures of students’ achievements, (2) can be compared
for both cross-sectional and longitudinal analyses, (3) can be compared among subgroups of
children, (4) can be used to study the correlations between achievement and children’s back-
ground, and (5) can be used to calculate a gain score by taking the difference between spring
and fall scores (Tourangeau et al., 2015). Students’ fall performance allows us to investigate the
important factors that are closely related to students’ achievement prior to their formal school-
ing experience. Students’ spring performance allows us to investigate the relationship between
students’ academic achievement and the same predictors while controlling for students’ prior
achievement (i.e., fall performance). This approach, as well as a direct approach using the gain
scores as the outcome variables, allows us to examine students’ achievement gains between the
fall performance and spring performance in reading and math. More specifically, the following
outcomes are used:
• Fall Performance Level: 2011 reading & math results
• Spring Performance Level: 2011 reading & math results
• Achievement Gain: Difference in scores (Spring 2011 score – Fall 2010 score) in reading &

math for each individual student

Predictors The following predictors are used in the regression tree analysis:
• Socioeconomic Status (SES) – individual student level index value
• Race – White (non-Hispanic), Black/African American (non-Hispanic), Asian (non-Hispanic),

Hispanic (subgroups: race specified/ not specified)
• Location type – Urban (subgrouped by size), Suburban (subgrouped by size), Town (sub-

group by remoteness), Rural (subgroup by degree), which was recoded into five categories:
rural, town, suburban, small and middle city, and large city.

• Gender
• School percent free or reduced-price lunch (% FRPL)
• Region – Northeast, South, Midwest, West
• Fall Performance Level: 2011 reading & math results (used as predictors when spring per-

formance levels are outcome variables).
Descriptive statistics of these variables can be found in Table 1 and Table 2.

3.4 Statistical Analyses

Regression tree analyses were conducted using the CHAID algorithm separately for each of the
six outcome variables: fall performance in reading, fall performance in math, spring performance
in reading, spring performance in math, kindergarten gain in reading, kindergarten gain in math.
CHAID is used because, unlike other CRT methods, it allows for multi-way node splitting –
allowing for more complex decision rules with the many nominal and continuous scale predictor
variables. Because of this, it has the advantage of displaying the complex relationship among
predictors. Although not used in this study, the patterns or classification captured by CHAID
can be further utilized in conjunction with other statistical models.

Five-fold cross-validation was used to evaluate the performance of the regression trees; the
whole dataset was randomly divided into 5 subsets, and each time, one of the subsets served as
the testing set, while the other four subsets together served as the training set the model was
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Table 1: Frequency table of categorical variables.

Variable Category N %

Location Type (Fall)
City, Large 2030 15.7
City, Midsize & Small 2220 17.2
Suburb 4450 34.5
Town 1070 8.3
Rural 3120 24.2
Missing 10

Location Type (Spring)
City, Large 2030 15.7
City, Midsize & Small 2230 17.3
Suburb 4450 34.5
Town 1070 8.3
Rural 3120 24.2

Region (Fall)
Northeast 1910 14.8
Midwest 2840 22.0
South 4840 37.5
West 3320 25.7

Region (Spring)
Northeast 1910 14.8
Midwest 2830 22.0
South 4830 37.5
West 3320 25.7

Race
White 6300 48.8
Black 1860 14.4
Hispanic 3650 28.3
Asian 1090 8.4

Gender
Male 6620 51.3
Female 6280 48.7

NOTE: Due to data security restrictions, unweighted sample size numbers are rounded to the nearest ten.
N = Sample Size; % = Percentage.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal
Study, Kindergarten Class of 2010-11 (ECLS-K), Fall 2010 and Spring 2011.

fit to. The mean absolute error was calculated as the deviation of the training sample derived
predicted value from the observed value in the testing set, and was recorded and averaged
across the five sets. This was done for trees containing from one to six levels, and the mean
absolute error was compared across trees of different depths. Having the noticeably smallest
mean absolute error with the lowest tree depth led a tree to be selected as the final regression
tree for an outcome variable. As a result, 2 levels was selected for the fall math performance and
spring reading performance; 3 levels was selected for the spring math performance and reading
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Table 2: Descriptive statistics of continuous variables.

