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Abstract

In this article I analyse motion picture editing as a point process to explore the temporal
structure in the timings of cuts in motion pictures, modelling the editing in 134 Hollywood
films released between 1935 and 2005 as a Hawkes process with an exponential kernel. The
results show that the editing in Hollywood films can be modelled as a Hawkes process and
that the conditional intensity function provides a direct description of the instantaneous cutting
rate of a film, revealing the structure of a film’s editing at a range of scales. The parameters
of the exponential kernel show a clear trend over time to a more rapid editing style with an
increase in the rate of exogenous events and small increase in the rate of endogenous events.
This is consistent with the shift from a classical to an intensified continuity editing style. There
are, however, few differences between genres indicating the consistency of editing practices in
Hollywood cinema over time and different types of films.

Keywords computational film analysis; film editing; Hollywood cinema; point process; time
series analysis

1 Introduction
Motion picture editors shape viewers’ experience of time in the cinema by controlling the timing
of shots by deciding which frame to cut on, where to place a shot within a sequence, how long
a shot is held on screen, and the pacing of a film by controlling the rate at which cuts occur
and information is presented to the viewer (Pearlman, 2017). The rate at which cuts occur in
motion pictures has been shown to affect viewers’ levels of arousal and attention (Lang et al.,
1999; Ludwig and Bertling, 2017), memory (Lang et al., 2000), and temporal perception and
judgements (Balzarotti et al., 2021).

In this article I am interested in motion picture cutting rates as an element of cinematic
pacing and I focus on the times at which the cuts in a film occur rather than the durations of
the shots themselves. It therefore makes sense to think of editing as a point process. A point
process is a stochastic process over a time interval (0, T ], whose realisations are the times at
which the events comprising that process occur. A one-dimensional temporal point process can
be represented simply as a timeline with the timings of events marked on that line. The counting
process (N(t)) is the number of events (N) that have occurred by time t and is a simple non-
decreasing function that increases by 1 each time an event occurs.

For editing in a motion picture, the point process is the set of times (T) at which cuts occur:
T = ti , . . . , tN , where ti is the time of the i-th cut and N is the total number of cuts. tN is taken
as the end of the final shot of a film, where a shot is defined as the time elapsed between two
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Figure 1: Timeline-based editing in DaVinci Resolve. Clips are arranged in the timeline chrono-
logical order.

Table 1: Extract from an edit decision list (EDL) for The Butcher Boy (1917) produced by
DaVinci Resolve. Each edit in the EDL appears as a numbered event that contains the shot
number, reel number, edit type (V = video, C = cut), source timecode in and out points
(hours:minutes:seconds:frames), and record timecode in and out points.

Shot Reel V C Source In Source Out Record In Record Out

001 001 V C 00:00:00:00 00:00:08:10 00:00:00:00 00:00:08:10
002 001 V C 00:00:08:10 00:00:13:01 00:00:08:10 00:00:13:01
003 001 V C 00:00:13:01 00:00:27:05 00:00:13:01 00:00:27:05
004 001 V C 00:00:27:05 00:00:32:20 00:00:27:05 00:00:32:20
005 001 V C 00:00:32:20 00:00:38:19 00:00:32:20 00:00:38:19
006 001 V C 00:00:38:19 00:00:44:20 00:00:38:19 00:00:44:20
. . . . . . . . . . . . . . . . . . . . . . . .