N Range Minimum Maximum Mean Standard
Deviation

Variance

School %FRPL 12900 100.00 .00 100.00 48.6733 30.07002 904.206
SES 11620 4.93 −2.33 2.60 −.1381 .79854 .638
Reading Gain 12040 112.48 −57.06 55.42 14.2692 7.94190 63.074
Math Gain 11970 66.31 −22.83 43.48 13.5543 7.12757 50.802
Fall Reading
Performance

12200 84.47 25.45 109.92 46.5265 11.44929 131.086

Spring Reading
Performance

12480 84.24 25.68 109.92 60.6588 13.33363 177.786

Fall Math
Performance

12150 104.39 7.19 111.58 31.0955 11.29931 127.675

Spring Math
Performance

12450 81.57 7.19 88.76 44.5003 12.18949 148.584

NOTE: Due to data security restrictions, unweighted sample size numbers are rounded to the nearest ten.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal
Study, Kindergarten Class of 2010-11 (ECLS-K), Fall 2010 and Spring 2011.

gain. Though a tree of five level depth had the least mean absolute error for the fall reading
performance because the mean absolute error between the three-level tree and the five level tree
was only 0.004, while the two extra levels made the tree much harder to interpret, a three level
tree was retained for the fall reading performance as the final regression tree. The same rationale
was applied to select a two-level tree as the final regression tree for math gain. Please see Table 3
for the mean absolute error comparison.

3.5 Results

The relative importance of each predictor in relation to the outcome variable differed between
fall performance, spring performance and gain during kindergarten; there were also important
differences in predictors’ relative importance between reading and math.

Analysis of Math Fall Performance SES, the individual student socioeconomic index value,
is the predictor with the strongest (positively correlated) relationship with students’ fall 2011
math scores (See Figure 1 for the tree structure). The algorithm divided the range for SES into
10 segments, with the mean scores for students in these 10 groups increasing by approximately
1.860 points (ranging from 1.161 to 2.857) from lower to next level SES group.

For each of the first 7 (lowest) socioeconomic subgroupings that include 69.95% of the
kindergarteners as well as the upper subgrouping that contains 19.90% of kindergarteners on the
SES scale, the pattern within the subgroup was essentially the same. Within a socioeconomically
similar group, racial group was the strongest indicator of math score. While the algorithm
sometimes broke the subgroup into two or three further subgroups, these followed a similar
pattern: Black students and Hispanic students with lowest (mean) score; Asian students with
highest (mean) score.
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Table 3: Mean absolute error with cross-validation.
ANCOVA ANCOVA with

Interactions
Tree (1 level) Tree (2 level)

Training Testing Training Testing Training Testing Training Testing

Fall Reading
Performance

7.661 7.680 7.616 7.650 7.792 7.809 7.696 7.773

Fall Math
Performance

7.875 7.893 7.835 7.880 8.029 8.043 7.893 7.952

Spring Reading
Performance

6.075 6.086 6.000 6.050 6.398 6.395 6.326 6.371

Spring Math
Performance

5.494 5.500 5.429 5.456 5.712 5.718 5.653 5.704

Reading Gain 6.422 6.439 6.364 6.421 6.172 6.183 6.137 6.156
Math Gain 5.944 5.958 5.915 5.952 5.655 5.658 5.634 5.641

Tree (3 level) Tree (4 level) Tree (5 level) Tree (6 level)

Training Testing Training Testing Training Testing Training Testing

Fall Reading
Performance

7.654 7.759 7.643 7.758 7.640 7.755 7.640 7.755

Fall Math
Performance

7.851 7.960 7.835 7.971 7.831 7.970 7.831 7.970

Spring Reading
Performance

6.285 6.377 6.273 6.381 6.271 6.380 6.271 6.380

Spring Math
Performance

5.623 5.699 5.613 5.703 5.612 5.704 5.612 5.704

Reading Gain 6.114 6.146 6.080 6.148 6.066 6.152 6.061 6.154
Math Gain 5.611 5.643 5.589 5.628 5.582 5.631 5.580 5.632
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal
Study, Kindergarten Class of 2010-11(ECLS-K), Fall 2010 and Spring 2011.

Differences between highest and lowest racial group mean scores within socioeconomic sub-
group averaged about 5.108 points (ranging from 2.595 to 7.665). White students sometimes
grouped with Asian students and sometimes formed a middle group on their own. Black/African
American students and Hispanic students often grouped together and scored below Whites. For
10.15% of kindergarteners (the next to two highest SES groups) on the SES scale, the pattern
is slightly different and the school economic index becomes important as the factor creating the
second subdivision. For the two next-to-highest SES groups the final subsetting was according
to the school economic index, with scores inversely related to % FRPL.

Analysis of Math Spring Performance Math fall performance is the predictor with the
strongest (positively correlated) relationship with students’ spring 2011 math scores (See Figure
2 in the supplementary material for the tree structure). The algorithm divided the range for
math fall performance into 10 segments, with the mean scores for students in these 10 groups
increasing by approximately 3.912 points (ranging from 2.466 to 7.561) from lower to next level
fall performance group.
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Figure 1: Regression tree of fall math performance.

For each of the first (lowest) 4 fall performance subgroupings that include 40.00% of the
kindergarteners and for each of the upper middle 3 fall performance subgroups that include
30.00% of the kindergarteners, the pattern within the subgroup was essentially the same. Within
a fall performance similar group, racial group was the strongest indicator of math score. While the
algorithm sometimes broke the subgroup into two and sometimes into three further subgroups,
these followed a similar pattern with two exceptions: Black students with lowest (mean) score,
often grouped with Hispanic students, and in a rare case with White students in the lowest
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fall performance group; Asian students with highest (mean) score, often grouped with White
students, and in a rare case grouped with Hispanic students in the middle fall performance group
(33.489, 36.458].

For the upper 20.00% of kindergarteners on the fall performance scale, the pattern is slightly
different and SES becomes important either as the factor creating the second subdivision (the
highest fall performance group) or the third subdivision of the next to highest fall performance
group with students from Midwest. The CHAID algorithm subsets the next to highest SES group
according to region. The differences in mean scores by region are consistent with the Midwest
mean score often being the highest; mean scores for West and South either fall between or are
grouped with Northeast. In a rare case, for Black and Hispanic students with the upper middle
fall performance (36.458, 41.034], those from West scored approximately 2.407 points higher
than those from Midwest, South, and Northeast grouped together.

For the middle fall performance (27.619, 30.619] group, the algorithm created subsets with
location type with rural students’ mean scores approximately 1.968 points higher than those
from other location types. Below the level of the second subdivision, the algorithm created
further subsets with the SES and race group. For rural students in the middle fall performance
group, race made a difference; for students from other location types in the same fall performance
group, SES mattered. Gender entered the regression tree as a third subdivision in the highest fall
performance group (8.77% students) and in the middle fall performance group (6.13% students),
with female mean score 2.108 points higher than male mean score.

Analysis of Math Gain (Spring 2011 Performance – Fall 2010 Performance) Unlike
spring performance, for Gain in Math the strongest relationship is to racial group (See Figure 3 in
the supplementary material for the tree structure). Hispanic and White kindergarteners demon-
strate a greater gain in math performance level between Fall 2010 and Spring 2011 (13.773 point
gain) than Asian and Black/African American grouped together (12.441 point gain). Among
White and Hispanic kindergarteners, the next most highly related factor is region; for both
groups Midwest and West mean gain is highest and Northeast is lowest (1.758 point difference)
with South in between. These regional differences follow the same pattern as is seen at a lower
level relative importance for Spring 2011 Math performance.

For Whites and Hispanics in the Midwest, West, and South, gains in math during the
kindergarten year are related to school location (urban to rural). However, in the Northeast,
an economic factor (i.e., school % FRPL) is most strongly related to gain in math. For Asian
and Black/African American kindergartners, the CHAID algorithm does not subset by region
at any point. Rather, this group is subdivided based on an economic factor (% FRPL) and then
within each % FRPL group separated into the two locale type groups that differ in gain about
1.7 points (students from cities and town gaining more than those from suburb and rural areas
in the � 67.49% FRPL group; students from city, suburb, and rural areas gaining more than
those from towns in the >67.49% FRPL group).

Analysis of Reading Fall Performance Similar to Math fall performance level, SES is
the predictor with the strongest (positively correlated) relationship with students’ fall 2011
reading scores (See Figure 4 in the supplementary material for the tree structure). The algorithm
partitioned the range for SES into 9 segments, with the mean scores for students in these 9 groups
increasing by approximately 1.977 points (ranging from 1.261 to 2.963) from each lower to the
next level SES group.
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For each of the first (lowest) 2 socioeconomic subgroupings and the last (highest) 2 socioe-
conomic subgroupings together comprising 39.73% of the kindergarteners, the pattern within
the subgroup was essentially the same and similar to those patterns in math. Within each of
these socioeconomically similar groups, racial group was the strongest indicator of reading score.
Differences between highest and lowest racial group mean scores within socioeconomic subgroup
averaged about 6.152 points (ranging from 2.702 to 10.215). Race was also important creating
the third subdivision of the middle SES subgrouping for different regions with an averaged dif-
ference between highest and lowest racial group mean scores of 3.363 points (ranging from 2.541
and 4.185).

For the middle 30.62% of the kindergarteners on the SES scale, region was the most im-
portant factor creating the second subdivision, affecting most subgroups; students from South
had highest mean scores, approximately 3.000 points (ranging from 2.339 to 3.647) higher than
the lowest region group mean scores. Region was also important creating the third subdivision
of Blacks and Whites in the top SES group and Hispanics in the bottom SES group as well as
for both males and females in the middle SES group.