cuts: si = ti − ti−1. The counting process is simply the number of cuts that have occurred to time
t . It is natural to think of editing as a point process because this reflects how films are edited.
Non-linear editing systems such as DaVinci Resolve or Adobe Premiere Pro are timeline-based,
with video and audio clips, effects, and transitions arranged in chronological order horizontally
across the screen (Figure 1). The ordered timecodes of the cuts in a film can be exported as an
edit decision list (EDL) for use in post-production (see Table 1). The timeline visualises and the
EDL describes the editing in a film as points on a line and although filmmakers do not describe
their work in terms point processes, the marking of points on a line representing the running
time of a film is nevertheless a key concept in how editors think about time in the cinema.
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The identification of suitable models of pacing in the cinema has applications in the devel-
opment of data-driven filmmaking technologies, with decisions about the pacing of film being
taken out of the hands of filmmakers and given over to artificially intelligent editing systems (see,
for example, Leake et al., 2017). A key feature of motion picture editing is that the probability
of a cut occurring at any time is not independent of the previous cuts resulting in the clustering
of edits (Cutting et al., 2010), with long-range dependence evident in editing patterns (Cutting
et al., 2018). This eliminates the Poisson process as an adequate model of motion picture editing
due to the requirement that the inter-event times of such a process are statistically independent
(Zadeh and Sharda, 2015). The clustering and long-range dependence suggest that editing is a
self-exciting process and can be described by point process models with memory.

In this article I analyse the editing in Hollywood cinema as a point process to assess if the
pacing of a film can be adequately modelled as a Hawkes process (Hawkes, 1971), a common
model for self-exciting point processes. In the next section I provide a brief overview of Hawkes
processes. Section three describes the analytical methods used in this article and section four
presents the results of modelling the editing in a sample of 134 Hollywood films as a Hawkes
process with an exponential kernel.

2 Hawkes Processes
A point process is self-exciting if the occurrence of an event makes future events more likely to
occur with a corresponding increase in the conditional intensity function. Formally, a self-exciting
point process exhibits positive covariance between collections of events in time: cov(Nt2 − Nt1,

Nt3 − Nt2) > 0, for t1 < t2 < t3. A self-exciting point process can produce the type of clustering
behaviour we see in motion picture editing and so a model that describes this type of behaviour
could be a good candidate to describe this aspect of film style.

A widely used class of self-exciting point process models are Hawkes processes, which have
been applied to seismology (Ogata, 1988), epidemiology (Unwin et al., 2021), neuroscience (Lam-
bert et al., 2018), finance (Hawkes, 2018), and social media (Watine et al., 2022). A point process
can be completely described by its conditional intensity function, λ (t), which is the instantaneous
rate of events at time t :

λ (t) = lim
�t→0

E {N (t + �t) |Ht}
�t

,

where Ht is the history of the process up to and including time t . A point process is said to be
a Hawkes process if the conditional intensity function takes the form

λ (t |Ht) = λ0 +
∑
ti<t

h (t − ti) ,

where λ0 is the background rate at which exogenous events occur, and h is a kernel function
that determines how past events influence the intensity at time t and represents the memory of
the process. The effects of past events are cumulative so that the whole history of the process
affects the conditional intensity function at t but those effects decay over time so that the
most recent events exert the greatest influence. The kernel function can be decomposed into
h = μh∗. μ < 1 is the reproduction mean, which describes the expected number of events
triggered once an event occurs and is a measure of the endogeneity of a process. h∗ is the
reproduction kernel, a normalised density function with

∫
h∗ = 1, describing how the influence

of past events on ti decays over time. There are various kernel functions that can be used to model
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a Hawkes process. A common choice is the exponential kernel, which has the reproduction kernel
h∗ (t) = βe−β(t−ti )1{t>0}, where β is the decay parameter of an exponential distribution and 1{t>0}
is the Heaviside step function (Cheysson and Lang, 2021; Filimonov and Sornette, 2015). When
an event occurs, the conditional intensity function of a Hawkes process with an exponential
kernel increases by α = μβ.

3 Methods

3.1 Data

The data set used in this study comprises the shot length data for 134 Hollywood films released
between 1935 and 2005 divided into five genres (action, adventure, animation, comedy, and
drama) from Cutting et al. (2010), and is available through the Cinemetrics database (www.cin-
emetrics.lv/database).

3.2 Estimation

I use the hawkesbow package (Cheysson, 2021) for the statistical programming language R (R
Core Team, 2021) to fit Hawkes models with an exponential kernel for each film in the sample.
hawkesbow uses the function nloptr() from the package nloptr (Johnson, n.d.), employing the
NLOPT-LD-LBFGS algorithm (Liu and Nocedal, 1989) to maximise the likelihood function

Ln (θ) =
(

N∏
i=1

λ (ti)

)
exp

(
−

∫ T

0
λ (s) ds

)
,

for an observed set of events at times ti , . . . , tN in an interval [0, T ] over the set of parameters
θ . The tuple of initial values used when fitting the exponential kernel is (0.2, 0.2, 0.2).