Besides the above subdivision, below the level of the second subdivision, the algorithm
created further subsets for other SES groups, gender (rather than racial group) was a predom-
inating factor. The differences in mean scores by gender are consistent with the female mean
score approximately 2 points above male mean score. Gender was also important creating the
third subdivision of Asians and Whites in the next-to-the-bottom SES group and the Midwest,
Northeast, and South in the middle of the SES scale. School level % FRPL affected the middle
6.02% of the kindergarteners on the SES scale.

Analysis of Reading Spring Performance Similar to Math spring performance level, fall
performance score is the predictor with the strongest (positively correlated) relationship with
students’ spring 2011 reading scores (See Figure 5 in the supplementary material for the tree
structure). The algorithm partitioned the range for fall performance scores into 10 segments,
with the mean scores for students in these 10 groups increasing by approximately 4.263 points
(ranging from 2.116 to 12.080) from each lower to the next level fall performance group.

For each of the first next to lowest 4 fall performance subgroupings and the middle one sub-
grouping together comprising 50.00% of the kindergarteners, the pattern within the subgroup
was essentially the same and similar to those patterns in math. Within each of these fall per-
formance similar groups, racial group was the strongest indicator of reading score. Differences
between highest and lowest racial group mean scores within fall performance subgroup averaged
about 2.633 points (ranging from 1.908 to 4.067).

For the top 20.00% of the kindergarteners on the fall performance scale and 10.00% of
the kindergarteners in the middle of the fall performance scale, SES (rather than racial group)
was the most important factor creating the second subdivision. For the next to highest 10.00%
of the kindergarteners on the fall performance scale and the 10.00% of the kindergarteners in
the lowest fall performance group, gender was the most important factor creating the second
subdivision. The differences in mean scores by gender are consistent with the female mean score
approximately 1.734 points above male mean score.

Analysis of Reading Gain (Spring 2011 Performance – Fall 2010 Performance) The
gain in reading was most strongly related to location type (See Figure 6 in the supplementary
material for the tree structure). Students in the rural area and town area have the greatest gain
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in reading (15.151 points), followed by students in the suburb area, and midsize and small size
city (13.995 points), and then by students in large city (13.427 points).

In rural area and town, gain in reading is related to the school economic index (% FRPL).
The gain is greatest in schools with 34.44–43.38% FRPL (16.776 points); followed by schools
with 18.03–34.44% FRPL (15.747 points), schools with above 43.38% FRPL (14.894 points),
schools with 8.09–18.03% FRPL (14.470 points), and lowest in schools with below 8.09% FRPL
(12.342 points).

In city and suburb, gain in reading is related to race. In midsize and small city as well as
suburb, White students had the greatest gain (14.537 points), followed by Hispanic and Asian
(13.833 points), and then by Black (12.835 points). In large city, White and Asian students
(14.676 points) showed greater gain than Hispanic and Black students (12.740 points). Below
the level of the second subdivision, the algorithm created further subsets, gender, region, and
school % FRPL were predominating factors.

4 Case Study: Comparison of Regression Tree and Linear Re-
gression Model Results

4.1 Added Value of Non-Linear Model

General linear models (Analyses of Covariance (ANCOVA)) were fit corresponding to each of the
six regression trees presented earlier to illustrate the different insights that can be gained from
linear models by comparing them with regression tree results. The ANCOVA were conducted
using SPSS 28 (IBM Corp, 2021b).

To investigate the interaction of predictors, a two-way interaction was added to the ANCOVA
model for each outcome pair one at a time; then all the significant two-way interactions were
retained in the ANCOVA model; if an interaction term became no longer significant in the
presence of other interaction terms, the interaction term was dropped in the order from the
least statistically significant to statistically not significant until all the interaction terms in the
ANCOVA model were significant. The mean absolute error of ANCOVA with all the significant
interaction terms were compared with those of ANCOVA with individual predictors only, the
difference was in a range of 0.012 to 0.037 for each outcome variable; similarly, the difference of
adjusted R2 was in a range of 0.005–0.014 for each outcome variable. Thus, the ANCOVA model
with individual predictors was retained as the final ANCOVA model for each outcome variable
because of its interpretability and was compared with the regression tree results.

Assumptions for the linear models, including linearity, and normality and homoscedasticity
of errors, were checked using plots. The corresponding P-P plots for the residuals were checked
for the outcomes: Math Fall Performance Level, Math Spring Performance Level, Math Gain,
Reading Fall Performance Level, Reading Spring Performance Level, and Reading Gain. The
P-P plots showed that the distributions appeared roughly normal. There was a slight pattern of
reading spring performance residuals plotted against the reading fall performance as a predictor;
thus, a higher order (squared) term for the reading fall performance was examined for the
ANCOVA model; however, the residual plot did not show a difference; thus, the higher order
of the reading fall performance was not retained. The plots of standardized residuals against
standardized predicted values were also checked for the six outcomes. These graphs show that
the assumptions of linearity and homoscedasticity have been adequately met.
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Table 4: ANCOVA tests of between-subjects effects for fall math performance.

Source Type III Sum
of Squares

F Sig. Partial Eta
Squared

Corrected Model 331425.933a 257.359 .000 .234
Intercept 1975517.351 19942.350 .000 .645
Gender 173.172 1.748 .186 .000
Location Type 1389.231 3.506 .007 .001
Race 23129.845 77.830 <.001 .021
Region 7253.440 24.407 <.001 .007
School % FRPL 8618.732 87.004 <.001 .008
SES 117448.075 1185.609 <.001 .098
Error 1086604.607
Total 12306769.367
Corrected Total 1418030.539
a. R Squared = .234 (Adjusted R Squared = .233).
NOTE: F = F-value as the Mean Square Regression divided by the Mean Square Residual; Sig. = p-value associated
with the F-value; SES = Socioeconomic Status; FRPL = Free or Reduced-Price Lunch.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal
Study, Kindergarten Class of 2010-11(ECLS-K), Fall 2010 and Spring 2011.

Math Fall Performance The result of ANCOVA with students’ math fall performance as
the outcome is shown in Table 4 and Table 5. The ANCOVA results agreed with the regression
tree results that students’ SES is the strongest predictor in terms of the effect size partial
eta squared and showed that students’ racial group also played an important role. The linear
regression results show that students from schools with different % free or reduced-price lunch
had distinct math performance. However, the regression tree results showed that school % free
or reduced-price lunch was only a strong indicator for the 10.15% for students in the upper SES
scale range (0.260, 0.590]. Though regions remained a statistically significant indicator in the
linear regression result, compared with other factors, it did not explain enough variance to show
up in the best fitting two-level regression tree results.

Math Spring Performance The result of ANCOVA with students’ math spring performance
as the outcome is shown in Table 6 and Table 7 in the supplementary material. The ANCOVA re-
sults agreed with the regression tree results that students’ math fall performance is the strongest
predictor in terms of the effect size partial eta squared and showed that students’ racial group
and SES also played an important role. The linear regression results show that students from
different regions had distinct math performance. However, the regression tree results showed
that regions were only a strong indicator for the 10.00% for students in the upper math fall
performance scale range (41.034, 46.679] and a relatively strong indicator (i.e., the third subdi-
vision) for the 10.00% for students in the math fall performance scale range (36.458, 41.034] and
for 8.62% White, Hispanic, and Asian students in the lower math fall performance scale range
(33.489, 36.458]. Though school % free or reduced-price lunch remained a statistically significant
indicator in the linear regression result, compared with other factors, it did not explain enough
variance to show up in the best fitting three-level regression tree results. In contrast, though
gender was not statistically significant in the ANCOVA result, the regression tree results showed
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Table 5: ANCOVA parameter estimates for fall math performance.

B Std. Error t Sig.

Intercept 34.958 .439 79.559 .000
Female −.251 .190 −1.322 .186
City, Midsize & Small −.360 .350 −1.027 .304
Suburb −.878 .329 −2.672 .008
Town −1.004 .440 −2.283 .022
Rural −1.194 .357 −3.346 <.001
Black −2.996 .318 −9.431 <.001
Hispanic −2.728 .269 −10.146 <.001
Asian 2.674 .389 6.879 <.001
Midwest 1.117 .327 3.412 <.001
South 1.747 .306 5.704 <.001
West −.319 .322 −.989 .323
School % FRPL −.039 .004 −9.328 <.001
SES 4.924 .143 34.433 <.001
NOTE: B = Unstandardized Coefficients; Std. Error = Standard Errors associated with the coefficients; t =
t-value used in testing the null hypothesis that the coefficient is 0; Sig. = 2 tailed p-value used in testing the null
hypothesis that the coefficient is 0; SES = Socioeconomic Status; FRPL = Free or Reduced-Price Lunch.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal
Study, Kindergarten Class of 2010-11(ECLS-K), Fall 2010 and Spring 2011.

that gender was a relatively strong indicator (i.e., the third subdivision) for 8.77% students in
the top math fall performance scale range >46.679 as well as for 6.13% White and Asian students
in the middle math fall performance scale range (30.619, 33.489].