Attempts to fit a Hawkes model with a power law kernel to the Hollywood shot length
data proved unsuccessful, with a high number of failures across a range of initial values and
inconsistent results between runs, leading to the model being both rejected and not rejected
when running the algorithm multiple times against the same data with the same initial values.

3.3 Goodness-Of-Fit

According to the time-rescaling theorem, if the model fitted to the data is correct then the
event times of a point process can be rescaled as a Poisson process with a unit rate (Daley and
Vere-Jones, 2003, p. 261). For a counting process N (.), the non-decreasing function

�(t) =
∫ t

0
λ (s) ds

is the compensator of the counting process. The transformed sequence of time points {t∗1 , t∗2 ,

. . .} = {�(t1) , � (t2) , . . .} is a Poisson process with a unit rate if the original series of time
points {t1, t2, . . .} is a realisation of a point process defined by the compensator �(.).

Goodness-of-fit can then be assessed by a two-sided Kolmogorov-Smirnov test of the null
hypothesis that the t∗i /t∗N , 1 � i � N , are distributed as order statistics from a standard uniform
distribution (U[0, 1]) (Laub and Taimre T, 2021, pp. 79-84). If the model is a good fit, a plot of
the cumulative distribution function of the rescaled times should lie along a 45-degree line within
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the 99.9% confidence band defined by 1.95/
√

N , for a Kolmogorov-Smirnov test with α = 0.001.
Applying a Bonferroni correction for multiple testing with 134 films in the sample results in a
family-wise error rate of 0.001 × 134 = 0.134.

Due to limitations of space, I include only one example of an individual film here. The
complete set of plots for all the films in the sample is available in the supplementary material
for this article.

4 Editing in Hollywood Cinema as a Hawkes Process
The results of fitting the exponential kernel show that motion picture editing can be modelled
as a Hawkes process, with the model well-fitting for all 134 films in the sample.

To illustrate the results of fitting the Hawkes model to the editing of an individual film,
Figure 2 plots the results of modelling the time series data for The Perfect Storm (2000), which
tells the story of the crew of the fishing boat Andrea Gail that was lost at sea in the ‘perfect storm’
at the confluence of two powerful weather fronts and a hurricane in October 1991. Figure 2.A
plots the counting process and Figure 2.B plots the goodness-of-fit of the rescaled times against
a standard uniform distribution along with the results of the Kolmogorov-Smirnov test. The
counting process shows how the cutting rate changes over time, with an accelerating cutting
rate until the final fifth of the film, when the rate at which cuts occur slows down. It is the
conditional intensity function in Figure 2.C that is most informative, describing how the cutting
rate changes over the course of the film and enabling the analyst to identify potentially explicable
features at different scales.

For example, the conditional intensity function shows an increasing trend until 5790.7s
(∼1:36:30), which takes us to the point when the helicopter rescue crew is forced to abandon its
search for the boat and ditches in the water, while the crew of the Andrea Gail loses hope and
Captain Billy Tyne admits, ‘Boys, that’s it. We can’t make it. We’re turning around.’ After this
point the cutting rate decreases as the ship is finally overwhelmed by a rogue wave and their
families comes to terms with the loss of the crew. This suggests that the cutting rate at this scale
is associated with emotion rather than action, tied to the hopes and fears of the characters rather
than the effects of the storm itself. Within the large-scale evolution of the conditional intensity
function there are mid-scale features at the level of the sequence. The conditional intensity
function shows a downward trend from 3046.2-4239.7 seconds (∼0:50:46-1:10:43). During this
sequence we see the crew of the Andrea Gail make the fateful decision to head further out
to sea where they land a large catch before being forced to return home due to a broken ice-
machine. As the crew’s fortunes improve the cutting rate decreases, again linking the editing
to the dominant emotion of a sequence, as the crew’s pessimism about their lack of success is
replaced by their optimism about the future. Within this sequence are small-scale features in
which the conditional intensity function rises sharply before dropping away equally quickly to a
floor consistent with the trend of the cutting rate at the scale of the sequence. These local peaks
are associated with moments of intense action when Murph, one of the fishermen, falls overboard
and is rescued (3218s, ∼0:53:38), and a yacht thrown about by the storm calls for assistance
(3705.9, ∼1:01:46). These local peaks inject moments of danger into a sequence with an overall
editing trend associated with the positive emotions of hope and optimism. These results indicate
that the editing of The Perfect Storm serves different functions at different scales.

Figure 3 plots the trends in the model parameters for the whole corpus of films over time.
There is a significant increase in the background rate λ0 from 1955 to 2005 measured by Spear-
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Figure 2: Editing inThe Perfect Storm (2000) modelled as a Hawkes process with an exponential
kernel (λ0 = 0.0502, μ = 0.763, and β = 0.0106). (A) Counting process. (B) K-S plot: the
rescaled times are plotted against the cumulative distribution function of a standard uniform
distribution (U[0, 1]), with a 99.9% confidence band. (C) Conditional intensity function of the
fitted model.

man’s rho (rs(132) = .53 (95%CI : .40, .64), p � .001), with an intensifying trend after 1975.
This trend tracks the shift to an intensified continuity style in Hollywood cinema after 1975 char-
acterised by increased cutting rates, with editors cutting on every line of dialogue and including
more reaction shots compared to editing practices in classical sound era (1930-1960) (Bordwell,
2006; Cutting and Candan, 2015; Redfern, 2020). The range of the reproduction mean in the
sample is broad, from 24% in Harvey (1950) to 86% for Ghost (1990), but there is only a weak
increasing trend over time from 1935 to 2005 (rs(132) = .22 (95%CI : .06, .39), p = .01), indi-
cating that while the rate at which exogenous events occurs has increased, the endogeneity of
the process has changed little over time. Films released before 1960 have a slightly higher repro-
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Figure 3: Trends in the (A) background rate (λ0), (B) reproduction mean (μ), and (C) decay rate
(β) of a Hawkes process with an exponential kernel fitted to shot length data of 134 Hollywood
films released from 1935 to 2005, with lowess (locally weighted scatterplot smoothing) trendlines
and 95% confidence interval. All lowess trendlines are have degree = 2 with a span of 0.75.
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duction mean than those released from 1965, which again reflects the shift from a classical to
post-classical mode of filmmaking. There is no evidence that the trend in μ increased after 1975
similar to that of the background rate, and the reproduction mean has remained constant since
1965 with an average of approximately 60% of cuts in films in the sample occurring as a response
to an exogenous cut. There is a small decline in the value of μ for films released in 1945, though
this is due to a small number of films (Detour, In Pursuit to Algiers, The Lost Weekend) released
in this year that have atypically low values of μ. The decay rate of the reproduction kernel shows
no trend over time (rs(132) = .16 (95%CI : −.01, .32), p = .06) but increased slightly in the
1970s and 1980s. Again, this was a temporary change in style and from 1990 the trend in the
decay rate decreases so that by 2005 it is comparable with that of 1935. A reproduction kernel
with a higher decay rate has shorter memory as the density of the exponential distribution falls
away more quickly as β becomes larger. This indicates that the influence of cuts in films of the
new Hollywood era did not extend as far in time as in other eras, resulting in clusters of shots of
similar size in the 1970s (as reflected in the constant trend of the reproduction mean) but which
were more loosely constructed than in other eras. However, it should again be noted that the
change in style is small and may represent a tendency for drama films to be under-represented
in the sample during these years rather than a clear change in style. The overall pattern is one of
stylistic consistency in Hollywood filmmaking as the underlying principles of continuity editing
have persisted over time and the relationships between cuts have been maintained even though
cutting rates have evolved over time.