Math Gain (Spring 2011 Performance – Fall 2010 Performance) The result of AN-
COVA with students’ math gain as the outcome is shown in Table 8 and Table 9 in the supple-
mentary material. The ANCOVA result showed that White students’ math gain was statistically
significantly different from Black and Asian students’, but not from Hispanics’. The regression
tree results were in line with the linear regression result by grouping White students and Hispanic
students together and then Black and Asian students together in terms of math gain. Though
school % free or reduced-price lunch and two out of three region variables (i.e., Midwest and
West) were statistically significant according to the ANCOVA result, the regression tree result
showed that school % free or reduced-price lunch and the region factors had different subgroup
associations with students’ math gain. The region factor was only a strong indicator for White
and Hispanic students. The school % free or reduced-priced lunch indicator was the strongest
indicator for Black and Asian students.

Reading Fall Performance The result of ANCOVA model with students’ reading fall per-
formance as the outcome is shown in Table 10 and Table 11 in the supplementary material.
The ANCOVA results agreed with the regression tree results that students’ SES is the strongest
predictor in terms of the effect size partial eta squared and showed that students’ racial group
and region also played an important role. The ANCOVA results showed that female students
had an average of 1.229-point advantage over male students. However, the regression tree re-
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sults showed that gender was only a strong indicator for the 29.65% for students in the middle
SES scale range (−0.430, 0.260] and a relatively strong indicator (i.e., the third subdivision)
for 2.98% White and Asian students in the lower SES scale range (−1.090, −0.830] and 7.70%
students from Midwest, Northeast, and South in the SES scale range (−0.830, −0.640]. Though
school % free or reduced-price lunch remained as a statistically significant indicator in the lin-
ear regression result, compared with other indicators and factors, they only created the third
subdivisions in subgroups. One of four locale type (i.e., Rural) was statistically significant in the
linear regression model but did not appear in the regression tree result.

Reading Spring Performance The result of ANCOVA with students’ reading spring per-
formance as the outcome is shown in Table 12 and Table 13 in the supplementary material. The
ANCOVA results agreed with the regression tree results that students’ reading fall performance
is the strongest predictor in terms of effect size partial eta squared and showed that students’
SES and racial group also played an important role. Location types were a strong predictor in the
ANCOVA results, but did not show up in the final best fitting two-level regression tree results.
Similarly, school % free or reduced-price lunch was statistically significant in the ANCOVA but
did not appear in the regression tree result. The ANCOVA results showed that female students
had an average of 1.003-point advantage over male students. However, the regression tree results
showed that gender was only a strong indicator for the 10.00% students in the upper reading
fall performance scale range (50.224, 54.173] and for the 10.00% students in the bottom reading
fall performance scale range �33.963.

Reading Gain (Spring 2011 Performance – Fall 2010 Performance) The result of
ANCOVA with students’ reading gain as the outcome is shown in Table 14 and Table 15 in the
supplementary material. The ANCOVA result showed that locale type factors were statistically
significantly related to students’ reading gain. The regression tree results were in line with the
ANCOVA result showing that the locale type factor is the strongest indicator. Though school %
free or reduced-price lunch and two out of three racial group factors (i.e., Black and Hispanic)
were statistically significant according to the ANCOVA result, the regression tree result showed
that school % free or reduced-price lunch and the racial group factors have different subgroup
associations with students’ reading gain. The racial group factor was only a strong indicator
for students from suburbs and cities. The school % free or reduced-price lunch indicator was
the strongest indicator for students from rural and town; it also created the third subdivision
for Black and Hispanic students in large cities. Though gender was statistically significant, the
regression tree result showed that gender was only a strong indicator for Black, Hispanic, and
Asian students in suburbs and midsize and small cities as well as students in schools with less
than 8.09% free or reduced-price lunch in rural and town – a total of 30.73% population.

All three region factors (i.e., Midwest, South, and West) were not statistically significant
according to the ANCOVA result, with the South factor being “almost significant” (p = 0.056)
as the region with the lowest students’ reading gain. However, the regression tree result showed
that the region factor created the third subdivision for rural and town schools with more than
34.44% free or reduced-price lunch, for White students in suburbs and midsize and small cities,
and for White and Asian students in large cities, meaning that the region factor was a relatively
strong predictor for those subgroups. Also, for White students in suburbs and midsize and small
cities, students from South made a gain of 15.290, which was distinct from an average gain
of 14.197 of West, Midwest, and Northeast combined. The ANCOVA result showed that the
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adjusted R2 was small .016, thus, the predictors together did not explain much variance in the
outcome variable; other predictors in the dataset may be considered to be included for future
analyses.