Figure 4 plots λ0, α, and β for the Hollywood films in the sample and again shows the stylistic
consistency across the 70-year span of the data set, with all but one film (In Pursuit to Algiers)
lying close to a plane in a 3-D space defined by the linear model β = 0.018λ0 + 1.315α + 0.006.
Drama films tend to lie slightly above the plane while action films tend to lie slightly below due
to the difference in their reproduction means. Simulated Hawkes processes for creating edited
film sequences can be generated by selecting the parameters (λ0, α = μβ, β) that define a
location on or near to this plane.

Figure 5 plots the distributions of the parameters of the fitted exponential kernels for each
genre in the sample. To compare the distribution of the parameters across genres I performed a
Kruskal-Wallis test, with pairwise post-hoc Wilcoxon-Mann-Whitney tests assuming an family-
wise error rate of .10 and 10 tests giving a Bonferroni-adjusted p-value of .01. The effect size
is given by Cliff’s d (Cliff, 1993). There is a significant difference for the background rates
(χ2 (4) = 17.52, p = < .01), with significant pairwise differences between the animation films
and the action (p =< .01, d = 0.69) and drama (p =< .01, d = 0.75) genres. There is
a significant difference among genres for the reproduction mean (χ2 (4) = 23.01, p = < .01),
with values of μ for the action genre significant different from those of animation (p =< .01,
d = 0.65), comedy (p =< .01, d = 0.42), and drama (p =< .01, d = 0.65) films. There are
no other significant pairwise differences among genres. The omnibus test for the decay rate also
shows a significant difference (χ2 (4) = 14.46, p = < .01), with pairwise differences between the
animation genre and the action (p =< .01, d = −0.65) and comedy (p =< .01, d = −0.69)
genres.

There is no consistent pattern of differences between genres, with only the animated films
exhibiting large differences from some other genres. The background rate for these films tends
to be higher than those of some other genres, while the decay rate tends to be lower. From
Figure 5 this genre is also the only group of films with apparent sub-groups, marking a difference
between those films for which λ0 and μ are higher than other films (The Aristocats (1970),
Pocahontas (1995), Toy Story (1995), Dinosaur (2000)) and those for which the opposite is the
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Figure 4: The parameters λ0, α = μβ, and β of a Hawkes process with exponential kernel fitted
to 134 Hollywood films released from 1935 to 2005, with fitted 2D-plane fitted by the linear
model β = 0.018λ0 + 1.315α + 0.006. An interactive version of this plot is available as part of
the supplementary material for this article.

case (Pinocchio (1940), Cinderella (1950), Lady and the Tramp (1955), Madagascar (2005)).
Fantasia (1940) belongs to the latter group but is distant from the other animated films, with
a notably lower background rate (λ0 = 0.0265) and higher reproduction mean (μ = 0.7136).
The values of the decay rate do not show the same distinction between these groups, though
films released after 1970 tend to have higher values of β than those released earlier. Except for
Madagascar, which was released in 2005, this indicates a difference in the pacing of animated
films prior to 1970 and those released later, with the latter group having both higher cutting
rates and but with cuts that have less influence on the timing of subsequent edits.

5 Conclusion
This article is the first to consider if pacing in the cinema can be modelled as a Hawkes process.
The results show that the conditional intensity function of a Hawkes model with an exponential
kernel can provide a good estimate of the cutting rate of Hollywood films and is informative at
different levels of analysis. At the level of the individual film, the conditional intensity function
is a direct way of representing the instantaneous cutting rate of a film that has descriptive
power, straightforwardly communicating how the editing of a film evolves over the course of its
running time, and analytical power, supporting a bottom-up approach to analysing film style
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Figure 5: The (A) background rate (λ0), (B) reproduction mean (μ), and (C) decay rate (β) of
a Hawkes process with an exponential kernel fitted to shot length data of 134 Hollywood films
released from 1935 to 2005 by genre.
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that allows the researcher to identify potentially explicable features at the different scales of the
scene, sequence, and film (Redfern, 2015). At the level of the corpus, the parameters of the model
allow us to identify stylistic trends over time. The shift to a more rapid editing style is evident
in the increase in the background rate, but there is only a small change in the reproduction
mean over time and no trend in the reproduction kernel over 70 years of filmmaking. There is no
evidence of shift to a more rapid cutting style associated with the arrival of an ‘MTV aesthetic’
in the early 1980s, which apparently saw filmmakers adopt an aesthetic derived from music
videos (Calavita, 2007). On the contrary, the emergence of intensified continuity of the post-
classical Hollywood era would support the conclusion that while the pacing of Hollywood films
has evolved, the continuity style of editing films has remained largely stable with aesthetic norms
persisting over time (Bordwell, 2002). The trend in the background rate clearly indicates this
change began long-before the advent of MTV in the 1960s (see also Redfern, 2014). Action and
animated films exhibit some differences from other genres, but in general there are no differences
in the model parameters between genres.