4.2 Summary of Comparison between Linear and Nonlinear Results of
ECLS-K Data

When the mean absolute errors of the regression tree models were compared with the mean
absolute errors of the ANCOVA models, they were similar in the case of fall reading performance
and fall math performance; however, ANCOVA had a slightly smaller mean absolute error than
the regression trees for spring reading performance and spring math performance; in contrast,
regression trees had slightly smaller mean absolute error than ANCOVA for reading gain and
math gain. That is because the fall performance was a strong predictor of spring performance; in
the regression tree models, CHAID algorithm separated this dominant continuous predictor into
ten bins, while ANCOVA fitted the linear regression between the continuous predictor and the
continuous outcome; thus, ANCOVA had slightly better prediction accuracy. But when there
was not a dominant continuous predictor linearly related to the continuous outcome, as in the
case of reading gain and math gain, regression trees are likely to have better prediction accuracy.
This matches James et al.’s (2017) comparison of linear models and trees. On the other hand,
linear models commonly suffer from multicollinearity, thus making it impossible to interpret the
coefficients separately (Field, 2013). In contrast, the regression tree results made the interaction
between predictors much easier to interpret.

The results have shown that the patterns illuminated by the regression trees differ across
the subject areas (i.e., reading and math) and between the performance levels and achievement
gains. The math and reading performances of the upper, middle, lower end of kindergarteners
on the SES scale were variously related to different factors (i.e., race, region, and gender). For
reading gain related, important factors included some of the same factors but also depend on
location types (i.e., cities, suburbs, towns, and rural areas). The picture differed for math gain
because racial groups performed differently based on their schools’ characteristics – % FRPL and
geographic designation. Rather than attempting to identify the significance levels of predictors
uniformly affecting the whole population, the case study elucidates the complexity of predictors’
roles in subgroup populations. Regression trees have the advantage of finding the best predictors
for subgroups, by choosing the partition that is optimal for the particular step of the tree growing
instead of being optimal for the entire tree, and making it easier to interpret. It is important to
know how subgroups perform and make gains in different subject areas before pedagogies and
interventions can be tailored to address students’ needs.

Because achievement data are often strongly linearly related to continuous predictors –
such as prior achievement or students’ SES like as in this case study – linear regression models
may have the advantage of prediction accuracy over regression trees. Even so, we may first
fit a linear regression model and use regression trees with other predictors on the residuals to
illustrate the complex relationship between the predictors and the outcome variable. In addition,
if prediction accuracy is the goal, ensemble methods such as random forests and bagging can
be used. Single trees have a clear disadvantage over ensemble methods in terms of prediction
accuracy with a prediction accuracy of single trees, on average, being 10% less than ensemble
methods (Loh, 2014). When interactions are not complex and can be correctly identified by a
single tree, a single tree and bagging can perform equally well. However, in cases where there are
many predictors with complex interactions, random forests tend to outperform bagging, while
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both random forests and bagging tend to perform better than single trees (Strobl et al., 2009).
However, single trees have a clear advantage in terms their interpretability (Loh, 2014).

In summary, when achievement data such as achievement gain in our case study are not
strongly linearly related to any continuous predictors, regression trees may make more accurate
predictions than linear regression models and also produce results that are easier to interpret.
Thus, this case study has shown that regression tree analyses can be utilized with observational
or survey data in education to display complex patterns between predictors and outcomes using
a data-driven approach that would be obscured by trying to model the entire population as a
whole. Similar analyses can be done with other predictors to enrich our understanding of the
social context of early childhood education. Parallel studies can also be conducted with the 1998
ECLS-K database to identify changes in early childhood education.

5 Discussion

5.1 A More Complete Picture Provided by Using Tree-Based Methods

Quantitative research in education often follows a deductive tradition – researchers go into the
field with a focused investigation starting with a research question and hypothesis and use the
data either to fail to reject the null hypothesis or to reject the null hypothesis leading to evidence
to support the alternative hypothesis. While the hypothesis testing is useful in reaching a decision
or a conclusion about a research problem, it has its limitations as O’Dwyer and Bernauer (2013)
state “following the scientific method by stating a hypothesis prior to conducting a study can
limit researchers’ ability to notice evidence that emerges to support competing hypotheses about
how attributes or variables are associated with each other. That is, focusing on testing pre-
conceived hypotheses can lead the researcher to miss important opportunities for future theory
generation” (p. 65). CRT is a machine learning technique similar to the inductive process used by
qualitative research and allows a pattern recognition from data. This provides an opportunity to
complement the quantitative social scientific hypothesis testing tradition by giving researchers
a complete picture and enabling them to generate new theories.