The results presented here have some limitations to be explored in future research. First,
I assumed that the background rate of the Hawkes process is constant. Although the results
presented here indicate that a Hawkes model with a constant background rate can model the
editing of Hollywood films adequately, this may not be a realistic assumption. Cutting (2016a,b)
notes that the style of Hollywood films evolves over the course of their running time, with
different editing regimes associated with different stages of a film. Better results may therefore
be achieved using a Hawkes model with a time-varying background rate. As the four-act structure
is common to Hollywood filmmaking (Thompson, 1999), piecewise linear or log-linear baselines
with four knots or basis functions (Omi et al., 2017) may provide a better fitting model to deal
with non-stationary features. Second, in this article I have assumed that the parameters of the
exponential kernel are a reasonable model for the memory of editing as a point process. Again,
the extent to which this assumption is realistic requires further consideration and non-parametric
estimation of the Hawkes process parameters may better fit the data. Third, estimation of the
coefficients of the regression plane in Figure 4 could be improved by taking into account the
increasing trend over time exhibited by the background rate λ0 to include release year as a
variable in the linear model. Editing practices in Hollywood cinema comprise a set of norms that
are largely consistent across different types of films, but fitting regression planes for separate
genres may identify differences between different types of films. Including these variables would
allow for the simulation of Hawkes processes that could vary according to the genre of a film or
capture different aesthetic norms in Hollywood editing, such as the distinction between classical
and post-classical continuity editing (Bordwell, 2002).

Fourth, I have considered editing as a univariate point process in isolation from other
elements of film style. Analysing the temporal structure of a film as marked Hawkes process
will allow for other elements of film style, such shot scale, camera movement, camera angle,
or any state of the narrative we care to define (e.g., dialogue, action, complication, climax,
etc.), to be incorporated into the model. Potentially interesting models are Gaussian Marked
Hawkes Process, which combine a Hawkes process to model events in continuous time with a
Gaussian distribution for modelling the meta information assigned to events (Seonwoo et al.,
2018); Markov-modulated Hawkes processes (Wang et al., 2012), which allow for a Hawkes
process to switch between states; and neural Hawkes processes (Mei and Eisner, 2017), which
combine a Hawkes process with a recurrent neural network to better capture the real world
behaviour of self-exciting point processes and which allows for past events to either excite or
inhibit future events. Given the complexity of editing as a temporal process, in which the cutting
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rate of a film is determined by its genre, the stage of the film at which a cut occurs, and the type
of shot selected, flexible multivariate models will capture key features overlooked when using a
univariate model.

Finally, this article only considered the case of editing in Hollywood cinema and other modes
of filmmaking with different sets of aesthetic norms, such as art cinema, documentary filmmak-
ing, or television production, may not be well-fitted by a Hawkes model with an exponential
kernel. They may not exhibit self-exciting behaviour at all. Future research will therefore need
to examine different types of filmmaking as a point process.

Supplementary Material
The complete set of results and plots for all 134 films in the sample along with the R code used in
this project are available for the reader to explore as a shiny app at https://tinyurl.com/2p8c86u3.
The data, code, and results for this article are also available on the supporting GitHub repository
at DrNickRedfern/hollywood-hawkes.
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