If the goal is to achieve prediction accuracy, tree-based methods can also serve as a bench-
mark predictor, so that the prediction accuracy achieved by simpler parametric models can be
used to compare with the prediction accuracy of the tree-based methods. If the simpler paramet-
ric models can achieve the same level of prediction accuracy and can be easily interpreted, then
the simpler parametric models should be used. However, if not, and variables of high importance
in the tree-based methods are not present in the simpler parametric models, it will shed light
on the fact that “relevant nonlinear or interaction effects may be missing in the simpler model
which may not be suited to grasp the complexity of the underlying process” (Strobl et al., 2009,
p. 19). In addition, tree-based methods can be used as a mechanism for variable selection –
a smaller number of relevant predictors can be chosen from the full list of variables and are used
subsequently in parametric models in a two-sage approach on a new set of data (Strobl et al.,
2009).

5.2 Potentials and Limitations for Tree-Based Methods Application

In a linear model with the very common case of multicollinearity, it is impossible to interpret the
coefficients separately and one is limited to simply making predicted values for the entire set of
predictors. The regression tree can be viewed one step at a time. The difference in interpretability
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is amplified when the linear model has interaction terms. In this case, CRT can be used to explore
data and produce easily interpreted models. When similar cases are grouped into each node in
CRT, it can describe data by showing the number and percentage of cases in each node, the
mean, and the standard error, and the range or section of the variables to partition the outcome
variable. However, when there is a strong linear relationship between one of the predictors and
the response, in other words, one of the predictors is continuous and a dominant one, and the
outcome variable is continuous, the tree may fit slightly worse than the linear model because
the continuous predictor is broken into discrete bins with CHAID algorithm.

Many educational achievement data sets use sampling weights on each observation. Though
developments have been made to use CRT while accounting for the weights or sampling design,
it requires familiarity with certain statistical software and programs. Some large-scale assess-
ment databases such as National Assessment of Educational Progress use plausible values as
students’ performance outcomes. Software such as “AM” or “EdSurvey” can conduct linear re-
gression models and comparisons using plausible values. However, statistical programs that allow
researchers to use plausible values for CRT analysis are not readily available.

5.3 Future Directions of Tree-Based Methods Application in Educational
Research

Ma (2018) has proposed several hybrid statistical modeling approaches that can be used to
exercise the full capacity of CRT. First, CRT can be used with HLM models to study longitudinal
data or conduct multilevel CRT analyses. When analyzing longitudinal data, HLM can depict
the rate of change over some time, while CRT can categorize subjects into different rates of
change based on subject characteristics. When conducting multilevel analyses, by integrating
CRT and HLM, the influence of the implicit data structure, which are the associations between
the outcome variable and predictors depending on subject characteristics, can be revealed at
the subject and cluster levels. Second, CRT can also be used for meta-analysis in ways that
effect sizes can be categorized based on empirical studies’ characteristics so that the interplays
of study features can be unveiled. Third, CRT can also be used when there is more than one
dependent variable. Categorical dependent variables can produce more refined categories based
on categories of each categorical variable; the new categorical variable as a result of this procedure
can be used as an outcome for CRT analyses. Two dependent variables with at least one being
continuous can be entered into CRT analyses with the continuous dependent variable as the
first independent variable to partition the root node and the other variable as a dependent
variable (Ma, 2018). In the case of achievement data, because they are often strongly linearly
related to continuous predictors such as prior achievement or students’ socioeconomic status,
we may consider a hybrid approach of linear models and regression trees by first fitting a linear
regression model with the dominant continuous predictors and then using regression trees with
other predictors on the residuals to illustrate the complex relationship between the predictors
and the outcome variable.

Note on Data Restrictions
The data used in this paper is marked as restricted use by the National Center for Education
Statistics (NCES). NCES required that all percentages in the tables provided be rounded to two
decimal places for data security, and sample sizes to be rounded to the nearest ten. Further,
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synthetic data are provided in the supplementary material. Access to the restricted use ECLS-
K:2011 data can be applied for using the procedures at: https://nces.ed.gov/pubsearch/pubsinfo.
asp?pubid=2013060.

Supplementary Material
The supplementary material includes the following files: (1) README: a brief explanation of all
the files in the supplementary material; (2) synthetic data files; (3) code files; (4) supplemental
files for the manuscript – a. supplemental tree file: an expanded overview of CRT method, and
b. supplemental tables and figures file: additional ANCOVA result tables and regression tree
figures for the outcome variables.
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